Work Your Body, Work Your Brain

Regular exercise can increase your muscle strength, decrease the risk of health complications like high blood pressure and diabetes, but most importantly it can do wonders for our happiness. This link between physical activity and psychological well-being is supported in the literature, but the people who can benefit the most — children in grade school and adults with mobility limitations — seem to be faced with many unnecessary hurdles. Our guest is Winston Kennedy, a 3rd year PhD student in the Kinesiology program and Adaptive Physical Activity option, was a practicing Physical Therapist when he noticed his patients with mobility limitations were trying to perform their rehabilitation exercises at home but they received inadequate support or guidance. It’s these barriers to successful rehabilitation that Winston is examining in his research project with the aim of making physical therapy more inclusive to any patient who could benefit.

Poster presentation of some of my Winston’s research; Determining Factors associated with Physical and Occupational Therapists’ attitudes Towards Disability

Physical therapy is often learned in the hospital and the patient is expected to perform those exercises at home; in fact, nearly 9 million Americans have some experience with physical therapy during their lifetimes but that number should actually be much bigger. Unfortunately, the benefits that patients can receive from PT is not well understood by primary care physicians so there is a discrepancy in the number of patients who receive a referral to visit the PT and those who can benefit. Adults who may benefit from PT could argue their case to their general practitioner and they may even be successful, but treatment gaps remain for children. Early in life during primary school “the majority of students with disabilities are placed in general education classrooms for 80% or more of their time in school“, which could exclude children from participating in exercise and bonding with their peers. The overlap between physical therapy, independent mobility, and mental health becomes obvious only when a wholistic approach to how a lived experience can extend from a person with physically unstable wrists or fingers into the frustration they may feel when using a small key to unlock a stiff door to your own home is painful or is downright too strenuous.

Winston at the Oregon state Championship Olympic weightlifting competition.

Winston continues to be a practicing physical therapist in Corvallis, but what brought him to Oregon State University from Florida was the seemingly obvious physical barriers that patients had in performing their rehabilitation, at home or in the gym, and the effect it had on his patients success. One practical design idea for gyms that can be more inclusive are structurally sound scaffolding near weight machines, or parallel bars for patients to practice walking without the fear of falling, the addition of a roaming human facilitator that can assist someone for a few minutes at a time can also have major positive benefits to generate spaces inclusive for people of all kinds of physical abilities. However, before he can help people in the physical therapy offices, he first needs to understand what the attitudes and perceptions of physical therapy are from primary care physicians who can refer patients. This is the first part of Winston’s project, but it won’t be his last.

Winston first became exposed to physical therapy after a shoulder injury in high school, although he wouldn’t pursue it professionally until he was in his senior year at Hampton University playing on the football team when his school counselor suggested PT could be a career option. Following knee surgeries that ended his football career, he made a hard swing to focus on schooling and PT school that eventually lead him to see the need from his patients. This gap in care, especially for those with disabilities, is what brought him to Oregon State and Sam Logan’s lab in the Kinesiology program. Listen in on Sunday January 26th at 7pm on 88.7FM, or live-streamed to learn more about Winston’s research. If you missed the live episode, you can listen to Winston’s interview on our Apple Podcast page.

Robots without boarders: from Morocco to France to Germany to Oregon State

Amine Gaizi is a masters student working on a degree in Electronics and Embedded systems. As an exchange student from France, Amine is studying in the Department of Electrical and Computer Engineering within the College of Engineering here at OSU.

Amine taking care of a tea salon and serving mint tea he had prepared for all CPE students, which is very popular in Morocco. During that day Melting Potes was presenting Africa and Amine did this to display the moroccan culture.

Amine is originally from Morocco, where he studied in French schools, so the next natural step was to move to France for his higher education. At CPE (Ecole d’Ingénieurs en Chimie et Sciences du Numérique) in Lyon France, Amine has been working on his degree. At CPE Amine was part of an association that promotes cultural diversity and helps the foreign students that come to CPE. It is called “Melting Potes”, like melting pot but with a twist, in french “potes” means good friends. One of the major events we organize is called “the cultural week”. Everyday they present the culture of a continent through food, music, decorations, activities and gifts.

During his graduate work, Amine worked in the department of automotive microcontrollers at Infineon Technologies in Germany for a year to develop an autonomous robot in the shape of a mini car. Essentially, there is a chip that you can program to interface sensors and control actuators following a particular algorithm. Amine says the microcontrollers developed by the automotive department of Infineon are very safety and security oriented, which makes them practically fail-proof. It is the type of technology that is used for braking systems in cars.

This mini robot car that Amine worked on is capable of scanning what’s in front of it, and heading to target locations while avoiding obstacles, and Amine presented this work at Embedded World fair.

After moving from Morocco to France to Germany, Amine thought, “why not also do an exchange program!”, so going through the University of Lyon’s exchange program, Amine arrived in Corvallis Oregon Fall 2019 and has had a great time so far! Living in “iHouse” which is a community of mostly international students living together in a large house, Amine has made amazing friends from all over the world and has made even more friends through playing tennis.

He’s done a decent amount of traveling during his exchange here but Amine said graduate school is no joke. Being a graduate student is already a challenging undertaking, but being an international student adds another layer of complexity and difficulty. Thankfully, Amine knew some other French exchange students when he arrived who helped him get started, and the Office of International Services provided plenty of resources and information.

To hear more about Amine’s journey to OSU, how the French school system is organized, and about the highs and lows of the international student experience, tune in on Sunday, January 19th at 7 PM on KBVR Corvallis 88.7 FM or stream live

Climate change, carbon, roots vs shoots, and why soil is more than just dirt

For starters, soil and dirt are not the same thing (contrary to my own belief). First of all, dirt is in fact soil that has been removed from its intended location. For example, the stuff on your shoes after you go hiking in the forest or the grit under your fingernails after you go dig around in your garden, that’s all dirt. The stuff that is left untouched in the forest and in the garden, that’s all soil. Secondly, soil is super important for a number of reasons. One of the key reasons being that it has the potential to help us reduce the amount of carbon in our atmosphere on human timescales, and therefore, mitigate the effects of climate change. And Adrian Gallo is right in the nitty-gritty of it all. 

Adrian is a 4th year PhD student in the Department of Crops and Soil Sciences working with Dr. Jeff Hatten, who was also his Master’s advisor. While Adrian’s Master’s work was focused on understanding how carbon and water move in Oregon soils under intensive forest management, his PhD is looking at soils from a much wider and more diverse range of habitats and ecosystems. Specifically, the soil cores are from 43 different locations across North America spanning 20 different ecoclimatic zones, ranging from the Alaskan Arctic Tundra to the southern tip of Florida. By analyzing these samples, Adrian is making a continental-scale assessment of soil organic matter and how similar or different it is across these ecoclimatic zones. In particular, Adrian is looking at carbon. Carbon is unique to look at in soils because it is cycling in human timescales, unlike carbon in rocks and oceans, which cycles on geologic timescales. What this means is that essentially we can directly manage and influence the carbon on our landscapes. However, before we can do that, we need to understand why some carbon stays in soil much longer than other carbon (50,000 years vs 1 week) and how different microbes have different abilities to use these different kinds of carbon. 

While it may not sound like it to many of us, the work that Adrian is doing is soil-scientifically speaking quite ‘basic’. It is ‘basic’ because soil scientists today are only now realizing how little we actually know and understand about how carbon works and cycles within soil. The reason being that “we were using essentially the same analytical methods for more than 100 years, and our predictions and climate models were built using that data. It’s only in the last 25 years that we have had instruments sensitive enough to test some of these predictions, and in some cases we’ve found that our models are completely wrong.” (NEON Science). 

Many of us probably learned about how cycling of elements, such as nitrogen, calcium, and carbon, works in middle school. The terrestrial carbon cycle was likely explained in the following way; a tree grows, its leaves fall, the leaves decompose, the nutrients go back into the soil, the tree uses the nutrients, which includes carbon. However, what Adrian and many other soil scientists are finding is that the carbon cycle isn’t as cyclical as we thought it was, and as we perhaps wish it would. Additionally, our belief that most of the carbon that finds its way into soils is shoot-derived (aka from the leaves or from above the ground) is also being proven flawed, in some part by Adrian’s research. After analyzing the soil cores from his 43 sites, Adrian found that most of the carbon in soil is looking like it is in fact root-derived. 

You may be thinking to yourself, why should I care about how much carbon is in the soil and where it comes from and how long it stays there. Well, soil is actually the most important terrestrial carbon sink, storing an estimated 4,100 gigatons of carbon globally, which is more than the atmosphere (~590 Gt) and organisms (650 Gt) store. And the truth of the matter is that we want carbon in our soil. In fact, we want a whole lot more in there. Not only would having more carbon in our soil be beneficial to our climate (as we would be capturing and storing more of the atmospheric carbon in our soils rather than have it out in the atmosphere), but it is also beneficial from an agricultural perspective. If you put carbon in soil, it increases its water holding capacity, meaning farmers don’t have to irrigate as much, it increases the amount of nutrients in the soil, and as a consequence of both, it means that a more diverse range of crops can be planted. There are so many downstream benefits of putting carbon back into soil that is has the potential to make farmers much safer in bad drought or flood years.

Another really exciting component of Adrian’s research is how collaborative and interdisciplinary it is. One of the best examples of this is where he got his 43 soil cores from. You see, Adrian didn’t actually have to go to each of his 43 cross-continental sites (which would have been a nightmare temporally, logistically, financially, and many more words ending in -ally). Instead, he and his advisor were able to convince a team of researchers who were already going to these sites as part of an NSF-funded project called NEON (National Ecological Observatory Network), to send him the 1-m average length cores, which the NEON group were actually planning on not using and dumping. Furthermore, Adrian has joined forces with researchers from diverse backgrounds to look at these cores from totally different angles. While Adrian represents the role of chemist in the group, there is also an ecologist, mineralogist, and a statistician, who are all fitting different pieces of the puzzle together.

In Adrian’s own words, “it’s a really exciting time to be in the field of biogeochemistry because that’s basically what soil is – some mixture of biology, the chemistry that is involved, and the parent material– the rock itself–dictates a lot of the reactions that can occur. We have taken that for granted for a really long time but I really enjoy the complexity of it and having specialists come in to look at this problem from lots of different angles has been really great.”.

When Adrian is not in the lab breaking apart soil cores or in his office thinking about soil, you’ll probably find him speeding around in the woods on his bike…covered in soil. Source: Twitter.

To hear more about Adrian’s research and also about his journey to OSU and more on his personal background, tune in on Sunday, January 12 at 7 PM on KBVR Corvallis 88.7 FM or stream live. Also, make sure to follow Adrian on Twitter for updates on all things soil and check out a recording of a talk he recently gave at the American Society of Agronomy and Crop Science Society of America joined conference!

[Unfortunately due to a conflict with OSU Athletics schedule promoting a game, this on-air interview did not take place. The podcast/on-air interview will occur later in 2020]

Robots! A Story of Engineering and Biology

Meet Nathan Justus, a Robotics Engineer at Oregon State University.

“I never thought I’d end up in graduate school funded by grape lobbyists,” says Nathan Justus, a robotics engineer at OSU, “but here we are!”

Imagine you reach down into a bag of grapes only to notice a black widow spider crawling through the grape stems. These small spiders have an unusually potent venom containing a neurotoxin that is harmful to large vertebrates (aka humans!). Although there haven’t been any deaths from black widows transmitted through grape production to date, you can imagine why the 800 people that find black widows in their grapes every year get quite the scare. Not surprisingly, the grape industry is looking for a sustainable way to solve this problem. After all, the use of pesticides and fumigants is harmful for humans and the environment, and black widow spiders are actually beneficial to the grape-growing ecosystem. Nathan is part of a team that is using robotics as a creative tool to tackle this issue, and by taking this interdisciplinary approach, the development of a promising solution is underway. 

Generally, Nathan studies the robotics of biological motion. It turns out that when a black widow spider enters the web of another, the two spiders pluck at the web to communicate and ultimately determine who gets to stay and who has to leave. Nathan’s lab is partnered with arachnologists and researchers at the USDA who found that when you record the spiders plucking and play it back to them, sometimes the spiders would leave the webs. Part of what Nathan worked on for his Master’s project was a new method to measure the frequency of the web vibrations in order to fine tune and develop a method for implementing this spider evacuation plan. 

The status quo method of measuring such vibrations has been to use a fancy laser, which catches shifts in wavelength in order to deduce the frequency of vibration. Although this method works great for flat surfaces, it is understandably a challenge to use a laser on a moving spider or web. Enter video vibrometry: the new method that Nathan has been working towards developing. Simply put, this method involves pointing a video camera at a target, in this case, the black widow web, and then a little bit of “math magic” will yield the vibration frequency. This piece of technology works towards the greater goal of the project; to allow spiders to live comfortably in their homes as grapes grow, but leave when the time comes to harvest. Happy farmers, (relatively) happy spiders.

Luckily, Nathan is not leaving OSU as a researcher any time soon. He will be beginning his PhD in Robotics with Dr. Joe Davidson working to solve an entirely different puzzle. The overarching project goal is the development of autonomous robots that can navigate and interact with the underwater environment. This has many practical applications; just to name one, there is the extensive feat of keeping up with the frequent maintenance needed for our global telecommunications infrastructure, which, of course, is underwater. Maybe we want robots that will be able to work on ship hull examinations and repair, or perhaps we are envisioning a fleet of scientific robots that can explore shipwrecks or the ocean floor. Currently we have robots for the underwater environment, however, most are either human operated and thus attached to a tether, or must be within 10 meters of controls. Creating a robot that can break free of these limitations and navigate through the noise of currents and frictions, all while receiving feedback from the environment, is incredibly complex. Nathan’s PhD work will move the state of research on underwater robotics closer to autonomy.

Nathan was on the winning team for the NASA RASCAL Robotics Ops Competition. His team received $10,000 of funding to build a rover. Their rover was inspired by the Russian style Marsicon and was roughly 1m by 1m upon completion.

Nathan didn’t always know that he would end up working on underwater robots. He grew up dreaming of being an aerospace engineer, and went to the University of Oklahoma for just that. In his undergrad, he joined a team that got funded 10,000 to join a national competition to build a rover for NASA, and even won. After graduating, he joined NASA and worked in mission controls for the International Space Station. Nathan was part of the communications teams that worked in real time, 24-hours a day to keep the communication channels at NASA up and running. Legend has it that he has even gone rock climbing with astronauts. 

Mission Controls at NASA

Impressed? Me too. Intrigued? Tune into the live interview with Nathan this Sunday, December 8that 7:00pm on 88.7 KBVR Corvallis or stream it live! 

Cultures of collaboration in forest management

Meredith Jacobson is a Master’s student in the Forest, Ecosystems and Society Department of OSU’s College of Forestry who studies collaborative partnerships in forest management. She describes her thesis work here at Oregon State as a qualitative case study on the concept of “Anchor Forests”, an idea developed by the Intertribal Timber Council that would involve creating large regions of forest management and stewardship, collaborating across ownership boundaries. Within this brief statement, there’s a lot to unpack.

Early in her undergraduate experience in forestry at UC Berkeley, Meredith became interested in how to engage communities in managing their natural resources. After working a few seasons in the field, she wanted to find a way to combine her interest in social justice with her love of forests. So she came to OSU to study collaborative forest governance. As she gained exposure to this field under the guidance of her advisors Dr. Reem Hajjar and Dr. Emily Jane Davis, she soon learned that a lot of work needs to be done to make collaboration more effective, equitable, and just. She also found that most models of forest collaboration are not doing a good job engaging with Native communities, the original stewards of the land. 

Backpacking through the Plumas National Forest, one of the first places where Meredith first learned about wildfire-adapted landscapes.

Meredith then learned about the Intertribal Timber Council’s vision for Anchor Forests, which proposes that Tribes are uniquely positioned to be leaders and conveners of cross-boundary forest management. Core to the Anchor Forest concept is a need to generate long-term commitments on the part of many landowners to actively manage land, in order to sustain investments for infrastructure like sawmills while creating healthy and wildfire-resilient landscapes. Early in her time at OSU, Meredith had the opportunity to speak with leaders involved in developing the Anchor Forest concept, who expressed to her that while Anchor Forests have not been fully implemented on the ground, the vision holds a lot of potential. From these conversations, she developed a project intended to document why this idea emerged, what it could be used for in the future, and how we might learn from it.

The Intertribal Timber Council released an Executive Summary of the Anchor Forest Pilot Project in 2016, which studied a group of pilot communities in central and eastern Washington. Around this time, a couple journal articles were published and Evergreen Magazine released a video series about Anchor Forests. Meredith hopes that her work can generate more conversation at OSU and in the field of collaborative forest governance about the potential of this concept and vision.

Diving into this topic, Meredith has found it to be more complicated than meets the eye. There are logistical, institutional, and social barriers to making an idea like this work. Her data collection has included interviewing those involved in developing the Anchor Forest concept, analyzing published documents and reports, and looking at online media coverage of Tribal forest policies and laws that could enable the cross-boundary work needed to make Anchor Forests happen. Through her analysis, she wants to understand what is unique about this concept and what barriers need to be overcome to realize its potential. She’s also looking at what types of narratives or stories are used to portray Tribes as effective leaders and land stewards.

Meredith says that one of the most interesting things she’s learned so far is that among the ten people she’s talked to, there has not been one unified perspective on what makes the Anchor Forest idea unique and what hope it holds for the future. 

“I think that this reflects how this idea takes different shapes and meanings depending on the local context where it would be implemented. With a concept as broad as this, it’s important to remember that every community has its own distinct history, ecology, and economy. And every Tribe is unique in their culture, values, needs, and interests, but non-Native folks tend to overlook that. ”

The property line between federal and private forests in the northern Sierra Nevada highlights differences in post-fire management approaches, and the challenges of working across ownership boundaries.

Perhaps this is why the concept itself is so difficult to define. However, one common theme emerging from land managers across the West: that shifting leadership and power to Tribes could be a critical part of the solution to increasingly urgent challenges like wildfire affecting forests on a landscape scale.

Meredith presents her findings to the Intertribal Timber Council on Tuesday. To hear more about her journey to grad school and how she is navigating her own identity as a non-native person engaging in indigenous partner research, tune in on Sunday, December 1st at 7 PM on KBVR Corvallis 88.7 FM or stream live

Putting years and years of established theory to the test

A lot of the concepts that scientists use to justify why things are the way they are, are devised solely based on theory. Some theoretical concepts have been established for so long that they are simply accepted without being scrutinized very often. The umbrella species concept is one such example as it is a theoretical approach to doing conservation and although in theory it is thought to be an effective strategy for conserving ecosystems, it is actually very rarely empirically tested. Enter Alan Harrington, who is going to test its validity empirically.

Alan is a 2nd year Master’s student in the Department of Animal and Rangeland Sciences working with Dr. Jonathan Dinkins. Alan’s research and fieldwork focuses on three species of sagebrush- steppe habitat (SBSH) obligate songbirds: the Brewer’s sparrow, sagebrush sparrow, and sage thrasher. Being a SBSH obligate means that these three birds require sagebrush to fulfill a stage of their life-history needs, namely during their breeding season. However, by studying these three species, Alan is aiming to tackle a broad conservation shortcut as he is trying to figure out whether the umbrella species conservation approach has worked in the SBSH where conservation is guided by the biology of the greater sage-grouse (GSG), which has been termed an umbrella species for sagebrush habitat for many years.

An umbrella species, a close cousin to keystone or an indicator species, is a plant or animal used to represent other species or aspects of the environment to achieve conservation objectives. The GSG is such a species for the SBSH. However, the SBSH is an expansive habitat found across 11 western US states and two Canadian province that covers several millions acres of land. Hence, the question of whether one species alone can be used to manage this large habitat is a valid one. Furthermore, SBSH has been declining dramatically over the last decades. In fact, it is one of the fastest declining habitats in North America. This decrease in available sagebrush habitat has led to the decline in GSG populations since European settlement and the GSG requires SBSH to fulfill its life-history needs. Thus, populations of other birds that require the SBSH have been declining too, like sagebrush-obligate songbirds.

Alan using binoculars to survey for songbirds to determine their abundances.

The state of Oregon, like many other western US states, are concerned about protecting SBSH and GSG because they are both quickly declining and songbirds are extremely sensitive to changes in the environment responding quickly to them. Within the last 10 years, the GSG was petitioned to be listed under the Endangered Species Act by several expert groups due to the severity of the decline. Both times, the petitions were designated warranted however were precluded from listing. This issue of declining SBSH and declining GSG populations is made more complicated by the fact that most SBSH also doubles as rangeland for grazing cattle or SBSH is often used for agriculture. Thus, the petitioning for trying to get the GSG listed as endangered caused stakeholders in Oregon to get involved in this situation since the listing of the GSG as endangered could result in very radical management changes for the SBSH, limiting agricultural and land use of this habitat.

Map of Alan’s study area.

As you can see, the topic is not a simple, straightforward one, however Alan is already two years into getting the data to answer some of his questions. Alan’s fieldwork takes place in eastern Oregon in a study area that is 1.4 million acres big. Naturally, he doesn’t survey every single foot of that massive area. Instead he and his lab mates (three of them work together during the field season to collect data for all of their projects) have 147 random point locations, which are located within five Priority Areas of Conservation (PAC), designated by the Oregon Department of Fish & Wildlife as core conservation areas based on high densities of breeding GSG. The field season is from May to July and Alan often puts in 80-hour work weeks to get the job done. For his data collection, Alan does random nest transect surveys at each of the 147 locations for the three sagebrush obligate songbird species, as well as collecting abundance data on any songbird he sees at each random point location. These two methods are also done for GSG UTM locations so that Alan can compare data between them and the songbirds. On top of this, Alan received a grant from the Oregon Wildlife Foundation to purchase iButton temperature loggers to deploy into songbird nests. Along with trail cameras, these will help Alan identify events indicative of nest success or nest failure.

Alan will start his first round of analyses this winter and he’s looking forward to digging into the data that he and his lab mates have worked hard to collect. Ultimately, Alan hopes that his research will make a difference, not just for the sagebrush steppe habitat, his three songbird species, or the greater sage-grouse, but also within other ecosystems. The umbrella species concept is used in all aspects of ecology and so hopefully his findings will be applicable beyond his field of study. 

To hear more about Alan’s research and also about his journey to OSU and more on his personal background, tune in on Sunday, November 24 at 7 PM on KBVR Corvallis 88.7 FM or stream live

If you can’t wait until then, follow Alan’s lab on Twitter!

Also, check out this recent publication that Alan played a big role in devising and writing while he was at the University of Montana in the Avian Science Center. The project tested auditory survey methodologies and how methodology can help reduce survey issues like misidentification and double counting of bird calls/signals. 

Finding the Tipping Point

Sustainable Fishing – A Case Study of Cooperation

We are really good at catching fishing. While the number of fish being commercially caught is ranges from 4-55%, the fact-of-the-matter is that overfishing is an issue in need of attention. The answer isn’t simply that less fishing needs to occur, it is much more nuanced than that – Is there a way to have more fish and seafood, provide jobs for those in the fishing industry, and make the oceans healthier? Sustainable fishing practices seek to manage this issue, but how are those practices informed? Responsible resource management is just one example of how not cooperating (overfishing) will deplete our resources. What do we know about cooperation? Can we quantify the tipping point?

Cheaters Never Prosper, Or Do They?

This week’s guest, Bryan Lynn, a second-year PhD student co-advised by Dr. Patrick De Leenheer in the Department of Integrative Biology and Martin Schuster in Microbiology studies the evolution of cooperation. To do this, Bryan scales his work way down to microorganism level. Evolutionary theory has been largely based on the Darwinian premise of the survival of the fittest, but Bryan’s research is challenging this – not cooperating makes you more fit as an individual, but is that best for the group as a whole? 

Bryan’s queer and trans identities inspires him to engage in both LGBT+ outreach and taking selfies with signs that have the word “gay” in them.

Using the bacteria Psuedomonas aeruginosa as a model organism, Bryan is able to manipulate the behavior of the bacteria and study what happens in a chemostat system – a device which allows the bacteria to grow continuously with a constant input of a food source and output of the mixed solution – making it an excellent metaphor for life.  When there are finite resources available, questions can be asked about how the bacteria cooperate with each other in different scenarios. For example, Bryan mutates some of the bacteria to be so-called “cheaters,” as they do not make an enzyme and thus do not expend energy but reap all the benefits as the non-cheater bacteria. Using mathematical models, Bryan is able to simulate different conditions and put a number to the tipping point where the community is no longer able to persist in a steady state. 

The Path to Math

Bryan spent many years as a Le Cordon Bleu-trained pastry chef before deciding he wanted to change careers and find something with better pay and benefits. Bryan returned to community college in Minnesota and started taking math courses, as they were a relevant start to any STEM field should he decide to switch majors, but he never did. Bryan eventually transitioned to the University of Massachusetts in Boston where he earned his bachelor’s degree in math.

As an undergraduate Bryan took courses in evolutionary game theory, which allowed him to find a way to bridge math theory to a real-world application. During his time in Boston, Bryan also had the opportunity to intern at the MIT Bates Radiation Facility to study proton lasers used for cancer treatments, as well as complete an Oracle Fellowship where he began a research project investigating the evolution of cooperation through ostracism. This research opened up Bryan to world of math biology, which ultimately led him to pursue a PhD at Oregon State. After graduate school Bryan hopes to continue research in academia and provide representation for the LGBT+ in STEM fields. 

Join us on Sunday, November 17 at 7 PM on KBVR Corvallis 88.7 FM or stream live to learn more about Bryan’s math biology research, non-traditional journey to graduate school, and LGBT+ activism. 

To learn more about Bryan’s research, check out his publication:

https://www.sciencedirect.com/science/article/abs/pii/S0025556419303785?

You don’t look your age: pruning young forests to mimic old-growth forest

“I’m always looking at the age of the forest, looking for fish, assessing the light levels. Once you’ve studied it, you can’t ignore it.” Allison Swartz, a PhD student in the Forest Ecosystems and Society program in the College of Forestry at Oregon State, is in the midst of a multi-year study on forest stream ecosystems. “My work focuses on canopy structure—how the forest age and structure influences life in streams,” says Allison. “People are always shocked at how many organisms live in such a small section of stream. So much life in there, but you don’t realize it when you’re walking nearby on the trail.”

Three scientists holding large nets stand in a rocky forest stream. One wears a backpack with cable coming out of it.
No, that’s not a Ghostbuster backpack! Here, Allison is using an electrofishing device that stuns fish just long enough for them to be scooped up, measured, and released. From left to right: Allison Swartz, Cedar Mackaness, Alvaro Cortes. Photo credit: Dana Warren

Following a timber harvest, there is a big increase in the amount of light reaching the forest floor. The increase in light also results in an increase in stream temperatures. Fish such as salmon and trout, which prefer cold water, are very sensitive to temperature changes. Since these fish are commercially and recreationally important, Oregon’s water quality regulations include strict requirements for maintaining stream temperatures. As a result, buffer areas of uncut forest are left around streams during timber harvests. These buffer areas, like much of the forests in the Pacific Northwest, and in the United States in general, can be characterized as being in a state of regeneration. Dense, regenerating stands of trees from 20-90 years old, are sometimes called second-growth forest. These forests tend to let less light through than an old growth forest does. Allison’s work focuses on how life in streams responds to differences in forest growth stage.

A Pacific giant salamander – a top-level stream predator and common resident of Oregon’s forest streams. Photo credit Allison Swartz.

The definition of the term old-growth forest depends on which expert you ask, and there is even less agreement on the concept of second-growth forest. Nevertheless, broadly speaking an old-growth forest has a wide range of tree species, ages, and sizes, including both living and dead trees, and a complex canopy structure. Openings in the canopy from fallen trees allow a greater variety of plant species to be established, some of which can only take root under gaps in the canopy but which can persist after the gap in the canopy is filled with new trees. The tightly-packed canopy limits the amount of light that can reach the forest floor, including the surface of the streams that Allison studies.

Forest stream near Yellowbottom Recreation Area, Oregon. Credit: Daniel Watkins

Allison’s research project is focused on six streams in the MacKenzie river basin, which includes private land owned by the Weyerhaeuser company, parts of the Willamette National Forest, and federal land. At some of these sites, after an initial survey, gaps were cut into the forest canopy to mimic light availability in an old growth forest. Sites with cut canopies were paired with uncut areas along the same stream. The daily ebb-and-flow of aquatic species is monitored by measuring the oxygen content of the water. The aquatic and terrestrial ecosystems have mainly been studied separately, she explained, but the linkages between these systems are complex. Measurements of vertebrate species are carried out using electrofishing techniques. “We do vertebrate surveys which infludes a few species of fish and Pacific giant salamanders. We measure and weight them and then return them to the stream,” Allison explained.

Measuring cutthroat trout. Photo credit Allison Swartz.

Over the last few years, Allison has spent three months of the summer living and working at one of her research sites, the HJ Andrews Experimental Forest. “We didn’t have much in terms of internet the first few years, so you connect with people and with the environment more,” Allison said. 

Allison never expected to be in a college of forestry. Her background is in hydrology, and she spent some time working for the United States Geological Survey before beginning graduate work. She has enjoyed being part of a research area with such direct policy and management impacts. “We all use wood, all the time, for everything. So we can’t deny that we need this as a resource,” says Allison. “It’s great that we’re looking at ways to manage this the best we can—to make a balance for everybody.”

Allison’s Apple Podcast Link

Tsunami Surfing and the Giant Snot

Sam Harry’s research is filled with bizarre scientific instruments and massive contraptions in an effort to bring large natural events into the laboratory setting. 

Sam Harry, second year PhD candidate in Civil Engineering

“There’s only a couple like it in the world, so it’s pretty unique”. Unique may be an understatement when describing what may be the largest centrifuge in North America. A centrifuge is a machine with a rapidly rotating container that can spin at unfathomable speeds and in doing so applies centrifugal force (sort of like gravitational force) to whatever is inside. This massive scientific instrument– with a diameter of roughly 18 feet– was centerpiece to Sam’s Master’s work studying how tsunamis affect boulder transport, and the project drew him in to continue studying the impact of tsunamis on rivers for his PhD. 

But before we jump ahead, let’s talk about what a giant centrifuge has to do with tsunamis. Scientists studying tsunamis are faced with the challenge of scale; laboratory simulations of tsunamis in traditional water-wave-tank facilities are often difficult and inaccurate because of the sheer size and power of real tsunamis. By conducting experiments within the centrifuge, Sam and his research group were able to control body force within the centrifuge environment and thus reduce the mismatch in fluid flow conditions between the simulated experiment and real-life tsunamis. 

When tsunamis occur they cause significant damage to coastal infrastructure and the surrounding natural environment. Tsunamis hit the coast with a force that can move large boulders– so large, in fact, that they aren’t moved any other way. Researchers can actually date back to when a boulder moved by analysing the surrounding sediments, and thus, can back calculate how long ago that particular tsunami hit. However, studying the movement of massive boulders, like tsunamis, is not easily carried out in the lab. So, Sam used a wave maker within, of course, the massive centrifuge to study the movement of boulders when they are hit with some big waves. 

Sam’s work space. The Green dye added to the water within the glass tank is what gives this tank it’s name: The Giant Snot

As Sam was completing his Master’s an opportunity opened up for him to continue the work that he loves through a PhD program in civil engineering with OSU’s wave lab. Now Sam conducts his research using the “glass tank”, which, as the name alludes to, is a glass tank roughly the size of a commercial kitty pool that is used to contain the water and artificial waves the lab generates for their research. There are actually three glass tanks of varying sizes. The largest tank, which is larger than a football field, is used for more “practical applications”. Sam gives us the example of a recent study in which researchers built artificial sand dunes inside of the tank, let vegetation establish, and then hit the dunes with waves to study how tsunamis impact that environment. (Legend has it that the largest tank was actually surfed in by one of the researchers!)

Sam’s smaller glass tank, though, is really meant for making precision measurements to better study waves. He uses lasers to measure flow velocity and depth of water to build mathematically difficult, complex models. Essentially, his models are intended to be the benchmarks for numerical simulations. Sam, now into his second year of his PhD, will be using these models in his research to study the interaction between tsunamis and rivers, with the goal of understanding the movement and impact of tsunamis as they propagate upstream.

To learn more about tsunamis, boulders, rivers, and all of the interesting methods Sam’s lab uses to study waves, tune into KBVR 88.7 FM on Sunday, November 3rd at 7pm or live stream the show at http://www.orangemedianetwork.com/kbvr_fm/. If you can’t join us live, download the episode from the “Inspiration Dissemination” podcast on iTunes!

Over sixty years digging and we’re still finding new ‘dirt’ on HJ Andrews

One kilometer. Or roughly ten football fields. That’s the extent of the area over which Karla Jarecke, a Ph.D. candidate in the College of Forestry’s Department of Forest, Ecosystems & Society can feasibly navigate her way through the trail-less HJ Andrews Experimental forest to collect the data she needs in a typical day of field work. Imagining a football field is perhaps not the best way to appreciate this feat, nor envision the complex topography that makes up this coniferous forest on the western flanks of the Cascade mountains, roughly 50 miles East of Eugene. But these characteristics are precisely what have made this forest valuable to scientists since 1948 and continue to make it the ideal place for Karla’s research.

Experimental watersheds like the HJ Andrews forest were established initially to understand how clear-cutting influenced forest drainage and other ecosystem processes such as regrowth of plants and change in nutrients in soils and streams. This was during the time when timber-take was increasing and we still had little understanding of its ecosystem effects. Karla’s work is also forward-thinking, but less on the lines of what will happen to drainage when trees are removed and more focused on understanding the availability of water for trees to use now and in the future. She wants to know what influence topography has on plant water availability in mountainous landscapes.

Meter deep soil pits at Karla’s field site.

Back to bushwhacking. The answer to Karla’s research question lies beneath the uneven forest floor. Specifically, in the soil. Soil is the stuff made up of weathered rock, decomposing organic material and lots of life but it is also the medium through which much of the water within a forest drainage moves. Across her study area, Karla has 54 sites where she collects data from sensors that measure soil moisture at two different depths. These steel rods send electrical currents into the ground, which depending on how quickly they travel can tell her how much water is present in the soil. She also keeps track of sensors that measure atmospheric conditions, like temperature and air humidity. This information builds on the incredible sixty-year data set that has been collected on soil moisture within HJ Andrews, but with a new perspective.

Digging soil pits on steep slopes occasionally required stacking logs at the base of a tarp to prevent the soil from sliding down the hill.
Photo credit: Lina DiGregorio

Karla explains that there have been long-standing assumptions surrounding elevation gradients and their control on water availability in a forest system. This understanding has led to modeling tools currently used to extrapolate soil moisture across a landscape. But so far, her data show huge variability on surprisingly small scales that cannot be explained by gradient alone. This indicates that there are other controls on the spatial availability of soil moisture in such mountainous terrain.

“We’re finding that model doesn’t work really well in places where soil properties are complicated and topography is variable. And that’s just the first part of my research.”

The next phase of Karla’s work seeks to evaluate tree stress in the forest and determine if there are any connections between this and the variability she is finding in soil moisture across spatial scales. True to the complex nature of the landscape, this work is complicated! But to Karla, it’s important. Growing up in the mid-west, Karla came to know water as “green” and when she moved West, first to fulfill an internship in Colorado and then to pursue her graduate work here in the Pacific Northwest, she was (and still is) amazed by the abundance of clean, clear rivers and streams. And it’s something she doesn’t ever want to take for granted.

Karla and her sister Stephani snowshoeing on Tumalo Mountain in the Cascade Range of central Oregon.

To find out more about Karla’s research and her journey from farming in Italy to studying soil, tune in on Sunday, October 27th at 7 PM on KBVR 88.7 FM, live stream the show at http://www.orangemedianetwork.com/kbvr_fm/, or download our podcast on iTunes.

Karla’s episode on Apple Podcasts