An Update on Native Plant Studies from The Garden Ecology Lab at Oregon State University

A version of this article was originally written for the ‘Growing Knowledge‘ section of Digger Magazine, published by the Oregon Association of Nurseries.


The Garden Ecology Lab was founded in 2017 to advance an understanding of how to plan, plant, and manage garden systems to promote environmental and human health. It is one of two labs in the United States, and the only one in the Western US, to specifically focus on studies of garden ecology.

In this article, I provide an update on our native plant studies, with a focus on results that may be of particular interest to nursery owners. Brief summaries of many of our lab’s studies can be found on the ‘For Gardeners’ page of our lab website. Some nurseries have printed out copies of these lab briefs, so that their customers can see the ecological benefits of various plants. More briefs are planned for this year. Periodically visit our website for updates.

Native Plants in Garden Retail Centers

Interest in native plant gardening has drastically grown in recent years, but many native plants remain difficult to find for purchase. In the April 2019 issue of The Digger, Dr. Aaron Anderson highlighted three barriers that gardeners face, when trying to purchase native plants: 1) lack of advertising by native plant nurseries or gardeners’ lack of familiarity with these nurseries, 2) variation in nursery stock among native plant growers, and 3) geographic distance that gardeners might have to travel to find the plants they are looking for. These specific barriers were ones that Aaron faced when he was setting up his field study of insect communities associated with 23 species of Pacific Northwest Native plants.

Aaron used the Oregon Flora’s gardening resource page to locate where he could buy his study plants. He ultimately ended up purchasing plants from two retail nurseries (one in Corvallis and the other in Forest Grove) and two pop up native plant sales (one in Corvallis and one in Portland). He also worked with two wholesale nurseries that were generous enough to sell or donate study plants or seed in the small quantities he was seeking (one in Salem and one in Silverton). Because he has been asked this question, often, Aaron also wrote a blog post on ‘Where to Buy Native Plants in Oregon‘.

After a three-year field study, Aaron was able to identify 10 native plants which support a diversity of bee species. We developed an infographic to share this information with gardeners, and include lavender in the image, since many gardeners perceive lavender to be a pollinator-friendly plant (Bennett 2019).

Image 1: The number of estimated bee species associated with PNW native plants is shown in a yellow circle, above each bar. Lavender is shown as a comparison, since it is recognized as a pollinator-friendly plant by many gardeners.

Today, Oregon Flora’s garden resource page lists 10 nurseries where gardeners can find and purchase native plants (Oregon Flora 2025). I used their plant-finding tool, to see whether I could find the 10 native plants that we recommend to gardeners. None of the nurseries were listed as carrying all of these recommended plants: two nurseries were listed as carrying 6 species, three nurseries carried 5, two nurseries carried 4, and three nurseries carried 2. All of the 10 nurseries were listed as carrying Oregon sunshine (Eriophyllum lanatum). None were listed as carrying Farewell-to-spring (Clarkia amoena), varileaf phacelia (Phacelia heterophylla), or common madia (Madia elegans).

Farewell-to-Spring, a promising native nursery plant

The absence of farewell-to-spring from nursery shelves is particularly disappointing, because it has become a favorite in our lab group. Its native range spans the Bay Area of California, north through Oregon and Washington and into British Columbia. In Oregon, it grows west of the Cascades to the coast and is found in a variety of habitats including coastal prairie, grasslands and forested areas. It is an easy-to-grow annual plant with erect stems (5.4” maximum height), thin, green leaves and bright pink flowers. In our study plots, first bloom occurred anywhere between early June and early July and lasting through early August through late October, depending upon seasonal weather patterns and supplemental irrigation.

Farewell-to-spring attracts a diversity of beneficial insects. Aaron collected 14 bee species, 15 predatory insect taxa, and 12 parasitoid taxa from this wildflower (Anderson 2022, Anderson et al. 2022) documenting its ecological value for attracting pollinators, as well as natural enemies that promote the biological control of insect pests. In a separate, but related field study, Jen Hayes looked at the pollinator assemblages on eight species of wild-type native plants and 1-3 of their cultivars. Jen provided an overview of this study in the October 2020 issue of The Digger (Hayes and Langellotto 2020), and the full report of this study was recently published (Hayes et al. 2025) for folks wanting more detailed information.

Farewell-to-spring was one of the native plants in her field study of pollinators on native plants and native cultivars. The cultivars she used were ‘Aurora’ (dark pink blossoms with a cream center), ‘Dwarf White’ (white blossoms), and ‘Scarlet’ (red blossoms with a light pink center). She documented 32 total pollinator species from the wild-type plant (with an estimated 104 total pollinator species), 17 pollinators on ‘Aurora’ (28 species estimated), 23 pollinators on ‘Dwarf White’ (24 species estimated), and 9 pollinators on ‘Scarlet’ (13 species estimated). Furthermore, she found that specialist bees, which are picky about where they collect pollen, were either exclusively found on wild-type native plants (two species, Megachile gravita and Melissodes microstictus), or were found in higher abundance on wild-type plants compared to cultivars (two species, Melissodes lupinus and Melissodes clarkiae). Because specialist bees have relatively narrow diet preferences, including their preferred forage plants is an easy way to attract these unique bees into a garden, and to locally increase pollinator biodiversity.

In addition to the importance of wild-type Farewell-to-spring as a forage plant, Jen worked with Mallory Mead (a former undergraduate student in our lab) to document its importance for bee nest material. Many leafcutter bee species use leaves, mud, resin, sticks, pebbles, or petals when they build their nests. Jen documented two species of petal-cutting bees in her study plot, each of which had a significant association with Farewell-to-spring and its cultivars. Megachile montivaga had significant associations with the wild type native and ‘Dwarf White’. Megachile brevis was significantly associated with the wild type native, ‘Dwarf White’, and ‘Aurora’.

Image 2. A and B: Leafcutter bees cut discs from petals of a cultivar. C: A leafcutter bee carries a petal disc to its nest. D: A leafcutter bee nest in a sunflower stalk. Credits: Svea Bruslind (A), Devon Johnson (B), Mallory Mead (C), Heidi Nordijk (D), © Oregon State University

Although Jen found evidence that the leafcutting bees were significantly associated with two of the three cultivars she included in her study, Mallory documented a very strong preference for the wild-type native over the cultivars, when she documented foraging for nesting material. Because leafcutting bees leave a characteristic crescent cut in petals, Mallory could document foraging for nesting material by counting the number of petal cuts from each plant. Wild type native plants had 3-4X as many petal cuts than cultivars. Even when we controlled for bloom count per plant, the wild type native was significantly preferred over the cultivars.

Image 3: Number of petal cuts by bees on wild-type Farewell-to-spring, and 3 cultivars.

Native Cultivars Are Often Easier to Find and Buy

Given the high abundance and diversity of beneficial insects associated with Farewell-to-spring, as well as its unique association with specialist foragers and petal-cutting bees, we enthusiastically recommend this plant to ecologically-minded gardeners. However, the average gardener shopping for this species is more likely to encounter cultivars than wild-type plants. This is partly because the plethora of Farewell-to-spring cultivars are on the market. In addition to the three included in Jen’s study, gardeners can find ‘Double Azalea’ (pink, purple, red, white flowers), ‘Lilac’ (pink petals with dark red center spots), ‘Pink to Red’ (red petals with light pink edges), ‘White’ (white flowers), ‘Pink’ (light pink flowers with no other markings); and ‘Sugarplum’ (semi-double flowers, light pink with rose-colored center markings, dwarf, somewhat bushy).

As noted earlier, native plants can be difficult to source in the retail marketplace. Offerings may not reflect the regional species pool of plants (Zinnen and Matthews 2022), and in some areas, 77% of the native plants on market shelves are actually hybrids or cultivars (Coombs et al. 2020). However, multiple studies have found that gardeners are willing to pay higher prices for native plants and locally sourced plant materials.

Somewhat unexpectedly, in a recent survey of 719 gardeners (Hayes et al. in preparation), 81% report that they buy their native plants at pop-up plant sales hosted by Soil and Water Conservation Districts, Master Gardener groups, or other non-profits. A comparable percentage of gardeners (78%) said that they buy their native plants at retail plant nurseries. However, given the transient nature of pop-up plant sales, it was surprising to us that they were as or more popular than brick-and-mortar stores for native plant purchases. I think this speaks to the difficulty many gardeners have finding the plants they are seeking, and how non-profit plant sales are filling a market void. It also points to a market opportunity for the nursery industry, in general.

References:

Anderson, A. 2019. Native plant production and marketing. The Digger, April Issue, pp 33-36.

Anderson, A. (2022). Evaluating the Attractiveness of Pacific Northwest Native Plants to Insects and Gardeners [Dissertation submitted in partial fulfillment of Ph.D.] Oregon State University.

Anderson, A. G., Costner, L., Best, L., & Langellotto, G. A. (2022). The bee fauna associated with Pacific Northwest (USA) native plants for gardens. Conservation Science and Practice, 4(10), e12801.

Bennett L. 2019. Examining the gap between interest and understanding of provisioning for bees: A capstone project to support urban bee conservation [Thesis submitted in partial fulfillment of M.N.R.]. Oregon State University.

Coombs, G., Gilchrist, D., & Watson, P. (2020). An assessment of the native and invasive horticultural plants sold in the mid-Atlantic region. Native Plants Journal, 21(1), 74-82.

Hayes, J., Langellotto, G. 2020. Pollinator plant trials: researchers test the value of Willamette Valley natives and nativars. The Digger, October Issue, pp 33-37.

Hayes JJ-M, Bell NCS, Best LR, et al. 2025. Pacific Northwest native plants and native cultivars Part I: Pollinator visitation. Environ. Entomol. https://doi.org/10.1093/ee/nvae126.

Oregon Flora. 2025. Gardening with natives. https://oregonflora.org/garden/index.php, accessed January 29, 2025.

Zinnen, J., Matthews, J. W. 2022. Native species richness of commercial plant vendors in the Midwestern United States. Native Plants Journal, 23 (1) 4-15.

Garden Ecology Lab, Spring 2024 Update

It has been a while since we last posted a lab update. Although we’ve been quiet on the blog, we have been busy! This post provides a brief update on some of our efforts, over the past several months.

We have a new website! The website serves as our running record of research projects, lab members, and resources for gardeners. Of particular note is the series of ten Garden Ecology Lab Briefs, that translate our research into a two-page document, that can be used by gardeners. Each brief is divided into three sections: 1) Our research, 2) What we found, and 3) How does this relate to your garden. We have briefs on the common bacteria you will find in garden soils, the flowers preferred by specialist bees, and which plants attract beneficial natural enemies to the garden. More briefs will be coming, soon! In addition to the Garden Ecology Lab briefs, we also have a short form infographic and a long form infographic that can help guide gardeners seeking to buy native plants. We hope that these are useful to you, and would love to hear your feedback on these resources and your suggestions for other resources you would like to see.

An example of a Garden Ecology Lab brief. These briefs were created to translate science to action in the garden.

Nicole Bell successfully defended her M.S. thesis, entitled ‘Urban garden bees: Global context and local perspectives’ in November of 2023. Her thesis consisted of a systematic review of the garden bee literature (which she published in the journal Frontiers in Sustainable Cities). The second part of her thesis consisted of an online iNaturalist guide and companion booklet (the Portland Bee Guide). Nicole recently started a pollinator outreach position with the University of Massachusetts, Amherst. Congratulations, Nicole!

The Portland Bee Guide represented one aspect of Nicole Bee’s M.S. thesis work.

Svea Bruslind graduated with an honors B.S., for her thesis entitled ‘Bee’s eye view: using multispectral photography to simulate bee’s view of flowers in natural settings‘. She graduated with a group art show (Confluences, at the Little Gallery at Oregon State University), and a solo art show (A Bee’s Eye View) at the Pine Meadows Ranch for Art and Agriculture.

Svea in front of her photographic array. She captured a garden over the course of a day, using filters that give viewers a glimpse of the colors a bee can see in a garden.

Nina Miller joined our lab group as an M.S. student with a passion for syrphid flies! Nina will be studying the syrphid fly communities of Portland- and Corvallis-area gardens. Specifically, she will document their biodiversity within garden spaces, and will be measuring their capacity for aphid management on kale, collards, mustard greens, and other brassicas. You can learn more about Nina’s study, from this recent blog post.

Anna Perry has joined the lab, to work on a Building-Integrated Agriculture project. Anna will be studying soil moisture and temperature fluctuations, in a 5-th floor urban agriculture array of 13 planter boxes that are part of the PAE Living Building, in Portland Oregon. The data will inform future plantings on this and other urban buildings.

There are 13 containers planted along the east and south windows of this building. Plants are challenged by hot temperatures in the summer, shade, and lack of consistent moisture.

Gail Langellotto worked with Nina Miller and an international group of designers and ecologists to produce a book chapter entitled ‘Supporting Galapagos Native Species via Ecological Landscape Design in Urban Greenspaces’. The chapter came out of the 2023 Association of Pacific Rim University Sustainable Cities and Landscape Conference, which was held in San Cristobal, Galapagos. This interdisciplinary conference coupled architects, designers, and ecologists, to work on urban issues. In the Galapagos, biodiversity drives tourism, but is also under threat from invasive plant species. We compiled a list of 130 native and endemic plant species, and created example landscape designs, to promote the use of native plantings in the urbanized areas of the islands.

Jen Hayes was quoted in this February 2024 Washington Post article about natives and nativars. Jen Hayes and Gail Langellotto were featured in this recent Pacific Horticulture, Voices of the West article. Jen is finishing up revisions to her manuscript reporting pollinator preferences for native plants and native cultivars. We’re excited to share the results with the scientific community, as well as with gardeners.


This is just a sampling of the our work over the last few months. Make sure to bookmark our new lab website, and to share the resources for gardeners with your gardening friends.

New Lab Member: Kailey Legier!

Hi, everyone! My name is Kailey Legier and I am an undergraduate student pursuing a double-degree in Soil Science and Sustainability. I have joined the OSU Garden Ecology Lab as a field and lab research assistant! I jumped at the opportunity to join this lab because it aligned so well with what I’m passionate about: sustainable urban horticulture, insects, and learning.  

Photo: Kailey, a student with curly hair and round glasses, is pictured with a tall stand of white flowers. A very tall sunflower is visible in the background.

I grew up in the Pacific Northwest, just about three and a half hours north of Corvallis, and from an early age I was a big fan of creepy-crawlers. Baby-Kailey could often be found toting around a plastic critter keeper full of insects that she had indiscriminately caught and dug up.

Now, as an adult, I remain a big fan of insects of all kinds and an advocate for nurturing a childlike sense of wonder for the natural world in both myself and my community. I believe that the feeling of rich, damp soil between your fingers, the tickle of a lady beetle traversing the landscape of your arm, and the sound of native pollinators buzzing through your home garden are imperative pieces to the study of garden ecology. In my spare time, I grow flowers with a specific interest in perennial cut flower beds and bulb flowers.

Photo: Two bouquets are pictured. Both contain very bright flowers, including multicolored snapdragons, marigolds, and dahlias.

My research interests include subsoil insect diversity, soil health, and the family Carabidae — the ground beetles! There is something amazing about knowing the soil is full of curious little critters working full time jobs eating pests, chomping on weed seeds, and churning the soil slowly but surely.

Aside from hard science pursuits, I am invested in social equity and sustainability at Oregon State. I am a big fan of attending town halls and being politically active on sustainability and ecological issues.

I am so excited to join this lab as it serves as a confluence for quite a few of my interests and passions. I am surrounded by incredible people each day, and it is a huge honor to be able to glean knowledge from them and gain experience in this setting.

Celebrating Garden Ecology Lab Group Accomplishments!

These past few months have been filled with great news, for so many members of the Garden Ecology Lab team. In this post, I wanted to take a moment to celebrate their great work and accomplishments.

Aaron Anderson successfully defended his dissertation in February 2022, entitled Evaluating the Attractiveness of Pacific Northwest Native Plants to Insects and Gardeners, and graduated with his Ph.D. in horticulture. In September 2022, Aaron also published two chapters of his dissertation. This first is an Extension publication, geared towards gardeners: ‘Native Plant Picks for Bees‘. The second is the scientific paper that formed the basis of the Extension publication: ‘The Bee Fauna Associated with Pacific Northwest (USA) Native Plants for Gardens‘. Aaron is now working with the Xerces Society, as Pesticide Program Specialist.

Aaron at the spring 2022 OSU graduation ceremonies, awaiting official conferment of his Ph.D. degree!

Jen Hayes successfully advanced to Ph.D. candidacy in June 2022, by passing her comprehensive exam. The comprehensive exam (also known as ‘comps’) is perhaps the most difficult part of the Ph.D. journey. In Jen’s case, it involved a 3-hour long oral exam with her graduate committee (Drs. Lauren Gwin, Jim Rivers, Andony Melathopolous, Ryan Contreras, and Gail Langellotto), who took turns asking a series of questions on topics ranging from wild bee biology, native plant ecology, and ornamental plant breeding. Jen also prepared and defended a review paper focused on the process and impacts of breeding native plants to produce native cultivars. Jen also recently completed the prestigious ‘Bee Course’ offered by the American Museum of Natural History, at the Southwestern Research Station in Portal, AZ.

Jen Hayes advanced to Ph.D. candidacy in June 2022, and participated in the AMNH Bee Course in August 2022.

Signe Danler was promoted to Senior Instructor I, after thorough review of her accomplishments by the Department of Horticulture and the College of Agricultural Sciences. Signe manages the Certificate of Home Horticulture online course series, and also develops and provides online short courses to support Master Gardener training efforts across the state. Over the course of her career at OSU, she has created three new online classes (Sustainable Landscape Management, Sustainable Landscape Design, and Gardening with Native Plants), and has updated and revised an additional nine classes. Her efforts have grown revenue, so that her position is now fully funded, and also contributes to the operating expenses of the Garden Ecology Lab.

Signe Danler was promoted to Senior Instructor I at OSU, in June 2022.

Mallory Mead received two prestigious scholarships! First, she received the Garden Club of America’s Mary T. Carothers Summer Environmental Studies Scholarship, to support her work on the Clarkia Project. Mallory also won a Scholar’s Award from the American Society for Horticultural Science, in recognition of her scholastic achievement.

Mallory Mead, in a field of wild Clarkia species, the focal organism of her undergraduate research thesis.

LeAnn Locher led teams of Extension professionals that received two awards from the Association for Communication Excellence. LeAnn and team earned a Silver in the category of ‘Social Media Campaign (Organic)’, for a series of social media posts (and supporting peer-reviewed web materials) focused on supporting gardeners through extreme heat events. One web post was focused on identifying and preventing heat stress in plants. Another was focused on helping bees during a heat wave. A third post focused on helping hydrangeas through the heat wave. LeAnn and team also earned a Bronze in the category of ‘Social Media (Single Item)’ for a social media post (and supporting peer-reviewed web article) focused on stopping the spread of jumping worms during plant sales and trades. LeAnn conceived of the campaign, and designed the visuals and outreach strategy. She worked closely with other team members to quickly develop peer-reviewed web articles that could support the social media posts. LeAnn’s excellence in communications and outreach was also recognized via her receipt of the 2021 Oscar Hagg Extension Communication Award.

LeAnn Locher received the 2021 Oscar Hagg Extension Communications Award, and two 2022 awards from the Association for Communication Excellence.

Svea Bruslind received a 2022 Art-Sci Student Fellowship to support her ‘Bee’s Eye View’ project. This fellowship will allow Svea to display her work in her first-ever art exhibition! Gail is serving as Svea’s scientific mentor for this fellowship. We are beyond honored that Jasna Guy is serving as Svea’s artistic mentor!


Tyler Spofford graduated from our lab group in 2021, and was soon thereafter hired as the new SNAP-Ed Gardening Program Coordinator, working with our colleagues in the College of Public Health. In this role, Tyler will continue to build out the gardening resources in Food Hero, and will also help administer and manage the Seed to Supper program at OSU. You might remember that Tyler completed his undergraduate thesis research on containerized gardening in the Garden Ecology Lab.


Help me congratulate this amazing team of scientists, educators, communicators! I am lucky to work with such a great team.

PruneBetter: The team behind the scenes, and what’s next for the series…

Pruning can feel like one of the most intimidating parts of caring for a garden—that’s why we released our #PruneBetter series. This series of social media posts covered a wide array of common garden favorites: blueberries, hydrangea, apple trees, and more! If you missed any of the posts this year, they are all still accessible via searching #PruneBetter on Instagram or Facebook.

Our team worked hard behind the scenes to present you with science-backed and accessible content. This series started with LeAnn Locher (Master Gardener Outreach Coordinator), who envisioned utilizing OSU’s social media platforms to not only link to educational content, but to present it directly. Both Instagram and Facebook allow our team to connect directly with Master Gardeners, students, faculty, and the public from one platform. Her idea presented a fun challenge: a series of 10-second videos, each conveying and/or demonstrating a pruning tip.

LeAnn Locher, the origin of the idea of the PruneBetter project. P.S. if you’re looking for information on hydrangea pruning (how beautiful are these, in the photo?!) check out our archive of posts from earlier this year.

The #PruneBetter team also consisted of our invaluable background researcher, Mallory Mead (member of the Garden Ecology Lab). She sourced and compiled information—Mallory also helped ensure our posts were timely (AKA posting about a particular plant during its prime pruning window).

Mallory Mead; undergraduate student in Horticulture at OSU and member of the Garden Ecology Lab.

Content creation was headed by Nicole Bell (graduate student in the GEL). I (hi, it’s me) wrote captions for the posts, but admittedly—the hardest part was trying to figure out what to put in those 10 second videos! One of my favorite parts was getting to work with my parents: Bernadine Strik (professor emeritus in Horticulture, and mom) for the blueberry content, and Neil Bell (community horticulturist for OSU extension, and dad) for most of the video content. They were the ones who inspired me to pursue a career in horticulture, so it was fulfilling and fun to show them and incorporate them into just a bit of what I’m working on.

What, exactly, does a day of planning and creating #PruneBetter content look like? Step 1: use Mallory’s background research to create an idea for videos (up to nine 10-second segments, for posts) stories (videos up to 30 seconds, and sometimes before and after photos), and the caption. Step 2: select and travel to pruning site. These sites varied from the OSU Lewis Brown Horticulture Farm, the home garden of Nicole’s parents, and gardens generously offered up for example by OSU Master Gardeners. Step 3: shoot content. Let me just say… 10 seconds goes by quickly when you’re talking! Although one of the most challenging parts of creating video content for our social media platforms, it was also a great learning experience. What information do we really need to include? What visual is most valuable to show or demonstrate? Step 4: choose the best of our material, and post! Posts included the slide of videos, the caption with supplemental information, and our stories (one of my favorite parts about creating this series was making the weekly quiz). 

Neil and Nicole Bell, pruning and filming in their home orchard (apple tree pruning post).

Throughout the #PruneBetter campaign, we were surprised and amazed at the amount of engagement and support from the community. We loved seeing your shares, comments, and messages—it means a lot. Gardening can feel like a never-ending sea of tasks, but I think it is made better with community, accessible knowledge, and (at least) knowing you’re not in the work alone! We’re not done yet—keep an eye out for more content in June (hello, apple thinning!) and beyond. As long as there is something to prune, we’ll be waiting to find and share all the ways we can #PruneBetter.

To access the supplemental resources included in the posts this year, see below.

Blueberries: https://catalog.extension.oregonstate.edu/ec1304

Roses: https://extension.oregonstate.edu/…/flowe…/pruning-roses

Apples: https://extension.oregonstate.edu/pub/pnw-400

Lavender: https://extension.oregonstate.edu/…/pruning-lavender

Tree pruning with the pros: https://extension.oregonstate.edu/collection/pruning-pros

Figs (video): https://youtu.be/0jKXn4wByz4

Fruit trees: https://extension.oregonstate.edu/…/tree-pruning-basics

Pacific Power “Small Trees for Small Places” booklet: https://www.pacificpower.net/…/PP_SmallTrees_Booklet.pdf

To access the posts made earlier this year, go to Instagram or Facebook and search the hashtag #PruneBetter.

New Lab Member: Nicole Bell

My name is Nicole Bell, and I’m a first-year master’s student in the Garden Ecology Lab. I was born and raised in Oregon, and I’d like to think that part of the reason I’ve ended up in the field of horticulture/entomology is because I was surrounded by bugs and flowering plants growing up. My childhood backyard was filled with plants, bugs, wild bunnies, and raccoons (and our yellow lab, Bella). It was hard not to be fascinated by all the life that’s possible in just one space.

I completed my H.B.S. in Environmental Sciences here at Oregon State University in 2020. I chose to study environmental sciences because when I was entering college, I knew I cared about science and climate change, but I wasn’t sure what exactly I was interested in. It was an overwhelming decision to try and narrow down a field of study when I wasn’t even sure what the options were yet. I’m grateful that the summer before my freshman year of undergrad, my mom encouraged me to get a job… and there was an opening at Dr. Sagili’s Honey Bee Lab in the Horticulture Department. I had never worked or even thought much about bees/pollinators before, let alone considered making pollinators my focus. Long story short, I got the job as an undergraduate worker in the lab, and I learned so much about both lab and field work.

I worked at the Honey Bee Lab for over 4 years. Towards the end of my freshman year, though, I wondered what working with native pollinators would be like. I found a project offered through the URSA Engage program at OSU: studying the impacts of wildfire severity on offspring food provisions for a native bee (the blue orchard mason bee, Osmia lignaria) at the Forest Animal Ecology Lab in the Forestry Department with Dr. James Rivers. I designed an experiment and wrote my undergraduate thesis about mason bees, and I am grateful for my experience there, as I got to learn about the integration of bees and their environment. When I finished and defended my thesis, I was approaching graduation. I knew I wanted to take some time off school to enjoy reading and learning about topics that interested me outside of a classroom setting.

Who would have thought you could grow up afraid of bugs and then have over 12,000 crawling all over you? Photo taken at the Honey Bee Lab bee beard day in summer of 2018.

Science communication has become a big passion of mine. While most of my undergraduate experience (in the Honey Bee Lab and Forest Animal Ecology Lab) was hard science, either in the field or in the lab, I craved combining my passion for writing with my interest in expressing the implications of science to the public. My mom found a job posting (again… thanks mom!) for an agricultural science writing position at Washington State University, specifically the Center for Sustaining Agriculture and Natural Resources (CSANR). I worked with an amazingly supportive and intelligent group of scientists: they gave me publications to write blog posts about, and they helped me to edit the pieces into works I am proud of. The collaboration that the team members at CSANR have is inspiring and only bolstered my interest in communication and teamwork. While none of my articles on AgClimate were specific to pollinators, the knowledge I gained about agriculture in general and how to put together a synthesized blog post about a complex study was invaluable.

I met with several different potential graduate advisors, and I was amazed with Dr. Gail Langellotto’s knowledge and passion for native pollinators and their urban habitats. Dr. Langellotto also had projects that piqued my interests and would allow me to curate a thesis that blends science and communication. While I’m just now beginning work on the methods for my thesis, I’ll be conducting a comprehensive literature review on bee communities in urban and community gardens. Additionally, I will create an iNaturalist guide on native bees in the Portland, Oregon, area.

One of my favorite things about native pollinators is just how many species are out there. I feel like I haven’t even scratched the surface with my current knowledge about these ecosystems and how they function, so I couldn’t be more excited to learn from other members of the lab and from my research.

What I love most about bugs, bees, and insects alike may be this: there’s a whole world underneath us and above us that we can so easily miss if we don’t look for it.

Tyler’s Research on Containerized Vegetable Gardens

Today, Tyler successfully defended his undergraduate research thesis, entitled ‘Invest in Vegetables: A Cost and Benefit Analysis of Container Grown Roma Tomatoes (Solanum lycopersicum cv. ‘Roma’) and Italian Basil (Ocimum basilicum cv. ‘Italian’)‘.

A student in jeans and a long sleeved shirt, wearing a mask, stands in the middle of his containerized tomato garden research plot.
Tyler Spofford, in the middle of his containerized garden research plot, in the summer of 2020.

His research was inspired by the rush to vegetable gardening, that many households made during the start of the COVID-19 pandemic. Research has shown that there are many benefits to vegetable gardening, including social, emotional, physical, and financial. However, those in rental housing, or otherwise without easy access to land, were largely locked out of accessing these benefits.

Although previous research has shown that in-ground and raised bed vegetable gardening can yield positive economic benefits, to date, no studies (that we know of) have quantified the financial costs and benefits of growing vegetables in containers. Tyler thus set up a system of 5-gallon and 3-gallon bucket gardens, planted with Roma tomatoes, or Roma tomatoes plus Italian basil. He kept careful track of the cost of materials, and the time he spent gardening. He also kept careful track of the harvest he pulled off of each container.

Over the course of his study, he successfully learned about and fought back Septoria leaf spot, and blossom end rot. We learned that Roma tomatoes, in particular, are susceptible to blossom end rot. On top of these horticultural plant problems, Tyler’s research was abruptly halted by the late summer wildfires of 2020, that made air quality unsafe for him and others to continue their work, outdoors.

Despite these challenges, he was able to glean enough data from his project, to share some interesting findings:

  • None of the containers netted a positive economic benefit, in the first year of gardening, largely because the cost of materials outweighed the financial benefits of the harvest.
  • If the project were continued into year two, he projects that he would have had a positive financial outcome for the tomatoes grown with basil, in the 5-gallon containers.
  • Across the course of the season, he only spent 30 minutes tending to each container. Because he had few garden maintenance tasks, the time invested in container gardens was minimal. This is an important finding, for folks who may shy away from gardening because of lack of time.
  • As expected, the 5-gallon containers yielded more than the 3-gallon tomatoes. The 3-gallon containers stunted plant growth too much, to recommend them as a viable container gardening system. [As a side note, we were given the 3-gallon containers, for free, which is why we included them in the study.]
  • The fair market value of Roma tomatoes was fairly low (~$1.00 per pound). Thus, the net economic benefit of growing Roma tomatoes was also low. Basil, on the other hand, was a high value specialty crop that helped to raise the overall economic value of crops harvested from the buckets.

If you are interested in seeing Tyler’s thesis defense presentation (~30 minutes), you can do so, at the link below.

https://media.oregonstate.edu/id/1_8v2t4zd4?width=400&height=285&playerId=22119142

Tyler will be graduating in a few days, with a degree in BioResource Research from OSU! He’s worked in our lab group for two years, and has been an absolute joy to learn and work with. We wish him the very best on the next adventures that await him.

Garden Ecology Lab Year in Review: COVID Edition

This past year presented challenge and change to the Garden Ecology Lab. COVID locked us out of the lab and out of the field for a period of time. We said goodbye to two lab members (Angelee graduated! Cliff decided to move on from graduate school), and said hello to new lab mates (Cara took over Cliff’s project; Gwynne started her post-doc; Tyler, Jay, and Max all joined the lab as undergraduate researchers and research assistants). In addition to COVID and personnel changes, I had orthopedic surgery that took me away from work for a little under a month.

But somehow, despite the challenges and changes, we managed to make progress on several research projects. Below, I present a partial reporting of the Garden Ecology Lab year in review for 2020. Besides each project heading is the name of the project lead(s).

1) Garden Bees of Portland (Gail & Isabella): Jason Gibbs’ group from the University of Manitoba provided final determinations for a particularly difficult group of bees to identify: the Lasioglossum sweat bees. In addition, Lincoln (Linc) Best provided determinations for garden bees collected in 2019. Isabella is entering in some of our last remaining specimens, and I am working through the database of over 2,700 collected specimens to ‘clean’ the data and double check data entry against specimens in hand. There are a few specimens that need to be re-examined by Linc, now that we have determinations from the University of Manitoba, the American Museum of Natural History (Sarah Kornbluth), and a graduate of Jim River’s lab (Gabe Foote).

Altogether, we collected between 76 and 84 species of bee across a combined acreage of 13.2 acres (sum total acreage of 25 gardens). The low end estimate conservatively assumes that each unique morphospecies (i.e. Sphecodes sp. 1 and Sphecodes sp. 2) are a single species, whereas the high end estimate assumes that each is a unique species. A few noteworthy specimens:

  • We collected one specimen of Pseudoanthidum nanum, which is a non-native species to our area, which seems to be establishing and spreading in Portland. Stefanie Steele from Portland State University is writing a note on this apparent introduction, and is using data associated with our single specimen in her paper.
  • We collected one specimen of Lasioglossum nr. cordleyi which might or might not be a new species. The notation nr. cordleyi means that this specimen looks similar to L. cordleyi, but that the morphology of this specimen is different enough than the normal ‘type’ for this species, that it catches your attention. Jason Gibbs’ group is retaining that specimen. Further study will be needed to determine if it is indeed a new species, or not.
  • Some of the species we collected (as well as their ecological characteristics) suggest that gardens might be healthy habitat for bees. For example, we collected 72 specimens of Panurginus atriceps, which is a ground-nesting, spring-flying bee. Previous studies of garden bee fauna found ground-nesting and spring-flying bees to be relatively rare. We found them to be surprisingly (but relatively) common in our collections. We also collected seven putative species and 23 specimens of Sphecodes bees. This type of bee is a social parasite that does not collect nectar or pollen or construct a nest for their brood. Instead, they take advantage of the hard work of other bee species, by laying their eggs in the nest of another female. Parasitic bees are often used as bioindicators of habitat health. They would not be present on a site, unless the site also supported their obligate hosts.
  • We collected two species of bee that are listed on the IUCN red list for threatened and endangered species: Bombus fervidus (18 specimens) and Bombus caliginosus (10 specimens). I am not yet sure if their presence in urban gardens suggests that these species are recovering, that these species might be urban-associates that would be expected to thrive in urban gardens, and/or if gardens might represent particularly good habitat for these species.

In 2021, I *hope* that I can complete gathering data for this study, so that I can begin to analyze data and write. I hope to make it out to every garden, one last time, to finalize garden maps that will be used to calculate the area allotted to ornamental plants, edible plants, hardscape, and unmanaged areas. Aaron has already mapped out the landscape surrounding each garden at radii of 500 and 1000 meters. Together, these data will be used to understand whether/how garden composition and the surrounding landscape interact to influence bee species richness.

2) Native Plants and Pollinators (Aaron Anderson): In February, Aaron successfully defended his dissertation proposal and passed his oral examination, and thus advanced to Ph.D. candidacy!! Since that time, he has been busy sorting, identifying, and counting three years’ of insect samples from his 140 study plots, representing five replicates plots of 23 native plants, four ornamental plants, and a control ~ a task that he finished two weeks ago! His bees have been identified to species by Linc. Aaron has identified the thousands of other insects in his samples to the taxonomic level of family. He is working through analysis of his massive data set, and is simultaneously working on two manuscripts: one focused on just the bees and the other covering all other insects. We plan to turn the key points of these two chapters into an infographic that can be used by gardeners and green industry professionals, to select native plants that support an abundant and diverse assemblage of beneficial insects.

Aaron recently submitted the first paper from his dissertation for publication consideration, to the journal HortTechnology ~ and it was accepted, pending revisions! This paper reports on his survey of gardeners’ impressions of the aesthetic value of his study plants, and includes five specific recommendations for native wildflowers that Pacific Northwest nurseries might consider growing and marketing as pollinator plants (e.g. Gilia capitata, Clarkia amoena, Eschscholzia californica, Madia elegans, and Sidalcea asprella virgata). These plants all fell within the ‘sweet spot’ of being attractive to both pollinators and to gardeners.

Aaron’s plots at the NWREC station remain in place. Although we are through collecting data for Aaron’s study, I am applying for grant funding to study how plant traits ~ both the reward that plants offer pollinators and the displays that they use to attract pollinators ~ change with plant breeding for specific aesthetic traits, and whether/how these changes affect pollinator visitation. We also hope to study how highly attractive pollinator plants function in mixed plantings and in garden settings.

3) Bees on Native Plants and Native Cultivars (Jen Hayes):

Jen successfully completed her first field season of research, which is a monumental accomplishment during this time of COVID restrictions on our work. In early 2020, Jen finalized her list of study plants, which included one native species and 1-2 hybrids or native cultivars. This, in and of itself, was a huge accomplishment. Although we started with a much broader list of potential study plants, so many native plants did not have native cultivars or appropriate hybrids available for sale.

Jen’s study plants, which include one native (top photo in each group) and 1-2 native cultivars or native hybrids.

Once Jen and her crew put the plants in the ground, a new set of challenges emerged. For example the native yarrow emerged with pink flowers, which was a clear signal that these plants were not true natives. In addition, the Sidalcea cultivars that Jen and her crew planted came up looking different than the Sidalcea native. This sent Jen on a journey to the OSU Herbarium, where she learned that the Willamette Valley’s native Sidalcea malviflora has been reclassified as Sidalcea asprella, and that the cultivars we purchased were hybrids of Sidalcea malviflora (native to SW Oregon and California). This all suggests a need to work with local nurseries and/or growers of native plants, to see whether or not there needs to be or can be standards for sale of native plants. Should native species and native cultivars be verified or share provenance? Should gardeners be asking for this information? I don’t know, but I think that they’re important questions to consider.

With one field season’s worth of data in hand, the native cultivars were more attractive to all bees (with overall patterns being driven by the abundance of the European honey bee) for all floral sets, except California poppy. When we excluded honey bees from the analysis, to look at (mostly) native bees, no clear pattern of visitation on native plants versus native cultivars emerged. Native California poppy was most attractive to native bees. But, native cultivars of Sidalcea were more attractive to native bees (keeping in mind that in 2020, our native cultivars were not cultivars of our regionally appropriate native plant). For all other plants, there was no difference. We look forward to collecting additional data in 2021 and 2022, to see if the lack of difference in bee visits to native plants versus native cultivars holds up. Particularly for the perennials, we are finding that bee visits change so much from year to year, as the plant becomes established.

4) Garden Microbes in Soil and on Skin (Dr. Gwynne Mhuireach): Dr. Mhuireach successfully recruited 40 gardeners to participate in this study: 20 from western Oregon and 20 from the high desert. She has received and processed all soil samples and all skin swab samples for PCR (genotyping), which will be used to infer the diversity and identity of the soil microbial community in garden soils and on gardeners’ skin. She has also received survey responses from all study participants, so that she can characterize gardeners’ crop types, time in the garden, and gardening practices (e.g. organic, conventional, or mixed).

Dr. Mhuireach then sent me the soil samples, so that I could process them for submission to OSU’s Soil Health Lab. The Soil Health Lab is currently performing the chemical and physical analyses on each soil sample, so that we can determine if there is any relationship between soil characteristics, gardening region (e.g. western Oregon or high desert), crop choices, management practices, and the microbes that can be found in garden soils and/or on gardeners’ skin. Gwynne just received the first data back from the PCR analyses ~ and we can’t wait to share some of the intriguing findings with you, after we’ve had some time to process and digest the data!

Because of COVID-19 lab closures, we are a bit behind where we had hoped to be at this point. We anticipate receiving all data from each service lab by the end of January or in early February. You can read more about Gwynne’s project, here.

**********

Beyond these four studies, Tyler started his BioResource Research project (costs and yield of container grown and intercropped tomotoes), and Isabella worked on her thesis (parasitoids in Portland area gardens). We also collaborated with OSU Computer Science students to turn a database of first frost / last freeze dates that Angelee compiled, into a web-based app (the app is still in beta-testing, but we hope to release it, soon!). I will detail those studies, in another post. But for now, I’m getting excited for the smell of carnitas that is filling the house, and that will go on top of the New Years’ nachos that will help us ring in 2021! I hope that you all have a very Happy New Year, and that 2021 brings health, and happiness, and joy to all.

OSU Has the 1st Endowed MG Professorship in the Nation!

Garden research takes a lot of time, patience, and money. For example, the four new research projects that I detailed in an earlier post will cost close to $180,000 *this year, alone* to cover the salary and benefits of one post-doctoral scientist, two graduate students, and three undergraduate student researchers. And that doesn’t cover the cost of materials or supplies, including the 200+ plants that we purchased for two of the studies! We currently cover the costs through a combination of a USDA Fellowship that supports Gwynne, cost-sharing with another research group to support Cara, small grant funds and donations made to our research fund managed by the Agricultural Research Foundation to support Jen and the undergraduate researchers.

Showy milkweed, Asclepias speciosa, at Aaron’s native plant study site. I visited on June 24, 2020, for the first time this year, due to COVID-19 travel restrictions. We will now start measuring floral traits, as part of an effort to develop a predictive model of a plant’s attractiveness to various pollinators.

Ask any scientist that serves as the Principle Investigator (PI’s) of a research group (such as the Garden Ecology Lab at OSU): the hardest part of doing science is ensuring that you have the funds to pay the people that are integral and essential parts of your team. It is the part of my job that I lose sleep over, most often.

This week, the Garden Ecology Lab and Oregon Extension Master Gardener Program received news that literally changes the future for research and Extension in gardens.

Clackamas County Master Gardener Sherry Sheng, and her husband Spike Wadsworth, made a gift of $503,000 to the Oregon State University Foundation, to formally establish the Y. Sherry Sheng and Spike Wadsworth Master Gardener Professorship Fund. This week’s donation creates a gift annuity of $503,000, where payouts will benefit the Professorship Fund. This gift is in addition to the $1.2 million planned estate gift that Sherry and Spike made to the Oregon State University Foundation in 2012. Both gifts will combine (when Sherry and Spike pass away), for a $1.7+ million endowment that will fully fund what I suspect is the very first Endowed Master Gardener Professorship in the United States.

The language describing the intent of the Professorship fund is below:

The OSU Master Gardener™ Program offers engagement and outreach in communities across Oregon. OSU faculty train volunteers through in-person and online instructions and provide hands-on experience in advising home gardeners.

The personal contacts Master Gardener volunteers provide clients are rooted in the design of the Master Gardener Program: informed by science, accessible to the public, and delivered by trained volunteers in a cost-effective manner.

Quality and effectiveness of the program requires a strong leader in the position of the Statewide Master Gardener Coordinator and the leader’s ability to engage in scientific research. Nearly all of the gardening advice universities dispense to home gardeners are derived from agricultural research. This is because research funding concentrates in commercial crops while there is little to no money to support research in gardens. As a result, gardens are understudied.

The Y. Sherry Sheng and Spike Wadsworth Master Gardener Professorship Fund is intended to support the Master Gardener Program leader’s original research in gardening practices that build soil, conserve water, grow food for people and wildlife, and nurture the human spirit.

Farewell to spring, Clarkia amoena, at Aaron’s native plant study site.

It is important to note that the Y Sherry Sheng and Spike Wadsworth Master Gardener Professorship is an estate gift, and will benefit the NEXT generation of garden researchers and Extension professionals. Even though the funds will not be realized for several decades, their contribution and pledge solidifies support for the Master Gardener Program in Oregon with key administrators and decision-makers, and helps to raise the overall profile of the Master Gardener Program.

In addition to Sherry and Spike’s current and planned estate gifts, the Master Gardener Coordinator’s position will also be supported by a planned estate gift from Bob and Barbara Bailey, both Master Gardeners in Wasco County. Once again, as an estate gift, these funds will benefit the next Statewide Master Gardener Program Coordinator, many years down the road.

Oregon sunshine, Eriophyllum lanatum, at Aaron’s native plant study site.

Oregon’s Master Gardener Program also benefits from endowment funds that currently sit in an Oregon State University Foundation endowment account for the Statewide Master Gardener Program. This fund was established by the Oregon Master Gardener Association in 2004, in collaboration Jan McNeilan and Ray McNeilan. This endowment has since been funded by thousands of grassroots donations, ranging from $10 to $25,000, from individual Master Gardener volunteers, family, and friends, as well as from the Oregon Master Gardener Association and its 22 chapters. The fund currently generates about $10,000 per year, that is or has been used to pay for:

  • the partial salary of the former Statewide Master Gardener Program Assistant,
  • the partial salary of the current Statewide Master Gardener Program Outreach Coordinator
  • bridge funding for Lane, Hood River, Union, and Marion County Master Gardener Programs, when they experienced funding shortfalls,
  • the Statewide Master Gardener Program Leader’s travel to teach local Master Gardener classes in 27 counties across the state,
  • creation and maintenace of tools to support Master Gardener volunteerism, including the Volunteer Reporting SystemSolve Pest Problems, and the soon-to-be released Plant Clinic Database (known as ECCo, for Extension Client Contact Database).

With all sources of support combined, Oregon’s Master Gardener Program will eventually be supported by the income generated from over $2.5 million in endowed funds. Once again, it is important to note that many of these gifts will not be realized for decades (so I hope, because I genuinely care for the donors!). But when I think about what it will mean for the MG Program in Oregon, it’s a mind-boggling and landscape changing level of support. OSU is going to be the home to the best-resourced Master Gardener Program in the nation, and the support offered by the Y Sherry Sheng and Spike Wadsworth Master Gardener Professorship not only raises the profile of the Master Gardener Program ~ but will attract a unique and highly qualified pool of applicants who are the best leaders, educators, and scientists in the world. 

Pearly everlasting, Anaphalis margaritacea, at Aaron’s native plant study site.

Master Gardener programs in some states often struggle with funding issues. Some states have no statewide program leader, which hampers efforts for coordinated programming, among other things. I don’t know of another Master Gardener Program that maintains a Principle Investigator lab group, such as the Garden Ecology Lab at OSU. Although some Programs engage in research, I don’t know of any that consistently conducts field-based, original research that results in peer-refereed journal publications that are the gold standard for research-based recommendations.

The support that our garden research and Extension programs have received has been a essential to what we have been working to build in the OSU Garden Ecology Lab. Our research on native plants, garden pollinators, garden soils would have never happened without this support.

Moving into the future, the establishment of the first named Professorship for the Master Gardener Program in Oregon is game-changing, and will surely place OSU’s Master Gardener Program among the leaders in home and community gardening research and Extension.

To all of those folks who are currently conducting research in home or community garden systems, no matter where you are . . . keep an eye on OSU. In the future, OSU will be able to offer an irresistable package of support to help you build a world-class research and Extension program focused on gardens.

Garden Ecology Lab Research Update

COVID-19 has impacted our research in many different ways, including making it more difficult to find time to provide research updates on a regular basis. Despite the long silence, we have many projects up and running this summer! In fact, we’re launching four new projects, finishing up three long-term projects, and writing up another two projects.

In this blog post, I give a brief overview of the four new Garden Ecology Lab projects that launched this summer.

Microbiome of Garden Soils and Gardeners: Dr. Gwynne Mhuireach’s project has been spotlighted in a recent blog post and webinar. She has selected the 40 gardeners that will be included in her study: 20 high desert and 20 Willamette Valley gardeners, half of whom are organic and half of whom are conventional gardeners. Soon, these gardeners will be sending in their soil and skin swab samples. And then, the long process of analysis will begin.

She’s studying the microbe community in garden soils, and how those might differ according to garden region (Willamette Valley or high desert) and gardening practices (organic versus conventional soil managmeent). She’s also studying whether garden soil microbes transfer to gardeners’ skin during the act of gardening, and if so, how long those microbes persist on the skin.

Pollinators on Native Plants and Native Cultivars: Jen Hayes is well into the data collection phase of her first field season. She is working with undrgraduates Jay Stiller, Tyler Spofford, and Isabella Messer to: track flowering phenology, measure floral traits, observe pollinator visits to study plots, and collect pollinators so that they can later be curated and identified to species. Jen has written about her research project, in a past blog post. I’ve also set up a Flickr album to host photos from her study.

Native plant and nativar study site, at the Oak Creek Center for Urban Horticulture. A yarrow cultivar, ‘Salmon Beauty’, can be seen in the foreground. Nemophila, Clarkia, and Escholzia cultivars can be seen in the background.

Jen’s field site is located at the Oak Creek Center for Urban Horticulture at OSU, which makes it so much easier for undergraduate student researchers to participate in this project. She samples pollinators on Tuesdays and Fridays. She takes 5-minute observations of pollinator visits on Mondays and Thursdays. In between, lots of time is spent weeding and watering plots, counting flowers, and measuring floral traits.

Cost / Benefit Analysis of Growing Edible Plants in Containers: Tyler Spofford is a new lab member, who is completing his undergraduate degree in the BioResource Research program at OSU. He is working to develop a ‘budget’ for growing food in low-cost containers. I’ve summarized this ‘budget’ data for growing food in standard vegetable gardens, but no data yet exists (that I can find) for containerized vegetable gardens. Tyler is growing 40 tomato plants across two sizes of containers (3 gallons and 5 gallons), as single plants and in combination with basil. He’s keeping track of all of the costs (both money and time spent to grow food). When he harvests food, he’ll weigh his harvest, and track the economic benefit of his efforts, and how container size and planting configuration (one or two crops per container) influences harvest. I’ve set up a Flickr album for his study, to host project photos.

Tyler’s project grew out of my concern that, even though 18,000+ people enrolled in a free, online vegetable gardening course (over 40,000, at last count) ~ that the people who might be most at risk for food insecurity may not be benefitting from Extension Master Gardener resources and information. Tyler’s project is one component of a larger effort to develop more support for renters who might want to grow their own food.

Bucket gardens, on the day that the tomatoes were planted into 5-gallon BiMart buckets. We tried to keep all materials and plants low cost and easily accessible. Photo Credit: Tyler Spofford.

Below is an excerpt from a concept paper I’m writing on the topic:

We know that the COVID-19 pandemic is exerting stress on multiple pressure points related to the economic and food security of U.S. households: more people are in need of food aid and more people are concerned about food access. The U.S. has a long history of gardening in times of national emergency (e.g. Victory Garden of WW I and WWI II, ‘recession gardens’ of 2008). The benefits of gardening as a tool of economic security and resilience are well-established. However, research suggests that these benefits are largely restricted to homeowners. Currently, most state and local laws afford no legal right to renters who want to grow their own food. Community gardens might offer renters opportunities to grow their own food, except that these gardens are often associated with gentrification. To promote public health in the face of economic and health risks of COVID-19 and future pandemics, it is critical to support the food gardening efforts of the most vulnerable. Those in rental housing have been found to be most vulnerable to food insecurity, as well as the food and economic insecurity associated with natural disasters.

Pollinators on Buddleja Cultivars: Cara Still is studying how breeding butterfly bush (Buddleja davidii cultivars) for sterilty impacts the pollinator community that visits Buddleja blossoms. Buddleja davidii and some fertile varieties of this plant are considered noxious weeds in Oregon, and many other places. Normally, noxious weed status would make it illegal to sell or trade butterfly bush in Oregon. However, the Oregon Department of Agriculture allows exceptions for non-sterile cultivars and interspecific hybrids.

Buddleja ‘Buzz Velvet’ (I suspect that plant breeders have a lot of fun, naming new cultivars)

Cara is studying whether or not the plants that are allowed for sale, under the exceptions, still pose a risk of invasion. Our group is working with Cara to document the abundance and diversity of pollinators that visit eight fertile Buddleja cultivars with 16 cultivars that have been bred for sterility.

When I was initially approached to participate in this project, I thought that it should be obvious that sterile cultivars would not attract pollinators. Afterall, sterile cultivars don’t produce pollen, or produce very little pollen. Without pollen, I doubted that bees would visit the plants. But, it is possible that sterile plants would still produce nectar. And, many pollinators ~ such as butterflies and moths ~ visit plants to consume nectar, rather than pollen.

The more I looked into the literature, I realized that no one has yet studied how breeding for sterility might affect a plant’s attractiveness to pollinators. Would sterile forms of butterfly bush no longer attract butterflies? Would sterile varieties attract syrphid flies that visit blossoms for nectar, and not pollen? We’ll let you know what we find, in about a two years. In the meantime, you may want to visit the Flickr album of photos I set up for Cara’s study.