A Bee’s Eye View: UV photography and bee vision

Flowers and bees have one of the most well-known symbiotic relationships ever formed. Flowers rely on bees for pollination, and bees rely on flowers for nectar and pollen. It is generally understood that flowers act as advertisements to attract bees. However, less is known about what exactly bees are seeing and how that can change once humans get involved. This project is focused on the changes that can arise after a plant is cultivated, and how these changes can affect pollinator preference of a flower.

While changes made by breeders might not seem all that drastic to our eyes, we have little idea if that is the case for bees. Often breeders will change flowers for aesthetic purposes. This can have unknown consequences. These changes might not seem like such a big issue since the flowers are still colorful. However, bee vision is very different from humans, with bees having the ability to see into the UV spectrum. This means that while we might think we are only changing the bloom size or the color, we could also be unintentionally changing UV messaging visible only to the bees.

The purpose of this study is to use UV photography to explore these invisible differences between the native and cultivar. We also want to determine if the differences have a tangible impact on pollinator preference. This study is ongoing, but the images so far have shown a few native/cultivar sets that have a marked difference in UV markers between native and cultivars. While the study has only just started, our excitement and curiosity have not abated. This is an entirely new foray into pollinator relationships and mechanisms and could open up the world of bees and flowers in a brand new way.

An example of a UV photo of a nemophila flower, with a UV marking in the center, highlighted in blue

Spring with the Mason Bees

Written by Mallory Mead

My name is Mallory Mead, and I am new to the Garden Ecology Lab! I am an undergrad studying Horticulture and minoring in Entomology, and I started a few weeks ago as an assistant to Jen Hayes on her study of pollinator attraction to native plants and nativars.

I enrolled in Oregon State’s URSA Engage program, which gives undergrads a taste of research experience in the Winter and Spring of their first year, and joined a project studying how mason bees might be impacted by climate change with Dr. Jim Rivers of the department of Forest Ecosystems and Society. The study seeks to examine the effects of warming temperatures on mason bee behavior and the development of brood.

The Western US’s native species of mason bee, the Blue Orchard Bee (BOB) is known to be an excellent orchard pollinator. On many orchard crops they are more efficient at pollination than honey bees on a per individual basis, and so the commercial management of BOBs is being explored as honey bee colonies suffer management challenges and colony losses in recent years.

A mason bee nest within a reed. “DSC_0082” by tpjunier is licensed under CC BY 2.0.

Mason bees have a short lifespan of 4 to 6 weeks. Emerging in the early spring, males die shortly after mating, while females build nests in holes in wood or reeds. They forage for pollen and nectar to form provision masses in which they lay their eggs. They also collect mud to form partitions between each provision mass and to cap the nest once it is full. Their offspring will feed on the provisions and metamorphose into cocooned adults to overwinter in their cells and emerge the following spring.

To ensure the bees had ample nutrient resources, the project was conducted next to the organic cherry orchard at OSU’s Lewis Brown Farm. Before the cherries bloomed, 6 nest structures were designed and constructed by Jim, Ron Spendal (a mason bee house conisuerrier) and Aaron Moore of Revolution Robotics.

Nest structures, solar panels, and camcorders at Lewis Brown Farm.

Each structure has 3 shelves with 16 nest holes each, lined with paper straws so that the nests can be easily removed and examined. The structures are solar powered, and each shelf is heated to a different increment above the ambient temperature i.e. + 0°C , + 2°C, + 4°C, + 6°C, + 8°C, + 10 °C, and + 12°C. These differentials represent many potential warming outcomes of climate change.

Nest Structure Number 2 with labelled component parts. A. The Electronics control box. B. Cocoon-release box. C. Shelves sandwiched by heating pads, and lined with paper nesting straws

Our Hypotheses

  • We predicted that female mason bees will select the warmer nests first, and that females will leave nests earlier in the morning to begin foraging because they will reach the critical internal temperature necessary for flight sooner.
  • If heated bees have a greater window of foraging time, then we predict they’ll be able to construct nests at a faster rate in the warmer nests.
  • With greater nest construction will come a greater production of offspring from the bees in the warmed nests.

But…

  • In terms of offspring quality, we predict that offspring of heated nests will emerge as weak individuals and mortality will be the highest for the heated brood.

…and we are pretty confident about this last prediction.

Insects are poikilothermic meaning their internal temperatures are determined by the environment. Past studies by researchers Bosch and Kemp have reported that mason bees who are overwintered at warm temperatures will “use up their metabolic reserves and are likely to die during the winter”. And a more recent study by researchers at the University of Arizona found that mason bees subjected to heating resulted in reduced body mass, fat content and high mortality of the mason bee offspring.

Data Collection

One of the latest male mason bees to emerge, surrounded by empty cocoons in the release box.

Our mason bees started hatching from cocoons in mid-April and began to colonize the nest structures. I captured video footage of the bees as they emerged in the morning to forage. If bees from heated nest sites emerge earlier, this will support our hypotheses that they reach their critical-for-flight temperature earlier, and get a leg-up on foraging compared to their neighbors.

I also conducted “nest checks” to track the rate of nest construction along with two other research assistants.

In the fall, the nest tubes will be extracted to examine the reproductive output, and in the following spring, offspring will be assessed for rates of mortality, offspring mass, and fat content.

Obstacles

Some of the challenges along the way have included dealing with insect pests. Spiders were easygoing inhabitants of the nest straws, for they only nested in empty straws, so we’d swap them out for a clean one. The earwigs were much more pervasive, and went for the already inhabited nests. As generalist foragers, the earwigs took advantage of provision balls of nectar and pollen that had not yet been sealed off by mud. Once I read that earwigs will indeed eat the mason bee eggs that are laid into the provision masses, I knew it was crucial to remove the earwigs from all nests, but these feisty creatures proved determined to stay. We ordered some tanglefoot, a sticky substance to trap the earwigs on their way up the structure post, and meanwhile I coaxed earwigs out with tiny pieces of grass. Jabbing them repeatedly would eventually provoke them to charge at the blade of grass and fall out from the straw.

Yellowjackets were another opportunistic nester. They’d sneak into the cocoon boxes to build nests, and always gave me a start when opening the tiny boxes. I removed their nests with an extended grabber tool and would destroy them in any way I could. I feel immensely lucky not to have been stung through this process.

The most terrifying surprise during the project was a fat snake that was living in the solar panel battery box. It popped out at me hissing while I conducted a routine check. Alas, I was too spooked to take on this unexpected visitor and let it leave on its own time.

Preliminary Findings & Observations

By mid-May, a pretty clear pattern was emerging. At each structure, the control shelf’s nests (+ 0 °C) were full and capped with mud, while the hottest shelves were almost completely empty. We will analyze nest check data to confirm that these patterns are not just arising by chance, but a study that was released this past April showed another species of mason bee in Poland following the same pattern of nest site preference and selection for cooler nest sites.

The mason bees’ unexpected behavior of avoiding the heated chambers may lead to trouble during the second part of the experiment because this means our sample size for heated offspring has become so tiny, but here it is important to note that this is mason bee project is a pilot study and so the data collected this year will simply influence more specific future research.

these preliminary findings make me think that mason bees have an ingrained sense to avoid warm nests, which might show mason bees’ adaptability in the face of climate change, that is, if they can manage to continue finding cool nests. People managing mason bees find that nests facing the morning sun are the most attractive to the bees, but I wonder how long it will be before temperatures rise and mason bees start avoiding these sunny nests.

Moving Forward

By the end of May, I’d only see a few the mason bees per visit, so the season was clearly coming to an end. I wrapped up data collection and am now spending the summer extracting data from the video footage, and checking up on the bees to ensure they are safe and sound until Fall inspections.

I am wishing the best to both the wild bees in our region and those in our study, as the temperatures skyrocket this week but with this summer’s heat wave, I don’t think we need to simulate climate change; it is right here before us. Even though it is practically inevitable that temperatures will rise to dangerous heights in my generation’s lifetime, there is so much life to be saved, and there is no time to waste.

“Blue Orchard Bee, Osmia lignaria” by SeabrookeLeckie.com is licensed under CC BY-NC-ND 2.0″

Five Scientific Studies that Changed the Way I Think About Gardens, Part 3: Wild Bees > Honey Bees

This article is the third in a five part series that I am writing for the Hardy Plant Society of Oregon (HPSO) Quarterly Magazine. I am grateful to the team at HPSO for their editorial skills and feedback. Part 1 (overview, and gardens as ‘islands’ in an urban ‘ocean’), and Part 2 (putting a price on nature) of this series can be found in earlier blog posts.

*************

I distinctly remember the day that I decided I wanted to study wild bees. I was sitting in a darkened auditorium at the American Museum of Natural History in New York City, listening to Claire Kremen deliver the plenary address in a symposium focused on invertebrate conservation.

In her address, Dr. Kremen shared the results of her research on watermelon farms in California’s Central Valley. Like all cucurbits, watermelon requires insect pollination to set fruit. Watermelon, in particular, has a high pollination requirement: it takes at least eight bee visits to deposit the 500-1,000 viable pollen grains needed to set harvestable fruit in seeded watermelons. Seedless watermelons require between 16 and 24 visits by a bee in order to set fruit. Most growers meet the high pollination requirement of melons by renting and placing honey bee hives in fields. Dr. Kremen’s research suggested that a different approach might be possible.

Honey bees are important agricultural pollinators, in large part because they can be moved en mass and placed into farm fields at the exact moment that pollination services are needed.Photo by Isabella Messer.

Dr. Kremen and her colleagues studied three types of watermelon fields that varied in their pest management practices (organic or conventional) and their proximity (near or far) to native habitat in the foothills of the California coast range. These fields were: organic near, organic far, and conventional far. Watermelon fields that used conventional pest management practices and that were located near the foothills were not included in this study because this type of farm did not exist in the region. The team determined the number of pollen grains that different bee species deposited on watermelon, by presenting different bees with a single watermelon blossom that had yet to receive any insect visits. After a blossom was visited by a single bee, the flower was bagged and tagged accordingly, and the number of pollen grains deposited on the stigma by that single bee was counted in the lab. They repeated this process for 13 different bee species.

Next, the team sat in watermelon fields and observed what types of bees visited watermelon blossoms, in different types of farm fields. Watermelon flowers are only receptive to pollination visits for a single day. They recorded the sex and species of each bee visitor to the blossoms. Based upon these species specific counts, combined with the pollen deposition data (above), they were able to assess how much each particular bee species contributed to the production of harvest-ready watermelon.

Dr. Kremen found that pollination surpassed 1,000 pollen grains needed to set harvestable fruit per flower in the organic near fields but not in the organic far or the conventional far field (Fig 1, part A). Furthermore, she found that this outcome could be tied to the greater diversity and abundance of bees in organic near fields, compared to the other two types of fields (Fig 1, part B).

Figure 1. The number of pollen grains deposited on watermelon stigmas (A), and the diversity (orange circles) and abundance (yellow stars) of bees (B) on farms that were classified as organic near (ON), organic far (OF), and conventional far (CF). The number of pollen grains required to set marketable fruit (1000) is noted via a red threshold line in A. (modified from Kremen et al. 2002).

Dr. Kremen also found that, even though no single species of wild bee was as effective as managed honey bees, the collective group of wild bees surpassed the effectiveness of honey bees in organic near fields (Figure 2). Interestingly, honey bees were most effective as crop pollinators in the conventional far fields  and least effective as crop pollinators in the organic near fields. This may be because few other flowers were in bloom in the conventional far fields, so that honey bees concentrated their attention on the crop at hand. In the organic near fields, a greater diversity of flowering plants likely competed for the pollination services of honey bees.

Figure 2. The cumulative contribution of native bees, compared to the contribution of honey bees to the pollination requirement of watermelons on organic near (orange circles), organic far (navy squares), and conventional far (yellow stars) farms (modified from Kremen et al. 2002).

Wild bees were able to fully satisfy the pollination requirements of a crop with an extremely high pollination requirement because broad spectrum insecticides were not used, and the foothills provided year-round and protected habitat for the bees. This story blew my mind!

Prior to that conference, I had never given wild bees much thought. They’re mostly solitary nesters, with small bodies, that only forage for a few days to a few weeks. They tend to be inefficient foragers, particularly when compared to the juggernaut of a honey bee hive. Whereas wild bees are akin to a single vendor on Etsy, honey bees seemed the unbeatable Amazon!

Dr. Kremen’s work showed the potential value that wild bees have to agriculture. And her work was published just prior to the global onset of colony collapse disorder in honey bees in 2006. It set off a worldwide discussion about what to do about honey bee losses. Should scientists put time and effort into saving a single, non-native species (the honey bee), or should we work to conserve or build habitat around farm fields while also reducing insecticide use?

I was incredibly hopeful that the simultaneous threat to honey bees and promise of wild bees might promote heavier investments in agroecology, including the conservation of bee-friendly habitat around farms. During this time period, I was also in the early stages of documenting wild bee biodiversity in community and residential gardens, and I was surprised that abundance and diversity of garden bees was much higher than I had anticipated.

Back in 2004, I started to see gardens, and the abundance and diversity of wild bees that they host, as a potential solution to the problem of colony collapse disorder. Although I continue to be fascinated by the potential role of home and community gardens as a safe haven for bees from agricultural stresses, the urgency of this question has faded. Colony collapse disorder does not currently plague honey bees, due in large part to federal investments in studying, understanding, and mediating the factors that contribute to failing hives. With honey bees doing much better, attention has somewhat faded on the potential role of wild bees as crop pollinators. Still, work in this area continues and may rise to renewed importance, should colony collapse disorder again present a major challenge to United States agriculture.

Wild bees, including this leaf-cutter bee in the genus Stelis are also potentially important crop pollinators. However, many farm practices, such as regular insecticide sprays and mono-cultural cropping systems, make farms inhospitable to wild bees. Photo by Isabella Messer.

Kremen, Williams, Thorp. 2002. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. 99: 16812-26816. DOI: 10.1073/pnas.262413599.

Virtual Field Day: Garden Ecology Lab

Our colleague, Brooke Edmunds, was kind enough to shoot and edit this short video on two of our current lab projects: Jen Hayes’ study of native plants and nativars and Tyler Spofford’s study of the economic costs and benefits of growing vegetables in bucket gardens.

As we near the end of our 2020 field season, stay tuned for research updates.

Five Scientific Studies that Changed the Way I Think About Gardens: Part 1

[Preface: For the past few years, I have written a column for the Hardy Plant Society of Oregon’s (HPSO) Quarterly Magazine. It has been a wonderful experience, as the HPSO provides excellent editorial assistance. Below, I share my most recent article for the HPSO Quarterly, and thank Eloise Morgan and her team for helping to improve and elevate my writing.]

I spend my nights thinking about gardens: not about the plants that I want to purchase or the crops that I want to plant. Instead, I puzzle over how to study a system that is incredibly variable (from person to person, or even in the same person’s garden from year to year) and complex (with more plant species than just about any other system that has been studied). Gardens are both wild and managed, and unlike other systems I have worked, it is impossible to divorce human behavior from the ecology and evolution of the garden.

In this series, I wanted to share five scientific studies that have had a large role in shaping how I think about gardens. Because of space limitations, I will share the first study in this article. I will wrap up the remaining four studies, in subsequent issues. The five studies are:

Simberloff and Wilson (1969). This study commenced 54 years ago, and yet remains a ‘must read’ for any ecology student. In 1966, Dan Simberloff and Ed Wilson selected six small mangrove islands off the coast of Florida. The islands varied in distance from the mainland coast, from near to far (Figure 1a), as well as size, from small to large (Figure 1b)

Figure 1. In Simberloff and Wilson’s experiment, they selected mangrove islands that varied in their (a) distance from the mainland (the coastline of Florida) and (b) their size. Attribution: Hdelucalowell15 / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

Simberloff and Wilson constructed a scaffold that encircled the edge of each island, covered the scaffold with a tarp, and then proceeded to ‘defaunate’ each island with methyl bromide pesticide. In other words, they killed every arthropod on the islands. After removing their ‘death tents’, and over the course of the next year, they carefully monitored, cataloged, and counted every arthropod that arrived and survived on each island. What they discovered was formulated into the ‘Theory of Island Biogeography’, or a theory about how organisms colonize new habitat, and assemble into a biological community.

They found that islands that were closer to the mainland coast of Florida were colonized earlier, and accumulated species faster, compared to islands that were farther (Figure 2). They also found that species would accumulate on each island, over time, until a maximum peak is reached (not shown). Then, the number of species would begin to drop, as ecological interactions (such as competition for food) would allow some species to prosper, while others went locally extinct. They found that smaller islands were more prone to species extinctions, than larger islands (Figure 2).

Figure 2. Island size (small or large) and distance from the mainland coast (near or far) infuenced the dynamics of species colonization and extinctions on mangrove islands. Image Source: https://commons.wikimedia.org/wiki/File:Island-biogeography.jpg#file

Size, distance, age: those are the three things that Simberloff and Wilson predicted would govern the diversity and assembly of organisms within a habitat.

My first faculty position was at Fordham University in New York City, where I studied pollinators in 18 community gardens in Harlem and in the Bronx. During the course of this study, I was inspired by Simberloff and Wilson. I could not help but see the 600+ community gardens that dot the landscape of New York City as islands of green in a sea of concrete.

We expected that gardens that had been long-established would have more pollinator species than newer gardens. We expected that larger gardens would host more pollinator species than smaller gardens. And, we expected that gardens that were closer to ‘mainland’ sources of pollinators, such as Central Park or the New York Botanical Garden, would have more species of pollinator than those that were distant.

We were wrong on two out of three predictions (Matteson and Langellotto 2010). Larger gardens had more pollinator species than smaller gardens, but neither distance nor age had any impact. I was so disappointed that we did not find an effect of distance, or of garden age. I had visions of ‘revitalizing’ the Theory of Island Biogegraphy for urban landscapes, but it was not to be. If anything, our study suggested that the ‘sea of concrete’ was not exactly a wasteland, afterall. The street trees, potted plants, windowsill gardens, and patio gardens all provided resources for urban pollinators, even in one of the most densely populated and heavily developed cities in the world.

This study showed me that it will be much more difficult to track pollinator movements among urban gardens, than I had hoped. We tried to use a traditional mark-recpture approach (see Matteson and Langellotto 2012), but out of 476 marked butterflies we only found four in a garden other than which it was marked and released. We were searching for the ‘needle’ of small butterflies in the ‘haystack’ of the New York City landscape. My students tried to follow pollinators as they left our study gardens, and almost got hit by a car, as they were running across the street. We played around with the molecular markers of a few bumblebees (see Morath 2007), to see if there was evidence of genetic differentiation, but were stymied by a lack of reliable primers that could help us look for any genetic differences in bees from different gardens. And then I moved to the Willamette Valley, where gardens are islands of green in an ocean of green. Understanding what draws pollinators to particular gardens will be even more difficult in this landscape, where pollinators have so many other choices for finding nectar and pollen.

Based upon our initial results from our Portland Garden study (2017-2019), I think I have a new hypothesis as to what might draw pollinators to home and community gardens. Our second study year (2018) was characterized by a hot and dry summer. Our first sampling season was also dry, but the spring months were wet, and the summer was cooler. In 2018, we collected far more bees (abundance) and more types of bees (species) than we collected in 2017 or 2019. In 2018, the landscape of the Willamette Valley was toast! Almost all flowering plant materials seems to shut down photosynthesis, so that they could conserve pressure water that would otherwise escape through open stomates. In this type of situation, bees seemed to concentrate in home gardens, which seemed to be one of the few places where they could reliably find nectar and pollen.

If this is the case, gardens aren’t necessarily going to be an important source of floral resources across all years. In a good year, there should be other plants in bloom in the greater landscape that bees can use. But in a hot, dry year, gardens may become an even more important refuge for bees. Most gardeners provide irrigation, which extends the bloom season beyond what is natural in the valley. Or, gardeners select plants that can prosper and bloom without supplemental irrigation, such as goldenrod or Douglas aster. It’s important to note that, even in the hot, dry weather of 2018, we still collected more bees from gardens that used drip irrigation, rather than overhead sprinklers. I think that the overhead irrigation physically blocks bees from navigating through a garden, which lessens their abundance and diversity.

Ultimately, I hope that our studies can lead us to a more predictive model of the resource value of home gardens to pollinators. The goal isn’t necessarily to understand what gardeners should do to attract pollinators, but to describe the conditions where gardens become increasingly important to pollinator conservation. In addition, I’d love to describe the value of gardens, relative to other habitat types, to pollinators. And finally, I hope to better understand the direction and movement of pollinators between gardens and other habitat types.

 

Pollinators in Your Parking Strip

What’s the first thing people see when approaching a house? The parking strip.
What is often the ugliest, most barren part of a yard? The parking strip!

The parking strip, often called a “Hell Strip”, is a tough landscaping challenge. Narrowly linear, sun-baked, hard to water, often compacted, subject to foot, dog and other traffic…what self-respecting plant would want to grow there?

This is why parking strip “landscaping” tends to default to lawn, mulch, or gravel.

But there’s another option. For every habitat there are plants to match, so if you want a garden in your hell strip, choose plants that LIKE it hot and dry, and are compact in size. Careful design and plant selection can result in a parking strip that is a beautiful asset, rather than a barren wasteland.

As a bonus, many plants that are suitable for planting in a parking strip are also great for pollinators. There are many Oregon native plants that can thrive in such conditions, and since native plants are generally best for pollinators, why not dedicate your parking strip to growing mostly native plants in a beautiful pollinator garden?

Tips for Success

  • Before making any parking strip plans, be sure to check with your local government (the owner of the parking strip) for any regulations or requirements you need to take into account.
  • Provide a paved landing or path for exiting cars.
  • Don’t obscure utility covers with plants.
  • Before planting, loosen the soil and dig in compost. It can be worth spending a year or two improving the soil, if it is very bad.
  • Plant in fall if possible, to give plants all winter to grow strong roots before having to cope with summer heat and dry.
  • Be patient – it may take some trial and error to find the best plants for your parking strip.

Choose the Right Plants

  • Low water needs
  • Persistent (bulbs, perennials, low shrubs)
  • Compact and tidy form
  • Attractive foliage
  • Variety of textures, shapes and colors
  • Varied bloom times over long season

In Jen’s post a couple of weeks ago, http://blogs.oregonstate.edu/gardenecologylab/2020/03/14/how-do-we-know-what-flowers-bees-like/, she listed flower characteristics that bees and butterflies are attracted to. Here’s a short list of plants that feature these characteristics, AND are good candidates for a parking strip planting.

PNW Native Flowers
Achillea millefolium (common yarrow)
Allium cernuum (nodding onion)
Arctostaphylos uva-ursi (kinnikinnick, bearberry)
Balsamorhiza deltoidea (balsamroot, mule’s ears)
Clarkia amoena (godetia, farewell to spring)
Deschampsia cespitosa (tufted hairgrass)
Eriophyllum lanatum (Oregon sunshine)
Eschscholzia californica (California poppy)
Fragaria chiloensis or vesca (beach or woods strawberry)
Gaillardia aristata (blanketflower)
Gilia capitata (globe gilia)
Iris tenax (tough-leaved iris)
Lupinus formosus (western lupine)
Madia elegans (showy tarweed)
Phacelia spp (phacelia)
Plectritis congesta (Seablush)
Sedum spathulifolium ‘Cape Blanco’ (broadleaf stonecrop) 
Symphyotrichum/Aster subspicatum (Douglas aster)

You can also add compatible non-native plants, that are also attractive to pollinators.

Bulbs for early bloom: Crocus, Iris reticulata, species tulips
Perennials, Low Shrubs, and Ornamental grasses
Achillea ‘Moonshine’ (yarrow)
Callirhoe involucrata (wine cups)
Caryopteris (blue mist shrub)
Coreopsis grandiflora (largeflower tickseed)
Dianthus ‘Allwoodii’, ‘Flashing Lights’ and others (pinks)
Epilobium (Zauschneria) spp (hummingbird trumpet, Calif. Fuchsia)
Lavandula (lavender)
Nepeta cvs (catmint)
Penstemon spp
Perovskia (Russian sage)
Sedum spp
Thymus ‘Elfin’, ‘Archer’s Gold’ ‘Doone Valley’, red creeping

Resources:
Hellstrip Gardening” by Evelyn Hadden & Joshua McCullough
“On the Verge” by Tracy Byrne www.pacifichorticulture.org/articles/on-the-verge/
Pollinator Parkways Do-it-Yourself Manual

How do we know what flowers bees like?

Pollinator Syndromes

Pollinator syndromes are the characteristics or traits of a flower that appeal to a particular pollinator. These traits often help pollinators locate flowers and the resources (e.g. pollen or nectar) that the flowers have to offer.

Syndromes include bloom color, the presence of nectar guides, scents, nectar, pollen, and flower shapes. We can use these traits to predict what pollinators might be attracted to certain flowers or we can use these tools to guide us to pick the right plant for the right pollinator!

Bees, for example, are most attracted to flowers that have white, yellow, blue, or ultra-violet blooms.

Blue Flax (Linum lewissii)
Male long-horned bee on a white bindweed flower
Orange bumblebee (Bombus sp.) on a sunflower

Pollinator Syndromes for Bees & Butterflies

Table adapted from the North American Pollinator Protection Campaign

TraitBeesButterflies
ColorWhite, yellow, blue, UVRed, purple
Nectar GuidesPresentPresent
OdorFresh, mild, pleasantFaint but fresh
NectarUsually presentAmple, deeply hidden
PollenLimited; often sticky or scentedLimited
Flower ShapeShallow; with landing platform, tubularNarrow tube with long spur; wide landing pad

What are nectar guides?

Nectar guides are visual cues, such as patterns or darker colors in the center of a flower, that lead pollinators to nectar or pollen. These cues are beneficial to plants and their pollinators because they can reduce flower handling time, which allows bees to visit more flowers and transfer more pollen in a shorter amount of time.

Northern Blue Flag Iris (Iris versicolor).

The petals (yellow arrow) and sepals (red arrow) both have dark purple nectar guides. The yellow portion of the sepals may also be a nectar guide!

Image courtesy of Mike LeValley and the Isabella Conservation District Environmental Education Program

While the iris’s nectar guides are visible to humans and their pollinators, this is not always the case. Some flowers have nectar guides only visible in ultra-violet light. The video below shows how different flowers look to us (visible light), and simulates what the flowers look like to butterflies (red, green blue, and UV) and to bees (green, blue, UV).

What about pinks and purples?

Red-flowering currant (Ribes sanguineum)

It’s not uncommon to see bees visiting flowers that are colors outside of their typical pollinator syndromes. In the spring in Oregon, we see bees visiting red-flowering currants, many pink and magenta rhododendrons, plum blossoms, and cherry blossoms. Lavender, catnip, and other mint-family plants too are common on pollinator planting lists, but tend to have purple flowers.

Pollinator syndromes can help us understand these anomalies. These flowers may appear differently in ultraviolet light or may have strong nectar guides that encourage bees to visit them, despite how they look to us. Alternatively, these flowers might have rich reserves of pollen and nectar that draw bee visits.

How else do we know if a flower is a good choice for bees?

Many people have developed plant lists based on personal observations, so there are many pollinator plant lists available to choose plants from. Many nurseries include pollinator attraction information with their planting guidelines too. While these are often based on anecdotal evidence, many researchers (including Aaron and I) are working to provide empirical evidence for plant selections.

To find native plants to attract bees and other pollinators, I recommend starting your plant selections by checking out your local NRCS Plant Materials program.

Many extension programs may also have regionally-appropriate plant selections! Here is the link to Oregon State’s list of native pollinator plants for home gardens in Western Oregon.

When you’re ready to buy some plants, make sure to check out this blogpost by Aaron.

Does Repeated, Lethal Sampling Contribute to Insect Declines?

Over the past few months, I have shared data on bees and other insects that we have collected from Portland-area gardens. For every garden insect we study (except for butterflies, which can be identified to species by sight), we use lethal collection methods. This is because most insects can only be identified to species after close examination under the microscope. In fact, some insects require dissection before we can get them to species.

Bombus sitkensis male, with abdomen dissected, in order to make a species-level identification.

It seems odd that we kill bees in order to help understand how we can build gardens that can help to conserve bees. By collecting and killing bees and other insects, what role were we playing in promoting insect decline? How do projects, such as our own as well as the Oregon Bee Atlas, factor into bee declines?

That’s an excellent question, and one that we often ask ourselves. When we collect bees, we work to make sure that we are not needlessly causing harm. For example, our pan traps are good for collecting small bees, but are not good at collecting larger bees, including reproductive queens. When we hand-collect bees, we avoid taking queen bees. In fact, of the 2,716 bees that we collected in 2017-2019, only three were queens. We limited our sampling frequency to three times per year, and limited our sampling effort to 10 minutes of hand-collecting time and six pan traps, per garden. Even with these precautions, we are still faced with the question: does our research, or the research of others who collect and kill insects, harm the very species we are trying to conserve?

Water pan traps, used to collect garden bees and other small, flying insects. Insects are attracted to the color. When they land in the soapy water, they break the surface tension, drown, and die.

To address this question, I turn to the scientific literature. Gezon and colleagues set up an experiment to see whether lethal sampling for bees using pan traps and netting (the same methods we use in our research) has negative effects on bee abundance or bee diversity. For five years, they sampled nine sites every two weeks during the flowering season. They compared bee abundance and bee diversity in these repeatedly-sampled sites, to metrics from 17 comparable sites that were only sampled once. They found no significant difference in bee capture rate, bee species richness, or bee abundance between sites that were sampled repeatedly versus those that were sampled once. When they partitioned bees according to nesting habit (e.g. cavity, soil, wood, etc.), social structure (e.g. eusocial or not), and body size (e.g. small, medium, and large bees) they also found no significant differences in bee capture rates of single-sample versus repeat-sampled sites. They did catch more pollen specialists in repeated-sample sites than in single sample sites. However, the magnitude of the effect was relatively small, and did not represent a large change in catch rate between single-sample versus repeat-sampled sites. I suspect that the authors caught more pollen specialists at their repeat-sampled sites, because pollen specialists are fairly rare in time and in space. They drastically increased their odds of intercepting a pollen specialist on their repeatedly-sampled sites.

Gezon and colleagues suggest a few hypotheses that could explain why increased sampling effort had no significant effect on bee abundance or diversity. First, they suggest that reducing bee populations by sampling could benefit the bees that remain, by reducing competition for limited resources. If this is the case, bee populations can compensate for some losses due to sampling, by increasing reproduction in the bees that remain behind. Second, they note that if bees were sampled after they have mated and laid eggs, the overall impact of removing a bee from via sampling will be fairly small. Finally, they note that most bees are solitary, and that most solitary bees have short flight seasons. In this case, sampling every two weeks may not result in bee declines, if researchers are effectively collecting a new species during each sampling event.

I can breathe a bit easier. The data suggests that our research is not immediately responsible for documented bee declines. Still, I know that I can personally do more to help protect bees in my own garden. Even though our lab group studies native plants, I have not yet planted Aster subspicatus (Douglas’ Aster) in my own garden. This will be my mission for 2020: to find and plant this gorgeous perennial at home. In 2018 and 2019, it bloomed from mid June through mid November at our study plots in Aurora, OR, with peak bloom (75% or more of the plant in bloom) lasting one month! And, from 2017-2019, it was always a top five plant for native bee abundance. I give this Pacific Northwest native plant my highest recommendation for home gardens! There are plants that attract more native bees, such as Phacelia heterophylla. But, no other plant that we studied offers the triple threat of beauty, bees, and longevity.

Douglas’ aster (Aster subspicatus) is currently my favorite garden plant for bees.

A Primer on Parasitoids

You know about butterflies, about bees, beetles, and ladybugs, all of our favorite garden critters – but do you know about the parasitic wasp? Alias: The Parasitoid. Not quite a parasite and not quite a predator, they are the zombie-creating hymenopterans that make your garden their home and hunting ground. Unlike a true parasite, the parasitoid will eventually kill its host, but unlike a true predator, there is a gap between parasitism and host death. The Parasitoid is truly one of a kind, but with thousands of species in over 40 families, there are many of that kind. They prey by laying their eggs in or on the bodies and eggs of other arthropods, growing, aging, and getting stronger as their unknowing host provides their executioner food and shelter until the parasitoid is ready to attack. 

A Trissolcus japonicus parasitoid wasp lays eggs inside brown marmorated stink bug eggs at the USDA-APHIS Quarantine Facility in Corvallis, Oregon. Photo courtesy of Christopher Hedstrom
Parasitoid laying eggs in stink bug eggs. Photo Courtesy of Christopher Hedstrom

 As menacing as their way of life may seem, parasitic wasps are actually one of the most effective biological pest control agents available to home gardeners, and can be an excellent indicator of habitat health for ecologists. As biocontrol agents, parasitoids can effectively manage a very wide variety of pests from aphids and sawflies to weevils and mites, along with many more. They occur naturally if their hosts/prey and habitable conditions are present and it costs little to nothing to maintain their populations. If pest outbreaks are not completely out of control and the site is habitable, parasitoids can safely, easily, cost-effectively, and naturally bring pest populations below economic injury thresholds. Know any pesticides that check all those boxes? In terms of habitat health, parasitoids can drive biodiversity and positively influence ecosystem functions. As such, their diversity and abundance can act as an indicator for the overall health and functionality of an ecosystem – such as your home garden. 

Is it starting to seem like parasitic wasps could be an area of research for say. . .a garden

A Parasitoid collected from a Portland Garden in 2017 during the Garden Pollinator study

ecology lab? Certainly seems like that to me. That’s why this upcoming year I will be taking on an undergraduate research project to assess the parasitoid populations present in the Portland home gardens Gail and I have collected bees from for the last 3 years. Thanks to our sampling methods, we already have lots of parasitoid data to perform this analysis with, so there won’t be any more soapy bowls in your gardens this summer. This is the first of hopefully many blog posts that will accompany this research, so stay tuned as the year progresses to learn more about your new flying friends!

Further Reading and References: 

https://www.cell.com/trends/ecology-evolution/comments/S0169-5347(06)00152-2

http://publications.gc.ca/collections/collection_2015/aac-aafc/A59-23-2015-eng.pdf

http://ipm.ucanr.edu/PMG/PESTNOTES/pn74140.html

Video showing some parasitoid activity:

Setting up a native-nativar plant study

Natives vs Nativars Recent studies report an increase in consumer demand for native plants, largely due to their benefits to bees and other pollinators. This interest has provided the nursery industry with an interesting labelling opportunity. If you walk into a large garden center, you find many plant pots labelled as “native” or “pollinator friendly”. Some of these plants include cultivated varieties of wild native plant species, called “nativars”. While many studies confirm the value of native plants to pollinators, we do not yet understand if nativars provide the same resources to their visitors.

Echinacea purpurea

Photo Source: Moxfyre – Own work, CC BY-SA 3.0,

E. purpurea ‘Maxima’

Photo Source: Ulf Eliasson – Own work, CC BY 2.5,

E. purpurea ‘Secret Passion’

Photo source: National Guarden Bureau

An Echinacea Example Above are three purple cone flower (Echinacea purpurea) plants: on the top is the wild type, in the middle is a nativar ‘Maxima’, and on the bottom is another nativar ‘Secret Passion’. In some cases, like ‘Secret Passion’s double flower, there is an obvious difference between a nativar and a wild type that might make it less attractive to insect visitors. Since we can’t see the disc flowers (the tiny flowers in the center of daisy family plants), we might assume that ‘Secret Passion’ may be more difficult for pollinators to visit. The floral traits displayed by ‘Maxima’ seem similar to the wild type, but it might produce less pollen or nectar, causing bees to pass over it.

Unless we actually observe pollinator visitation and measure floral traits and nectar, we can’t assume that natives and nativars are equal in their value to pollinators.

Nativar Research One study looking at the difference between native species and their nativar counterparts has come out of the University of Vermont (my alma mater!). A citizen science effort started by the Chicago Botanic Garden is also currently ongoing. My Master’s thesis will be the first to use a sample of plants specific to the Pacific Northwest. We have selected 8 plants that are native to Oregon’s Willamette Valley and had 1-2 nativars available. These plants have shown a range of attractiveness to pollinators (low, medium, or high) based on Aaron’s research. We are including plants with low attractiveness because it’s possible that a nativar may have a characteristic that makes it more attractive, such as a larger flower or higher nectar content.

This example of a Randomized Complete Block design shows 2 garden beds containing a native species (California Poppy and Camas) and their nativar pairs (a yellow poppy nativar and a white Camas nativar).

Experimental Design We have four garden beds in our study, and each bed contains at least one planting of each native species and their nativar counterpart(s). This kind of design is called a “Randomized Complete Block” (RCB). The RCB has two main components: “blocks”, which in our case are garden beds, and “treatments”, which are our different plant species. Above I have drawn a simplified RCB using two of our plants: Camas and California poppy. The bamboo stakes outline each plot and have attached metal tags that label the plants.

We planted our seeds and bulbs in November and will plant out 4″ starts of the other plants in early Spring. Look out for my spring and summer updates to see how these plots progress from mulch and bamboo stakes to four garden beds full of flowers and buzzing insects!

Reference articles: https://www.asla.org/NewsReleaseDetails.aspx?id=53135 http://www.gardenmediagroup.com/garden-media-releases-2019-garden-trends-report