Image of mountaineers with quote by John Dewey.

What is Experiential Learning?

You may have heard the terms experiential education and experiential learning. Both terms identify learning through experience as a foundational understanding. However, experiential learning is associated with individual learning.

Traditionally experience-based learning in higher education has been presented as educational opportunities complimentary to classroom instruction. These experiences might include clinical experiences, cooperative education experiences, apprenticeships, fellowships, field work, volunteerism, study abroad, practicum and internships, service learning, and student teaching experiences. These types of learning experiences are offered in and across many different disciplines (Giesen, 2012). These familiar experiential education programs demonstrate the value of individual experiential learning. But, the question remains: Is experiential learning a viable approach for online instruction?

Understanding the potential for experiential learning for online courses turns upon recognizing experiential learning as a process. The experiential learning process has been described as a cycle of learning (Kolb and Kolb, 2018). The model below illustrates The Experiential Learning Cycle.

Model of experiential learning showing sequence of Concrete Experience, Reflective Observation, Abstract Conceptualization, and Active Experimentation.

Experiential learning is understood as constructive pedagogy approach that is highly student centered. The Experience Learning Cycle begins with a concrete experience of some kind. Commonly we think of this as a real world event. That experience is followed by reflective observation of the experience, abstract conceptualization of what was learned, and the application of new learning via active experimentation. That experimentation is integrated as part of the next concrete experience.

The interactive and progressive nature of the experiential learning cycle is considered a driver of personal growth and development. The dialectics between concrete experience and abstract conceptualization as well as reflective observation and active experimentation are theorized to drive motivation for learning. 

Online Experiential Learning In Practice 

Problem-based learning, case-based learning, and  project-based learning are examples of design models that may include learning via experience in the real world (Bates, 2014). These models are often used as a way of bringing engagement into online instruction. So, if you have been incorporating these models of learning in an online course you are engaged at some level with experiential learning. But, what if you wanted to design an experiential learning assignment that does not fall within one of these models?  What might that look like?

Let’s examine the application of the experiential learning cycle to an online learning experience in a course recently offered through Ecampus at Oregon State University. The asynchronous course, Introduction to Organic Agriculture Systems, is a survey style course with an enrollment of students from Oregon and more distant.

Let’s step through The Cycle of Experiential Learning with an assignment from this course as our sample context. Hopefully it will reveal some insights into both the process of experiential learning and its practice.

1. Concrete Experience

The concrete experience for this course was an organic scavenger hunt assignment that was to be completed in the first week of the course. Although the overt activity of was a guided scavenger hunt the learning experience focus was to begin to learn systems thinking in organic agriculture. This is important to identify, as it is the authentic learning goal of the experiential learning.

As the professor framed this assignment: “This introductory activity will provide you the opportunity to explore organic availability, marketing, and farming in your community.”This concrete experience is the direct experience of organics in the student’s community.

The objectives of the scavenger hunt were to:

  • Identify organic products and marketing techniques that differentiate organic from conventional products
  • Conduct a survey of organic availability in your local store and region
  • Participate in hands-on exploration of different components of the organic system

Students were provided with a detail scavenger hunt instruction set and told to complete there first part of the assignment in a local store using an organic scavenger hunt questionnaire-work sheet. Time estimates for completion of the scavenger hunt was up to three hours at the store site. Completed work sheets were turned in to the instructor.

The key to this assignment is the real life exploration of the local organic system. Although this will be elaborated on in subsequent weeks of the course, this concrete experience will become a touchstone students can reference as they build new knowledge and skills in systems thinking in organic agriculture.

2. Reflective Observation

Part 2 of the scavenger hunt assignment includes independent student work guided by questions that ask about the presence of organic farms in the student’s area, type of organic farms, scale of the farms and evidence of their independent research work.

This element of the assignment encourages students to search for, identify, and reflect upon gaps in the local organic system in their own backyard. This work encourages students to reflect upon their own concrete experience, the quality of their work, and its linkage to understanding systems thinking.

3. Abstract Conceptualization

In week three of the course students were assigned a course discussion to share their findings from the scavenger hunt with peers. Here they compare and contrast their scavenger hunt findings and observations. In particular, students were asked to connect the social, environmental and economic dimensions of sustainability in organic agriculture to their observations taken from the scavenger hunt experience. Additionally students were asked to review other student work from different locals and explore common understandings about organic agriculture systems.

The value of this exercise from an experiential learning perspective is the application of concrete experience to more abstract concepts described by others or found in other agricultural regions. This provides opportunities for the re-conceptualizing of prior experiences with the goal of expanding on the process of organic agriculture systems thinking.

4. Active Experimentation

The Cycle of Experiential Learning rounds out with planning and applying new learning about organic agriculture systems thinking to a future concrete experience. Abstract conceptualization completed in the previous discussion will contribute to the formulation of new questions and ways of examining a local organic agriculture system. Students will likely apply these ideas to ongoing organic agriculture systems thinking in the course. In this way prior reflective observation becomes the root of new questions and predicted results for the next learning experience in organic agriculture systems thinking.
 

Final Thoughts

The final project of this course is the production of an organic systems map that explains the relationships between organic system stages (i.e., production, processing, distribution/marketing, consumption, and waste) and the dimensions of sustainability (ie. social, environmental, and economic).

In order to complete the final project students learn a great deal between their initial scavenger hunt and the final project. Their original concrete experience in systems thinking will likely inform decisions about how to re-apply new organic agriculture systems thinking.

The experiential learning assignment we just examined only works if students perceive that moving through the cycle of experiential learning addresses an authentic learning need. As the course is focused on introducing organic agriculture systems the idea of learning systems thinking makes sense. It captures the fundamental truth of what is expected to be learned (Jacobson, 2017) making the learning appropriate.

What Now?

As you explore the possibility of using experiential learning in your online course it is valuable for you to first consider formulating answers to a number of questions.

  • What is the authentic learning needed?
  • What concrete experience provides students with access to that learning? 
  • How will students carry that concrete experience through the cycle of experiential learning?
  • How will you provide the opportunity for concrete experiences for remote learners in a way that fosters individual learning and contributes to large scale learning in the course?

As you explore experiential learning for your online course revisit the model shared in this article. For help in this process contact your Ecampus instructional designer. They can help focus the key questions and suggest instructional strategies and tools to help you achieve your online experiential learning goals.

 

References

Bates, T. (2014). Can you do experiential learning online? Assessing design models for experiential learning. Retrieved from https://www.tonybates.ca/2014/12/01/can-you-do-experiential-learning-online-assessing-design-models-for-experiential-learning/

Dewey, J. (1938). Experience and Education. New York: Simon and Schuster.

Giesen, J. (2012). Experiential Learning. Faculty Development and Instructional Design Center, Northern Illinois University. Retrieved from https://www.niu.edu/facdev/_pdf/guide/strategies/experiential_learning.pdf

Jacobson, J. (2017). Authenticity in Immersive Design for Education. In Virtual, Augmented, and Mixed Realities (Ch 3). Singapore, Springer Nature.
Retrieved from https://link.springer.com/book/10.1007%2F978-981-10-5490-7

Kolb, A. & Kolb, D. (2018). Eight important things to know about The Experience Learning Cycle. Australian Educational Leader, 40 (3), 8-14.


Experiential Education Resources

Association for Experiential Education
http://www.aee.org/ 

Journal of Experiential Education
http://www.aee.org/publications/jee 

Experience Based Learning Systems Inc.
https://learningfromexperience.com

Experiential Learning & Experiential Education
http://www.wilderdom.com/experiential/

Great places to find answers to this question are the Lilly Conferences on Evidence-Based Teaching and Learning held annually at six sites from coast to coast. These conferences invite participants to engage in lively dialogue about the scholarship of teaching and learning, share best practices and hone teaching skills. Lilly Conferences are not specific to any course modality; they cover classroom, hybrid and online teaching. I found the three topics from August’s Lilly – Asheville Conference of particular interest: alternative approaches to traditional grading, faculty and student empathy, and strategies to enhance the effectiveness of lectures.

Alternative Grading Systems

Michael Palmer,  director of the University of Virginia’s Center for Teaching Excellence, challenged conference attendees to address the question “How does grading influence learning?” He then encouraged examination of alternative approaches to traditional grading practices, and explained specifications (“specs”) grading, which he personally uses. Briefly, specifications grading involves:

  • Grading assignments and assessments on a satisfactory/unsatisfactory basis, where mastery (passing) is set at a “B” level or better.
  • Bundling assignments and assessments together and allowing students to select these “bundles” based on the final course grade they are seeking. Bundles are aligned with specific course learning outcomes. Higher final grades require students to do more work and/or more challenging work.
  • Building in flexibility by giving students a few tokens at the outset that they can trade in for an extension on an assignment or an opportunity to revise/redo an unsatisfactory assignment.

Advocates of specs grading tout its effectiveness in motivating and engaging students while restoring rigor, providing actionable feedback (Palmer gives audio feedback) and supporting deep learning. To learn more, see Linda Nilson’s book Specifications Grading. Regarding ways to provide feedback that enhances learning in online courses, see Wanted: Effective Instructor Feedback.

Empathy and Student Success

Katherine Rowell of Ohio’s Sinclair Community College spoke eloquently about “The Importance of Teacher and Student Empathy in Student Success.”

  • She noted that positive faculty-student relationships are a principal factor predicting student success. In fact, the 2014 Gallup-Purdue survey found that college graduates were far more likely to be engaged in their work and thriving in key areas of well-being if they had one or more positive relationships with faculty.
  • Rowell encouraged the audience to learn more about the role that empathy plays in student success, and to look at how empathy—by both instructors and students—is manifest in the college classroom, including the online classroom.
  • She recommended Christopher Uhl and Dana Stuchul’s book Teaching as If Life Matters which encourages teachers to nurture students in ways that make learning beneficial for a more meaningful life. In this regard, OSU Business instructor Nikki Brown’s recent post in this blog on meeting students where they are is a excellent place to start.

Improving Lectures

Todd Zakrajsek of UNC-Chapel Hill presented evidence-based strategies to enhance lecture effectiveness. His message can be applied to asynchronous online learning as well as to on-campus courses:

  • Lectures and active learning are not mutually exclusive. Using lectures, including short online lectures, plus active learning can reach more learners better than using either technique in the absence of the other. Think of strategies to get learners to interact with the lecture content!
  • “We have to stop thinking there’s only one kind of lecture.” Just as there are many varieties of active learning, there are multiple kinds of lecturing!  The classic college lecture model is continuous expository lecturing, which can effectively stifle student engagement when delivered non-stop in one-hour doses! It’s useful to consider how other approaches such as case-study, discussion-framing, and problem-solving lectures can be used in online and hybrid courses.
  • We all benefit from examining the research on how learners learn, and applying this knowledge  to inform course development and teaching, including lecture design. For more on this, see The New Science of Learning, co-authored by Zakrajsek and Terry Doyle. Also consider meeting students where they are.

What are your experiences with these topics: Have you explored alternative grading systems? How do you use empathy in your teaching? What are some strategies you use to improve lecture effectiveness and incorporate active learning? Please share your ideas here.

 

Whether you are a new or seasoned online instructor, understanding how to establish and maintain instructor presence is a commonly shared challenge. What is known about online learners is they want to know their instructors are engaged and regularly interacting in the course. Students also express how important it is to know that their instructors care about them.

There is a natural distance inherent in online classrooms which necessitates purposeful actions and intentional structures to prevent isolation and to foster connection. There is great news… this distance can be overcome!  Moreover, research has indicated that instructor presence has a relationship with perceived student satisfaction and success. Being there for your students can make a difference!

Being present goes a step further beyond students perceiving that their instructors are there. By definition, instructor presence is “the design, facilitation, and direction of cognitive and social process for the purpose of realizing personally meaningful and educationally worthwhile learning outcomes.” This may sound like a significant undertaking, but rest assured that you can craft your presence over time and that you have ample support from the Ecampus team. We can help bring your ideas to life!

Keep in mind that curating instructor presence will be an evolution. Learning environments and experiences are dynamic. In addition, the composition of students will change each term, so learner needs and wants will continually shift. Strategies used within a specific context may not work for another, and that is okay.

Let’s get started!

Try starting out small by exploring different ideas. Don’t be afraid to change directions if one approach doesn’t work. With all that said, what are some strategies for establishing and maintaining presence which can be leveraged today?

Establishing presence

  • Welcome announcements
  • Instructor introduction video
  • About your instructor page
  • Course overview video
  • Virtual office hours or individualized virtual sessions to connect with students
  • Personalized language to humanize the learning experience

Maintaining presence

  • Non-graded community building spaces to connect around complex learning activities
  • Announcements to send regular updates, reminders, and check-ins
    • Tip! Announcements can also be leveraged to share and highlight valuable connections, expand upon those insights, and provide relevant resources for learners to explore.
  • Monitor learner progress
    • Regular and timely feedback which is clear and actionable
    • Outreach to learners who are struggling or engagement is lacking
  • Present content in diverse ways
    • Module overview videos
    • Audio recordings (e.g. podcast)
    • Screencast demonstrations
  • Engage in course discussions
  • Solicit student feedback
    • Tip! Consider adding a short anonymous survey in the middle of the course.

As ideas begin to percolate, please do share those with your Instructional Designer so that together you can explore different strategies and tools that will work best for you.

References

  • Budhai, S., & Williams, M. (2016). Teaching Presence in Online Courses: Practical Applications, Co-Facilitation, and Technology Integration. The Journal of Effective Teaching,16(3), 76-84.
  • Ekmekci, O. (2013). Being There: Establishing Instructor Presence in an Online Learning Environment. Higher Education Studies, 3(1), 29-38.
  • Jaggers, S., Edgecombe, N., & West-Stacey, G. (2013, April). Creating an Effective Online Instructor Presence. Retrieved from https://ccrc.tc.columbia.edu/media/k2/attachments/effective-online-instructor-presence.pdf
  • Ladyshewsky, R. K. (2013). Instructor Presence in Online Courses and Student Satisfaction. International Journal for the Scholarship of Teaching and Learning, 7(1). doi:10.20429/ijsotl.2013.070113
  • Sandercock, I. (2014, October 14). The Importance of Instructor Presence in Online Courses. Retrieved from https://teachonline.asu.edu/2014/10/important-instructor-presence-online-course/
  • Smith, T. (2014, September 30). Managing Instructor Presence Online. Retrieved from http://teachonline.asu.edu/2012/08/managing-instructor-presence-online/#more-1069

If you’ve ever needed an excessive amount of photographs or diagrams to accurately describe a physical object for your class, you may benefit from a 3D model.

Standard media types, including text, photographs, illustrations, audio, video, and animation, are crucial to the online learning experience. A 3D model is essentially another media type with a lot of unique qualities.

What is a 3D model?

3D Skull with annotation

3D models, in this case, are digital representations of physical objects. 3D models generally consist of a polygon mesh and a surface texture. The polygon mesh is a “shell” comprised of the different surfaces of a 3-dimensional object. There are three main components that make up this shell: vertices (points), edges (lines), and faces (planes). For what should be clear from the previous sentence, polygon meshes are often referred to as simply “geometry.” There are a lot of other technical terms associated with polygon meshes, but in practical application, you may never need to learn them.

The surface texture, at its most basic, is an image, mapped onto the surface of the polygon mesh.

A texture can be as simple as a solid color, or as complex as a high-resolution photograph. The texture will be wrapped onto the surface of the geometry with the help of a set of instructions called UVs. UVs are a complex topic in and of themselves, so it’s good enough that you just know they exist conceptually.

These textures can have physics-based properties that interact with light to produce effects such as transparency, reflection, shadows, etc.

You’re probably thinking to yourself now, that 3D models are too complicated to be of use in your courses, but that’s not necessarily true. The composition and inner workings of 3D models are complicated, for sure, but you don’t need to be an expert to benefit from them.

Where did they come from, and how are they used?

There probably isn’t a day that goes by where you don’t experience a 3D model in some way. They are everywhere.

3D models, in digital form, have been around for decades. They have been used in industrial applications extensively. 3D models are used to generate toolpaths for small and large machines to manufacture parts more consistently than a human could ever hope to. 3D models are also used to generate toolpaths for 3D printers.

3D models are used in movies, animations, and video games. Sometimes entire worlds are created with 3D models for use in virtual and augmented reality.

Modern interfaces for computers and smartphones are awash in 3D graphics. Those graphics are rendered on the screen from 3D models!

How can they help me as an educator?

If you’re still not convinced that 3D models hold any benefit to you, I’ll explain a few ways in which they can enrich your course materials.

  1. 3D models are easily examined and manipulated without damage to physical specimen.
    • If you are involved in teaching a course with physical specimens, you are no doubt familiar with the concept of a “teaching collection.” A teaching collection is a high-turnover collection that gets handled and examined during class. Normally these collections break down quickly, so instructors are hesitant to include rare and fragile specimens. Having digital proxies for these rare and fragile specimens will allow students access to otherwise unknown information. This has even bigger benefits to distance students, as they don’t have to be anywhere near the collection to examine its contents.
  2. 3D models give students unlimited time with a specimen
    • If you have a biology lab, and the students are looking at skull morphology, there’s a distinct possibility that you would have a skull on hand to examine. If there are 30 students in the course, each student will have only a short amount of time to examine the specimen. If that same skull was scanned and made into a 3D model, each student could examine it simultaneously, for as long as they need.
  3. 3D models are easily shared
    • Many schools and universities around the world are digitizing their collections and sharing them. There is a fair amount of overlap in the models being created, but the ability to add regionally exclusive content to a global repository would be an amazing benefit to science at large. Smaller schools can have access to a greater pool of materials, and that is good for everyone.
  4. 3D models have presence
    • A 3D model is a media object. That means it can be examined, but it’s special in the way that it can be interacted with. Functionality can be built on and around a 3D model. Models can be manipulated, animated, and scaled. A photograph captures the light bouncing off of an object, that is closer to a description of the object.  A 3D model is a representation of the actual physical properties of the object, and that strikes at the nature of the object itself. This means that a 3D model can “stand in” for a real object in simulations, and the laws of physics can be applied accurately. This realistic depth and spatial presence can be very impactful to students. Much more so than a simple photograph.
  5. 3D models can be analyzed
    • Because 3D models are accurate, and because they occupy no physical space, they lend themselves to analysis techniques unavailable to the physical world. Two models can be literally laid on top of one another to highlight any differences. Measurements of structures can be taken with a few clicks. In the case of a machined part, material stress tests can be run over and over without the need to replace the part.

These are only a few of the ways that an educator could leverage 3D models. There are many more. So, if you still find 3D models interesting, you’re probably wondering how to get them, or where to look. There are a lot of places to find them, and a lot of techniques to build them yourself. I’ll outline a few.

Where do I get them?

3D models are available all over the internet, but there are a few reputable sources that you should definitely try first. Some will allow you to download models, and some will allow you to link to models on their site. Some will allow you to use the models for free, while others will require a fee. Some will have options for all of the aforementioned things.

How do I create them?

The two main ways to create 3D models are scanning and modeling.

Scanning can be prohibitively expensive, as the hardware can run from a few hundred dollars, to many thousands of dollars. But, like anything else technological, you get what you pay for. The quality is substantially better with higher-end scanners.

For something a little more consumer-grade, a technique called photogrammetry can be employed. This is a software solution that only requires you to take a large series of photographs. There is some nuance to the technique, but it can work well for those unable to spend thousands of dollars on a 3D scanner. Some examples of photogrammetry software include PhotoScan and COLMAP.

Modeling has a steep learning curve. There are many different software packages that allow you to create 3D models, and depending on your application, some will be better suited than others. If you are looking to create industrial schematics or architectural models, something likeFusion 360, AutoCad, or Solidworks might be a good choice. If you’re trying to sculpt an artistic vision, where the precise dimensions are less important, Maya, Blender, Mudbox or Zbrush may be your choice.

How to use them in your class:

There are a number of ways to use 3D models in your class. The simplest way is to link to the object on the website in which it resides. At OSU Ecampus, we use the site, SketchFab, to house our 3D scans. The source files stay with us as we create them, but we can easily upload them to SketchFab, brand them, and direct students to view them. SketchFab also allows us to add data to the model by way of written descriptions andannotations anchored to specific structures in the model.

The models hosted on SketchFab behave similarly to YouTube videos. You can embed them in your own site, and they are cross-platform compatible. They are even mobile-friendly.

As you can see, there is a lot to learn about 3D models and their application. Hopefully, I’ve broken it down into some smaller pieces that you can reasonably pursue on your own. At the very least, I hope that you have a better understanding of how powerful 3D models can be.

A big THANK YOU to Nick Harper, Multimedia Developer, Oregon State University Ecampus

Why Accessibility?

Online education provides access to all types of students and from all across the world. Each student is unique and has unique educational needs. To better attend to our student’s needs, we can develop course materials from the beginning to be more accessible for everyone.

What can I do?

Provide the equivalent alternative to multimedia

When creating or selecting multimedia for a course, an equivalent option should be provided for students that cannot access the multimedia. As an example, if you are creating lectures you should create a word for word transcript that can be posted or better yet, be used to create closed captions.

Provide “alternative” description for images

For students who use screen readers, adding an “ALT-TAG” on all images used in the course helps them to “see” images or skip over unnecessary decorative images efficiently. The ALT-Text should describe the educational value of that image. What they are they supposed to gain from that image and why is it essential to the course material?

Make all file types accessible

When creating or selecting documents to use in your class, you’ll want to make sure that all files are accessible to students. Using built-in accessibility feature in Word, PowerPoint and PDF documents will help to develop an accessible structure for that document.

Creating meaningful link names

All students will benefit from having a link that describes where they are going to link out to. Students who use screen readers will be especially grateful if they have a link that says “Oregon State University Library resources” instead of “click here” or simply the URL.

Use contrasting colors

Blind person frustrated because the computer says to push the red button but has no other ways of conveying which button to push.
Credit: Zero Project Conference

Dark text on light backgrounds or light text on dark backgrounds will help all students read your important information easier than, perhaps, orange text on a red background. Doing this also limits the trouble that students who are color blind to see the difference between the background and text. Remember to not use color as the only form of meaning. If you have red and green text showing students what to and not to include in a paper, make sure there are headings that also state that information. Want to know what colors and backgrounds work? Check out WebAIM’s Color Contrast Checker.

If you have any tips or questions, please leave them in the comment area below.

Becoming a Student Again

With excitement and a bit of apprehension I logged in to my first ever online class. Sure, I’ve taught online classes for years, but this was my first time as a student in an online class that I had paid to take and where grades were given.

I reviewed the “Start Here” module and familiarized myself with the structure of the class before I opened the first lecture from my new instructor. The instructor’s voice came through my speakers and as she began to speak I noted the length of the lecture: 44 minutes. “What?!? I don’t have time for this,” I thought as I slammed my laptop shut. It suddenly and powerfully occurred to me that I did not have control over this classroom and my expectations as a student might be vastly different from my instructor’s.

Eventually, I settled in to the rhythm of the class and my instructor’s expectations. As it turns out, that 44 minute lecture was an outlier (the rest were closer to 15 minutes), and I figured out a way to incorporate the lectures into my schedule (I watched them while on the spin bike).

The Needs of the Online Student

As a working parent, trying to balance family, work, and school obligations, I am the target customer for online education, and I certainly felt the “squeeze” of all these obligations competing for my time. Like many of my students, my days are jam-packed and most of the time, I am scheduled to the minute. Uncertainties can throw my well-planned schedule into turmoil… “Wow, that reading took longer than I expected. No, I can’t participate in a live webinar or meet for a group project at 3pm. I have to pick up kids from school. Darn, this link is broken and the instructor hasn’t responded to my questions about it…now I’ve lost my window for working on this project. My dog died today, and while I had to go to work and had to make dinner, I just don’t have it in me to watch a class lecture and take a quiz. I’m too sad…can I have an extension?”

Meeting Our Students Where They Are

I ended up taking several classes from several instructors over the course of a year. Being a student in these classes exposed me to a number of different teaching styles and techniques and strategies, and I was able to experience these things from a student point of view. Based on my experience, here are 4 strategies for instructors that your students might find helpful:

  1. Provide time estimates for weekly activities. Estimated read times and watch times for learning materials are very helpful for a busy student trying to plan the week.
  2. Chunk the material. As an online student, I rarely had long chunks of time to work on my classes, but I could squeeze in smaller chunks of time here and there. And while students can start and stop a task as needed in the online classroom, it’s rewarding to actually finish a task in one sitting.
  3. Make it easy to find class resources. In the online classroom there are many wonderful learning materials we can easily incorporate (e.g., links to blogs, videos, calculators); but when these resources are scattered throughout 10 learning modules, they can be difficult for the student to find. Provide a works cited page (with hyperlinks) or a glossary of key terms to help students locate material, especially when studying for exams.
  4. Anticipate Questions. This might be tough the first time you teach a course, but over time we often see the same questions arising from our students. We can reduce the delay in response time, by anticipating these questions and providing answers and support ahead of time. This could be a Q&A sheet for complex assignments or a guided worksheet with comments from the instructor to help students get through well-known tricky spots.

The flexibility of the online classroom gives busy students around the world access to educational opportunities that have not been available in the past. These students are working hard in every aspect of their lives and with a little support from us, their online instructors, we can help them make the most of the time they have in order to learn and grow.

-Nikki Brown, Instructor, College of Business

I recently attended one of Bryan Alexander’s Future Trend’s Forum webinar session (recording on youtube) on apps educators use in their work and in their life and learned about some very interesting apps.

Anti-app App:

  • ?Forest: an app to monitor time off phone (for personal use or group use, family use, etc.).
  • Flora: (free app) helps you and your friends stay focused on the task together (recommended by my wonderful co-worker Dorothy Loftin)

Apps for teaching and learning:

  • ? Desmos: Graph functions, plot data, evaluate equations, explore transformations, and much more – for free!
  • ➗Algebrabyhand: The most advanced drag and drop algebra tool for the web.
  • ?‍♂️Fabulous is a science-based app, incubated in Duke’s Behavioral Economics Lab, that will help you build healthy rituals into your life, just like an elite athlete.
  • ?Calm: App for meditation and sleep.
  • ?Meet Libby: a ground-breaking ebook reader and a beautiful audiobook player to read any book from your local library.
  • ?‍?Vuforia Chalk: Vuforia Chalk makes it easy when troubleshooting or expert guidance is needed for situations not covered in training or service manuals.
  • ?Lingrotogo: language learning app. LingroToGo is designed to make time devoted to language learning as productive and enjoyable as possible. (The difference between this app and other language learning app is that it is based on educational theory, the developers claim.)
  • ?Newsmeister: stay current with news challenge quizzes.
  • ??‍?Studytree: StudyTree analyzes students’ grades and behavioral patterns to construct customized recommendations to improve their academic performance. Additionally, StudyTree serves advisors and administrators by providing them managerial access to the application, which enables insight to useful statistics and an overview of each student’s individual progress.
  • ?Nearpod: Synchronize and control lessons across all student devices
  • Flipgrid: video for student engagement (recently purchased by Microsoft, not sure if any feature will change soon).

Fun Games:

  • Marcopolo: face-to-face messaging app for one-to-one and group conversations—bringing family and friends closer than ever with genuine conversations and moments shared. It could be used for student mock interviews and direct messaging within a group.
  • goosechase: scavenger hunts for the masses.

Productivity:

  • ?Tripit: find all your travel plans in one place.
  • ?rememberthemilk: the smart to-do app for busy people.
  • wunderlist: the easiest way to get stuff done.
  • ?Stitcher: Podcast aggregator allows you to get the latest episodes of your favorite podcasts wherever and whenever you want.
  • ?inoreader: The content reader for power users who want to save time.
  • ?Overcast: A powerful yet simple podcast player for iPhone, iPad, and Apple Watch, which dynamically shortens silences in talk shows.

Where to keep up with all the new tools and apps?

 

P.S. Icons come from emojipedia.org

If you have handy apps that make your life easier, feel free to share with us. We’d love to hear from you.

On May 2nd, Ecampus held our annual Faculty Forum which showcases the outstanding work that OSU is doing in online education. Sixteen interactive sessions allowed faculty the opportunity to learn more about innovative teaching methods and share their experiences in online teaching with each other.

This year we were delighted to have Dr. Kevin Gannon, a professor of history and director for the Center for Excellence in Teaching and Education at Grand View University, present a keynote address on a very timely and relevant topic for all online educators – designing online classrooms where inclusive discussions can take place while effectively engaging students with challenging or controversial materials.  His presentation – Sea lions, trolls, and flames – oh my! Navigating the difficulty places in online learning – was a thought-provoking and inspiring call to action for online educators.

This article is the first of a two-part series on producing video interviews featuring guest experts for online courses. Part I focuses on planning while Part II will address the faculty role in the video interview production process.

Part I: Planning With A Purpose

Interviews of guest experts are valuable forms of course media because they can serve a number of instructional purposes. Traditionally classroom instructors might consider including guest experts as part of instruction to…

  • Connect learning with an authority in the field.
  • Communicate what the practices are in a given field.
  • Describe the nature of work of a professional in a given field.
  • Show important work environments or processes.
  • Introduce a second, collaborative voice to instruction (Laist, 2015).

One of the common ways instructors incorporate the expert’s voice into a course is by inviting a guest speaker into the classroom. Or, class members might travel to a field location where the person being interviewed works. In both cases the experience of the guest expert interview is live and located where the interview occurs. The synchronous live interview, a staple of on-campus courses, is problematic for online instruction.

Online instruction is shaped by the nature of the online environment. Asynchronous class sessions, the remoteness of learners, and limited access to field sites would seem to limit the use of guest experts. Ecampus instructors are moving beyond those limitations by creating carefully planned and professionally produced video interviews of guest experts in order to leverage the instructional benefits of interviews for their online courses. An example of this is a media project produced for Dr. Hilary Boudet’s course PPOL 441/541 Energy and Society, offered by Oregon State University’s School of Public Policy.

Dr. Boudet worked with the Ecampus video team to re-imagine a traditional live field site visit to the O.H. Hinsdale Wave Research Lab at Oregon State University as a series of guest expert video interviews. Dr. Boudet carefully planned the interview process and served as the on-camera host in the video interview series. Three OSU scientists served as the guest experts in the on-site interviews. Because of careful planning, primary interviews and recording were completed in half a day.

The guest expert interview recordings, and subsequent video editing, resulted in the production of four videos ranging in length from ten to twenty minutes each. The interviews represent approximately one hour of video content for the PPOL 441/541 Energy and Society course. You can view the first of the four video interviews by clicking on the image from the video below.

 

Image of Dr. Boudet and Pedro Lomónaco
Hilary Boudet interviews guest expert Pedro Lomónaco.  Click on image to watch the video.

 

As the video interview planner, Dr. Boudet made a number of key decisions regarding video interview structure and content. We will highlight these decisions as answers to the 5 W’s of video interviews: Who, What, When, Where, Why and also How.

You may want to think through answers to these questions when you plan a similar project. Let’s take a look at each of these questions in the context of the PPOL 441/551 video.


Why are you doing the video interview?

In the case of PPOL 441/541, Dr. Boudet wanted to capture the instructional value of a field site visit and conversations with scientists related to that site. So being on location was essential. She wanted to show the O.H. Hinsdale Wave Research Lab and use it as a vehicle to discuss how the lab and Oregon State University researchers contribute to the larger social conversation about wave energy and social issues related to its use in coastal communities.


What is the subject of the video interview (s)?
Dr. Boudet identified four independent but related topics she wanted to address with the guest experts. The topics are listed below.

  • Introduction to the O.H. Hinsdale Wave Research Lab
  • Introduction to Wave Energy Technology
  • Human Dimensions of Wave Energy
  • Community Outreach and Engagement

Each of these topics fits well within the learning outcomes for the Energy and Society course. In this instance, Dr. Boudet had a clear story arc in mind when selecting topics. She structured the video segments to address each topic and conducted each interview as its own story that supported the larger learning arc. Having a clear vision for the use of guest expert video interviews helps guide video production on-site and also informs the final video editing process.


Where will the interview be recorded?
Prior field visits to the O.H. Hinsdale Wave Research Lab helped Dr. Boudet work with both the guest experts and video production team in thinking through locations for interviews and what needed to appear in the video. Understanding the O.H. Hinsdale Wave Research Lab also helped in deciding what aspects of the lab and props would be ideal to record for each video interview. It is clear What and Where are two closely related planning questions. In general on-site video production requires a large space for staging and a quiet space for recording. The interview recording site must also be relevant to the subject being addressed. If you do not have a recording space available Ecampus has a studio facility that can be used.


Who is to be interviewed?
Dr. Boudet had a clear plan to bring expert voices into the video interview. The guests to the class served as scientific experts as well as guides to the facility being visited. In the case of the PPOL 441/541 video interviews, Dr. Boudet chose to have the scientists appear on screen and to also appear herself. This is a key decision that shapes the planning and production process of the video interviews. As you might imagine, the technical demands of having one person on camera is different from having two people. Recording equipment needs and subsequent editing approaches are impacted by the number of people included “on camera” in any interview scenario.


When will the interview occur?

Scheduling interview recording involves coordinating your own schedule with Ecampus video staff and your guest expert(s). In the case of PPOL 441/541, Dr. Boudet arranged to have all interviews recorded at the same facility but in different spaces. Additionally, the interview times were coordinated to facilitate the video production team being present for a large block of time when all guest expert interviews could be recorded. After primary recording, the video production staff returned briefly to the O.H. Hinsdale Wave Research Lab to record b-roll content; shots of the facility without any people. This is a common process in video production.

The last important question to be asked is…


How will you prepare?
Part of preparation for a video interview is embedded in the answer to our previous questions. But preparing the content of the actual interview also requires planning. Dr. Boudet prepared a list of questions that she wanted to have addressed as part of the interview. She shared the purpose of the interview and her questions with the guest experts in advance. This collaborative effort contributed to a clear understanding of the intent of learning for all parties.

Sharing your questions with interviewees can be helpful. Asking guest experts not to memorize answers but to prepare with bullet points in mind will help the interview feel spontaneous.

There are obvious types of questions you will want to avoid. For instance, yes or no type questions can stunt an interview. Remember, the idea is get the instructional information you need. Be prepared to ask a question again if it is not answered the first time. Or, ask for clarifications to a response as part of the interview. Also provide opportunities at the end of the interview for experts to add anything they like. Remember you might get some great information and if it is not useful it can be edited out.

Preparing the physical interview space and interviewees is part of what the Ecampus video team does. They can provide tips on how to dress for a given interview, where to stand, where to look, and how to stage the interview space.

Now that we have answered some of the key questions in the video interview planning process watch the sample video posted above again. Can you see or hear the answers to the questions we have addressed?

About Part II:

Planning a guest expert video interview with a clear purpose in mind will shape the relevance, structure, and focus of the final video interview. In Part II of this video interview series, we will address the second half of video interview creation process; faculty collaboration with Ecampus video staff in the final stages of video interview production

References

Laist, R. (2015). Getting the Most out of Guest Experts Who Speak to Your Class. Faculty FocusHigher Ed Teaching & Learning. Retrieved from https://www.facultyfocus.com/articles/curriculum-development/getting-the-most-out-of-guest-experts-who-speak-to-your-class/

 

Special thanks to Hilary Boudet, Heather Doherty, Rick Henry, Chris Lindberg, and Drew Olson for their contributions to this article. 

We all need people who will give us feedback. That's how we improve. - Bill Gates
Bill Gates, founder of Microsoft

In online education courses, providing effective feedback is essential. It’s can be easy to provide students with a number or letter grade on their assignments, but it is the additional feedback where the opportunity for student growth occurs. While there are many forms of effective feedback, there are 5 elements that can help you provide more meaningful and effective feedback regardless of the method of delivery.

  1. Give Timely Feedback
    • Timely feedback to students sends the message that you are engaged in the course and the student’s work. Having just finished an assignment, the student is also going to be more open to the feedback you provide because their work is still fresh in their mind. They have the opportunity to immediately incorporate your feedback into the next assignment, improving their overall performance going forward. Students in a master’s degree program were more likely to ignore feedback comments on their written work that were not provided promptly. (Draft & Lengel, 1986) Including a statement in the syllabus about your expected time of feedback on assignments, and sticking to it, helps students understand your timeline and will reduce questions to you later on.
  2. Start with a positive message
    • Creating a feedback sandwich (compliment, suggestions for correction, compliment) for your student pairs together both specific positive feedback and any elements the students should work on. The positive feedback encourages the student and prepares them with a positive outlook when hearing about areas that need improvement. Finishing again with positive feedback such as “I look forward to seeing your next assignment” tells the student that even though they have corrections to make, their work is still valued and that they can improve on future assignments.
  3. Use Rubrics
    • One of the best tools that can be used are rubrics. A detailed rubric sets clear expectations of the student for that particular assignment. While completing their assignment they can constantly check their work against what you expect to see in their finished work. Another benefit to creating the rubric is that you can use it to analyze their papers with that same criteria. Some instructors have found that by using a rubric, it helps to be more consistent and fair with grading. No matter if it is the first paper, the last paper, or if you might be having a good or bad day, the rubric helps.
  4. Give personal feedback and help the students make the connection between the content and their lives
    • Connection is key. Providing personal feedback to your students while helping them see the connection between the content and their lives will show that you have taken time to personally respond to them instead of using “canned responses.” Students who don’t feel as if the content in the class will ever relate to their lives now, or in their careers later on, will often lose interest in  assignments in general as well as feedback because they don’t see the connection. Getting to know your students at the beginning of the term assists in giving good personal feedback while helping them see the connection between the content and their life.
  5. Consider using alternative formats of feedback
    • Students are used to getting feedback in written form and while that format can be very effective, using an alternative way to provide feedback can be equally or more effective. They enjoy the personal connections that can be created through audio and/or video feedback. Students appreciate receiving specific feedback relating to the grade, rubric, and overall assessment. In fact, some students say that: “..video encouraged more supportive and conversational communication.” (Borup, West, Thomas, 2015) Give it a try!

By employing these strategies, your students will be appreciative of the feedback you provide and you might just get some fantastic feedback yourself. In one case, an instructor shared a great comment from one of their students comparing past courses to the instructor’s:

…I never received personal feedback [in some other courses]. Your course however has been wonderful. Thank you for putting so much time into each of your comments on my writing. I can tell you really made personal feedback a priority. You don’t know how nice it was to really know that my professor is reading my work.” The student goes further to say; “Thank you for taking your teaching seriously and caring about your students. It shows.

Getting personal and effective feedback like this should inspire you to begin or continue that great feedback!

 

References:

Borup, J., West, R.E., Thomas, R. (2015) The impact of text versus video communication on instructor feedback in blended courses Education Tech Research Dev 63:161-184 doi: 10.1004/s11426-015-9367-8

Draft, R.L. & Lengel, R.H. (1986. Organizational information requirements, media richness and structural design. Management Science, 32(5), 554-571