Master Gardener Input Needed!

We are soliciting Master Gardener feedback on the attractiveness of the native wildflowers that Aaron Anderson is studying for pollinator plantings. More detail on the study can be found at:

http://blogs.oregonstate.edu/gardenecologylab/native-plants-2/

As we mention, not only are we interested in finding plants that support ecosystem services; we also want to find plants that gardeners find attractive, and that they would want.

This is where you come in. If you are willing, please let us know which ones you would like to see in your own garden, based on their looks, alone. Below is the recruitment letter, with further information about participation. Thank you for your consideration!

*******************************************

Study: Screening Willamette Valley Wildflowers for attractiveness to Pollinators and Natural Enemies

Graduate Research Assistant: Aaron Anderson (andeaaro@oregonstate.edu; 503-860-9286)

Principal Investigator: Dr. Gail Langellotto (Gail.Langellotto@oregonstate.edu; 541-737-5175)

Dear Master Gardener,

You are invited to take part in a survey that will generate useful information on the ornamental value of pollinator-friendly native wildflowers.

Previous research has shown that urban greenspaces, notably gardens, can provide excellent habitat for pollinators and other invertebrates. The inclusion of pollinator-friendly plantings in gardens has the potential to improve habitat quality and connectivity in otherwise inhospitable landscapes. However, research on which Willamette Valley wildflowers are best to use for these plantings is lacking. Thus, I am conducting a research project to assess the relative attractiveness of 23 wildflower species native to the Willamette Valley (Oregon) to pollinators and natural enemies. Additionally, I would like to assess the aesthetic value of these plants to identify native flowers that are also attractive for ornamental use in home gardens.

As a Master Gardener, I am asking your help with my study, “Screening Willamette Valley Wildflowers for attractiveness to Pollinators and Natural Enemies”.  If you are aged 18 or older, and are currently a Master Gardener, or have been a Master Gardener in the past, I would appreciate it if you could take 10-15 minutes to respond to this survey:

http://bit.ly/OSUNative

Your survey responses will be recorded as a group. Thus, your response will be anonymous.  If the results of this survey are published, your identity will not be made public. The security and confidentiality of information collected from cannot be guaranteed.  Confidentiality will be kept to the extent permitted by the technology being used.  Information collected online can be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses.

Your participation in this study is voluntary and you may refuse to answer any questions(s) for any reason.  There are a limited number of Master Gardeners in Oregon, so your participation in this study is important. If you do not want to participate and do not wish to be contacted further, do not fill out the online questionnaire. There are no foreseeable risks to you as a participant in this project; nor are there any direct benefits. However, your participation is extremely valued.

If you have any questions about the survey, please contact me at 503-860-9286 or via email at andeaaro@oregonstate.edu.  If you have questions about your rights as a participant in this research project, please contact the Oregon State University Institutional Review Board (IRB) Human Protections Administrator at (541) 737-4933 or by email at IRB@oregonstate.edu.

Thank you for your help. I appreciate your consideration.

Sincerely,

Aaron Anderson

Garden Ecology Lab News, January 2018

It’s been a busy month in the Garden Ecology Lab.

  • Gail’s manuscript on bees in home and community gardens has been published in Acta Hort. Briefly, the results of this literature review are that: 213 species of bee have been collected from a garden habitat; gardens have fewer spring-flying and fewer ground-nesting bees, compared to non-garden sites; I suspect that over-mulching might be cutting out habitat for ground-nesting bees in gardens.
  • Aaron presented his first Extension talk to the Marion County Master Gardeners. This 90-minute talk was an overview of using native plants in home gardens.
  • The entire lab is getting ready to present their research results at the 2018 Urban Ecology Research Consortium annual conference, to be held in Portland on February 5th. A few highlights of our presentations, can be found below.

Gail’s Poster on Urban Bees: we sampled bees from 24 gardens in the Portland Metro area (co-authored with Isabella and Lucas)

  • Langellotto and Messer UERC 2018 Poster: click to see preliminary results
  • Most of the bees that we collected await identification. We did find a moderate relationship between lot size and bee abundance: larger yards hosted more bees. But, we also found evidence that suggests that intentional design can influence bee abundance: one of our smallest gardens (site 56 = 0.1 acre), located in the Portland urban core (surrounded by lots of urban development) had the second largest number of bees (42), of the 24 gardens sampled. This garden was focused, first and foremost, on gardening for pollinators. The plant list for this garden (photos, below) includes: borage, big-leaf maple, anise hyssop, globe thistle, California poppy, nodding onion, yarrow, fescue, goldenrod, Phacelia, Douglas aster, lupine, mallow, columbine, meadow foam, yellow-eyed grass, blue-eyed grass, coreopsis, snowberry, Oregon grape, trillium, mock orange, pearly-everlasting, serviceberry, coneflower, blue elderberry, currant, milkweed, dogwood, shore pine, crabapple, cinquefoil.

 

 

 

 

 

 

 

 

Mykl’s Poster on Urban Soils: we sampled soils from 33 vegetable beds across Corvallis and in Portland (co-authored with Gail)

  • All gardens were tended by OSU Extension Master Gardeners.
  • Gardens were over-enriched in several soil nutrients. For example, the recommended range for Phosphorus (ppm in soil) is 20-100 ppm. Garden soils averaged 227 ppm. The recommended range for Calcium is 1,000-2,000 ppm, but the mean value for sampled beds was 4,344 ppm.
  • Recommended ranges gleaned from OSU Extension Publication EC1478.
  • There was a tendency for soils in raised beds to be over-enriched, compared to vegetables grown on in-ground beds.
  • Data suggests that gardeners are annually adding additional soil amendments or compost, and that there has a build up of certain elements in the soil.

Aaron’s Talk on Native Plants: measured bee visitation to 23 species of native and 4 species of non-native garden plants (co-authored with Lucas)

  • Field plots established at the North Willamette Research and Extension Center
  • In the first year of establishment, of the 27 flowering plants that were the focus of this study, seven natives (lotus, milkweed, camas, strawberry, iris, sedum, blue-eyed grass) one non-native (Lavender) did not bloom, or else did not establish
  • Several natives attracted more bees than even the most attractive non-native (Nepeta cataria, or catmint). These include:
    • Gilia capitata: Globe Gilia
    • Madia elegans: Common Madia
    • Aster subspicatus: Douglas’ Aster
    • Solidago candensis: Goldenrod

Research Update: Studying Willamette Valley’s Native Plants

Getting ready to install plants at our field site.

The post below comes from Aaron Anderson, a M.S. student in the OSU Department of Horticulture, and a member of the Garden Ecology Lab.

*************************************

This past summer, we conducted the first field season of a study screening native plants for their attractiveness to pollinators and natural enemies. We selected 23 native Willamette Valley wildflower species based on drought tolerance, as well as four exotic garden species known to be attractive to bees: Nepeta cataria ‘Catnip’; Salvia elegans ‘Pineapple Sage’; Origanum vulgare ‘Italian’; Lavandula intermedia ‘Grosso’.

Table 1.  Native plants selected for this study.

Plant Species Common Name Life History Bloom Color
Clarkia amoena Farewell-to-spring Annual Pink
Collinsia grandiflora Giant blue eyed Mary Annual Blue
Gilia capitata Globe gilia Annual Blue
Lupinus polycarpus Miniature lupine Annual Purple/Blue
Madia elegans Common madia Annual Yellow
Nemophila menziesii Baby blue eyes Annual Blue/White
Eschscholzia californica California Poppy Annual Orange
Helianthus annuus Common sunflower Annual Yellow
Phacelia heterophylla Varied-leaf phacelia Annual White
Acmispon (Lotus) parviflorus Annual White/Pink
Achillea millefolium Yarrow Perennial White
Anaphalis margaritacea Pearly everlasting Perennial White
Asclepias speciosa Showy milkweed Perennial Pink/White
Aquilegia formosa Western red columbine Perennial Red
Aster subspicatus Douglas’ aster Perennial Purple
Camassia leichtlinii Common camas Perennial Purple/White
Eriophyllum lanatum Oregon sunshine Perennial Yellow
Fragaria vesca Wild strawberry Perennial White
Iris tenax Oregon iris Perennial Purple
Sedum oregonense Cream Stonecrop Perennial Yellow
Sidalcea virgata Rose Checkermallow Perennial Pink
Sisyrinchium idahoense Blue-eyed grass Perennial Blue/Purple
Solidago canadensis Goldenrod Perennial Yellow

We planted them in meter squared plots at OSU’s North Willamette Research Center. Between April and October, we monitored floral visitation, sampled visiting insects using an “insect vacuum”, and tracked floral bloom.

With one season in the books, we have some purely anecdotal impressions of which wildflower species are the most attractive to bees. Goldenrod (Solidago canadensis) and Douglas aster (Symphyotrichum subspicatum) were both highly attractive to a wide diversity of native bees, as well as to a variety of beetles, bugs, and syrphid flies. As an added bonus, both these species had long bloom durations, providing habitat and colorful displays for significant portions of the summer. Annual flowers Clarkia amoena and Gilia capitata attracted a range of native bees; Clarkia was also visited by leafcutter bees for a different purpose – cutting circular petal slices to build nest cells with.

Bumblebee on Clarkia.

Syrphid fly on Goldenrod.

Results from this year need to be analyzed, and further research is needed to account for seasonal variability and to gather more data on floral visitors.

Additionally, w e will ask the public to rate the attractiveness of each of our study flower species in an effort to determine the best candidates for garden use. After a few more field seasons (and sorting lots of frozen insect samples!), the result of this study will be a pollinator planting list for home gardeners, as well as a pollinator and natural enemy friendly plant list for agricultural areas. These will help inform deliberate plantings that increase the habitat value of planted areas.

Plant of the Week: Showy Milkweed

A monarch butterfly on showy milkweed. Image Courtesy of US Fish and Wildlife. Image Source: https://www.fws.gov/pacific/images/feature/2017/highlights/Milkweed.jpg

Now that our lab group is working on native plants and native bees, I thought it would be fun to do a ‘Plant of the Week’ and ‘Bee of the Week’ series.  This second entry is from Lucas Costner, an undergraduate environmental science major at Oregon State University.  It highlights one of the plants that Aaron Anderson is using in his research.

The showy milkweed (Asclepias speciosa) is a perennial forb, native to the western United States and Canada(3).  It is hardy through USDA zones 3a to 9b (1). While the showy milkweed is listed as threatened in Iowa, it can become fairly weedy once introduced to gardens if left unmanaged, due to rhizomatous growth

(3). The plants do best in full-sun, and are an excellent choice for gardeners looking for a low-maintenance, native plant that is very attractive to pollinators (3). In particular, the showy milkweed is known for its attractiveness to the monarch butterfly (Danaus plexippus), which utilizes the plant for habitat, as well as a larval host plant and adult nectar source (1,2,3). The monarch butterfly is not alone in its use of the showy milkweed.  Eleven other species of Lepidoptera are known to reproduce on milkweeds (2), and the flowers are frequented by many species of bees and hummingbirds (1). The flowers are an appealing addition to the garden from an aesthetic perspective as well, featuring large, dense umbels of pink star-shaped flowers from May through September (3). The stems can reach heights of up to five feet and

have oppositely spaced, elongate leaves that are gray-green in color and covered in small hairs (3). At the end of the season, the flowers form interestingly shaped fruit pods packed with seeds whose silky white hairs are specially adapted for wind dispersal.

1. ”Showy Milkweed for Western Monarchs.” Monarch Butterfly Garden. N.p., n.d. Web. 26 June 2017. <http://monarchbutterflygarden.net/milkweed-plant-seed-resources/asclepias-speciosa/>.

2. Tallamy, Douglas W. Bringing Nature Home: How You Can Sustain Wildlife with Native Plants. Portland: Timber Press, 2009. Print.

3. Young-Mathews, Annie, and Eric Eldregde. Plant fact sheet for showy milkweed (Asclepias speciosa). Corvallis: USDA- Natural Resources Conservation Service, Aug. 2012. PDF.