Virtual Field Day: Garden Ecology Lab

Our colleague, Brooke Edmunds, was kind enough to shoot and edit this short video on two of our current lab projects: Jen Hayes’ study of native plants and nativars and Tyler Spofford’s study of the economic costs and benefits of growing vegetables in bucket gardens.

As we near the end of our 2020 field season, stay tuned for research updates.

Garden Ecology Lab Research Update

COVID-19 has impacted our research in many different ways, including making it more difficult to find time to provide research updates on a regular basis. Despite the long silence, we have many projects up and running this summer! In fact, we’re launching four new projects, finishing up three long-term projects, and writing up another two projects.

In this blog post, I give a brief overview of the four new Garden Ecology Lab projects that launched this summer.

Microbiome of Garden Soils and Gardeners: Dr. Gwynne Mhuireach’s project has been spotlighted in a recent blog post and webinar. She has selected the 40 gardeners that will be included in her study: 20 high desert and 20 Willamette Valley gardeners, half of whom are organic and half of whom are conventional gardeners. Soon, these gardeners will be sending in their soil and skin swab samples. And then, the long process of analysis will begin.

She’s studying the microbe community in garden soils, and how those might differ according to garden region (Willamette Valley or high desert) and gardening practices (organic versus conventional soil managmeent). She’s also studying whether garden soil microbes transfer to gardeners’ skin during the act of gardening, and if so, how long those microbes persist on the skin.

Pollinators on Native Plants and Native Cultivars: Jen Hayes is well into the data collection phase of her first field season. She is working with undrgraduates Jay Stiller, Tyler Spofford, and Isabella Messer to: track flowering phenology, measure floral traits, observe pollinator visits to study plots, and collect pollinators so that they can later be curated and identified to species. Jen has written about her research project, in a past blog post. I’ve also set up a Flickr album to host photos from her study.

Native plant and nativar study site, at the Oak Creek Center for Urban Horticulture. A yarrow cultivar, ‘Salmon Beauty’, can be seen in the foreground. Nemophila, Clarkia, and Escholzia cultivars can be seen in the background.

Jen’s field site is located at the Oak Creek Center for Urban Horticulture at OSU, which makes it so much easier for undergraduate student researchers to participate in this project. She samples pollinators on Tuesdays and Fridays. She takes 5-minute observations of pollinator visits on Mondays and Thursdays. In between, lots of time is spent weeding and watering plots, counting flowers, and measuring floral traits.

Cost / Benefit Analysis of Growing Edible Plants in Containers: Tyler Spofford is a new lab member, who is completing his undergraduate degree in the BioResource Research program at OSU. He is working to develop a ‘budget’ for growing food in low-cost containers. I’ve summarized this ‘budget’ data for growing food in standard vegetable gardens, but no data yet exists (that I can find) for containerized vegetable gardens. Tyler is growing 40 tomato plants across two sizes of containers (3 gallons and 5 gallons), as single plants and in combination with basil. He’s keeping track of all of the costs (both money and time spent to grow food). When he harvests food, he’ll weigh his harvest, and track the economic benefit of his efforts, and how container size and planting configuration (one or two crops per container) influences harvest. I’ve set up a Flickr album for his study, to host project photos.

Tyler’s project grew out of my concern that, even though 18,000+ people enrolled in a free, online vegetable gardening course (over 40,000, at last count) ~ that the people who might be most at risk for food insecurity may not be benefitting from Extension Master Gardener resources and information. Tyler’s project is one component of a larger effort to develop more support for renters who might want to grow their own food.

Bucket gardens, on the day that the tomatoes were planted into 5-gallon BiMart buckets. We tried to keep all materials and plants low cost and easily accessible. Photo Credit: Tyler Spofford.

Below is an excerpt from a concept paper I’m writing on the topic:

We know that the COVID-19 pandemic is exerting stress on multiple pressure points related to the economic and food security of U.S. households: more people are in need of food aid and more people are concerned about food access. The U.S. has a long history of gardening in times of national emergency (e.g. Victory Garden of WW I and WWI II, ‘recession gardens’ of 2008). The benefits of gardening as a tool of economic security and resilience are well-established. However, research suggests that these benefits are largely restricted to homeowners. Currently, most state and local laws afford no legal right to renters who want to grow their own food. Community gardens might offer renters opportunities to grow their own food, except that these gardens are often associated with gentrification. To promote public health in the face of economic and health risks of COVID-19 and future pandemics, it is critical to support the food gardening efforts of the most vulnerable. Those in rental housing have been found to be most vulnerable to food insecurity, as well as the food and economic insecurity associated with natural disasters.

Pollinators on Buddleja Cultivars: Cara Still is studying how breeding butterfly bush (Buddleja davidii cultivars) for sterilty impacts the pollinator community that visits Buddleja blossoms. Buddleja davidii and some fertile varieties of this plant are considered noxious weeds in Oregon, and many other places. Normally, noxious weed status would make it illegal to sell or trade butterfly bush in Oregon. However, the Oregon Department of Agriculture allows exceptions for non-sterile cultivars and interspecific hybrids.

Buddleja ‘Buzz Velvet’ (I suspect that plant breeders have a lot of fun, naming new cultivars)

Cara is studying whether or not the plants that are allowed for sale, under the exceptions, still pose a risk of invasion. Our group is working with Cara to document the abundance and diversity of pollinators that visit eight fertile Buddleja cultivars with 16 cultivars that have been bred for sterility.

When I was initially approached to participate in this project, I thought that it should be obvious that sterile cultivars would not attract pollinators. Afterall, sterile cultivars don’t produce pollen, or produce very little pollen. Without pollen, I doubted that bees would visit the plants. But, it is possible that sterile plants would still produce nectar. And, many pollinators ~ such as butterflies and moths ~ visit plants to consume nectar, rather than pollen.

The more I looked into the literature, I realized that no one has yet studied how breeding for sterility might affect a plant’s attractiveness to pollinators. Would sterile forms of butterfly bush no longer attract butterflies? Would sterile varieties attract syrphid flies that visit blossoms for nectar, and not pollen? We’ll let you know what we find, in about a two years. In the meantime, you may want to visit the Flickr album of photos I set up for Cara’s study.

Setting up a native-nativar plant study

Natives vs Nativars Recent studies report an increase in consumer demand for native plants, largely due to their benefits to bees and other pollinators. This interest has provided the nursery industry with an interesting labelling opportunity. If you walk into a large garden center, you find many plant pots labelled as “native” or “pollinator friendly”. Some of these plants include cultivated varieties of wild native plant species, called “nativars”. While many studies confirm the value of native plants to pollinators, we do not yet understand if nativars provide the same resources to their visitors.

Echinacea purpurea

Photo Source: Moxfyre – Own work, CC BY-SA 3.0,

E. purpurea ‘Maxima’

Photo Source: Ulf Eliasson – Own work, CC BY 2.5,

E. purpurea ‘Secret Passion’

Photo source: National Guarden Bureau

An Echinacea Example Above are three purple cone flower (Echinacea purpurea) plants: on the top is the wild type, in the middle is a nativar ‘Maxima’, and on the bottom is another nativar ‘Secret Passion’. In some cases, like ‘Secret Passion’s double flower, there is an obvious difference between a nativar and a wild type that might make it less attractive to insect visitors. Since we can’t see the disc flowers (the tiny flowers in the center of daisy family plants), we might assume that ‘Secret Passion’ may be more difficult for pollinators to visit. The floral traits displayed by ‘Maxima’ seem similar to the wild type, but it might produce less pollen or nectar, causing bees to pass over it.

Unless we actually observe pollinator visitation and measure floral traits and nectar, we can’t assume that natives and nativars are equal in their value to pollinators.

Nativar Research One study looking at the difference between native species and their nativar counterparts has come out of the University of Vermont (my alma mater!). A citizen science effort started by the Chicago Botanic Garden is also currently ongoing. My Master’s thesis will be the first to use a sample of plants specific to the Pacific Northwest. We have selected 8 plants that are native to Oregon’s Willamette Valley and had 1-2 nativars available. These plants have shown a range of attractiveness to pollinators (low, medium, or high) based on Aaron’s research. We are including plants with low attractiveness because it’s possible that a nativar may have a characteristic that makes it more attractive, such as a larger flower or higher nectar content.

This example of a Randomized Complete Block design shows 2 garden beds containing a native species (California Poppy and Camas) and their nativar pairs (a yellow poppy nativar and a white Camas nativar).

Experimental Design We have four garden beds in our study, and each bed contains at least one planting of each native species and their nativar counterpart(s). This kind of design is called a “Randomized Complete Block” (RCB). The RCB has two main components: “blocks”, which in our case are garden beds, and “treatments”, which are our different plant species. Above I have drawn a simplified RCB using two of our plants: Camas and California poppy. The bamboo stakes outline each plot and have attached metal tags that label the plants.

We planted our seeds and bulbs in November and will plant out 4″ starts of the other plants in early Spring. Look out for my spring and summer updates to see how these plots progress from mulch and bamboo stakes to four garden beds full of flowers and buzzing insects!

Reference articles: