Welcome to the Garden Ecology Lab’s “What are the bees doing” mini-series! This series will extend through the four seasons to shed some light on where bees are in their life cycle and what they may be doing during each of the four seasons. We begin with winter, and an overview of the overwintering and nesting strategies of common groups of bees in the Pacific Northwest.
As the seasons change, where do all the bees go? Different groups of bees utilize unique strategies to survive the cold of winter. In many cases, bees require cold temperatures to develop properly, and as spring rolls around, they rely on thermal cues to determine when to start their next phase of life.
❄️
We can divide bees into four broad categories based on their strategy to nest and survive the winter. There are the Ground Nesters – who find or dig in the ground to nest and lay eggs, Cavity Nesters – who nest in hollow reeds, canes, or in people’s backyard “bee hotels”, Bumblebees – whose new-born queens burrow into leaf litter, waiting to start a colony in spring…. and then there is the oddball: the European Honey Bees, who are not native to North America, but were brought here along with European colonizers and are now key players in modern agriculture. They do things pretty differently than our native bees, so we’ll start our discussion with them.
The European Honey Bee
European honey bees (Apis mellifera) survive the winter huddling in their hive! They are an example of a social insect and many consider a honey bee hive a superorganism. Fueled by their honey stores, the colony huddles together in a mass to thermoregulate at temperatures between 33 – 36°C (91.4 – 96.8°F).1 I love these words from the American Bee Journal:
"The honey bee is a cold blooded insect; but the honey bee colony is a warm blooded creature."1
We will see that honey bees are the only bee in our landscape to overwinter socially. The rest go it alone.
Bumblebees
Bumblebees are social bees too, living in natural cavities most often in the ground, but in winter, the members of the colony die off except for the new-born queens. These queens will fly out of the hive on her maiden voyage to mate with a male bumblebee before finding a place to settle and overwinter alone.
Queens find a safe environment often a few inches deep under leaf litter or light soil. As temperatures decrease in Fall and early Winter, the queens do not thermoregulate. Instead, they enter diapause, which is a state of arrested development. An overwintering queen appears frozen in the soil until warmer temperatures wake her again. In the late Winter or Spring she will begin looking for a site to start her own colony.
Cavity Nesting Bees
About 30% of native bees are cavity nesters who build their nests inside cavities in wood or reeds.2 These bees avoid overwintering as adults, and instead, they lay their eggs in cavities and die before the winter temperatures come.
Female cavity nesting bees forage for pollen and nectar and nesting materials in the spring or summer and make balls of pollen and nectar (often called “bee bread”) as food for their offspring!
They lay eggs on the pollen balls, and then proceed to seal off compartments, one for each of the eggs, until the cavity nest is full. These eggs will hatch into larvae that consume the bee bread as winter approaches.
Here is a video of a small carpenter bee larva eating its bee bread, magnified under a microscope!
Once the larvae finish off their food store, they may spin themselves a cocoon in which they further develop into pupae. Cavity nesters spend the winter developing from pupae to young adults in their cocoons. These developing bees go into a state called torpor to survive the winter, where the bee is inactive and its body temperature drops, but it still goes through critical physiological processes and development.
These bees must experience low Winter temperatures natural to their region to undergo proper development. Mason bees, for example, have lower survival and vital rates when exposed to warm nest temperatures that simulate predicted climate change temperatures for their region.3
Mason bees (genus: Osmia) are cavity nesters that have become well known in garden and agriculture circles in recent years, but many other groups of bees fall into this category too including leafcutter bees (family: Megachilidae), small carpenter bees (genus: Ceratina), large carpenter bees (Genus: Xylocopa), and masked bees (family: Colletidae).
SARE has a great resource on identifying which cavity nester might be nesting in your bee hotel!
A friend of the lab, Olivia Honigman, conducted a brief research project on small carpenter bees in Vermont. Here are some photos from her study that showcase a tiny cavity nesting bee, from the genus Ceratina, nesting in raspberry canes.
Ground Nesting Bees
Last but certainly not least are the ground-nesting bees which make up about 70% of native bee species! Bees from the genera Andrena, Lasioglossum, and Halictus fall into this category.4 Ground-nesters have unassuming nests that are hard to spot, but under the soil, they are putting down bee loaves and laying eggs in a compartmentalized fashion, just like cavity-nesters!
Similarly, adult ground-nesters die after they finish provisioning their nests for their offspring. In the winter, the young bees of the new generation are developing from pupae into adults in their underground nests.
Left: exposed soil revealing tiny holes- could these be bee nests? Top right: A ground-nesting bee pokes its head out of its home. Bottom right: The entrance to a ground-nesting bee’s home. Photos by Gail Langellotto.
Although their nests are modest, some of Oregon’s showstopper bees fall in the ground-nesting category, such as the metallic green sweat bees (Agapostemon).
Long-horned bees from the genera Melisoddes and Eucera also flaunt unique forms with noticeably fluffy, feathery hair on their legs they use for collecting massive volumes of pollen!
To invite these bees to your garden, leave patches of earth free from wood mulch and instead mulch with compost! To avoid disturbing ground nests, avoid tilling when possible.4
Something remarkable about nesting in the ground is that, depending on nesting depth, ground nesters are more buffered from extreme temperatures than honey bees and cavity nesters whose homes may be in the direct sun. This may be a critical difference when it comes to surviving climate change.
Changing Climatic Norms…
With climate change upon us, native bees have experienced warmer than usual winter temperatures. These conditions may be suboptimal for their development and survival and encourage bees to emerge earlier in the season. Cavity and ground nesting bees require low temperatures with which they have evolved to reach physiological benchmarks for their development, and scientists worry that there will be phenological mismatches between plants and their pollinators in which bees emerge at different times than when their optimal food sources are in bloom as plants and insects will experience novel timing of thermal queues under climate change predictions.5
As bees and other pollinators face a multitude of challenges, we should support our local bees and appreciate them while we can!
❄️
Thank you for joining us on this exploration of what bees are doing during the winter! We will release three more blog posts in this series, one for each of the four seasons. Blogs will be posted during their prospective seasons, so be sure to subscribe so you don’t miss the next in the series!
Very informative. I cover my flower beds with leaves over the winter. Do native bees use those? If so, how late should I be in removing the leaves?
Hi Sara,
Great question! This article from the Xerces Society has some information about how long to wait to clean up the garden:
https://xerces.org/blog/dont-spring-into-garden-cleanup-too-soon
It sounds like it is best to leave leaves permanently, treating them like a mulch, but if you must remove them, wait until at least late spring/early summer.
I hope that helps to answer your question!
THat blog explained a lot. Can I alter my image of a lovely garden??? Thanks very much.
Nice post. Thank you!
My question relates to this which you said in the article “scientists worry that there will be phenological mismatches between plants and their pollinators in which bees emerge at different times than when their optimal food sources are in bloom as plants and insects will experience novel timing of thermal queues under climate change predictions.”
What can we do to provide bees with alternatives if their optimal food sources are not evolving at the same pace? Is there conversation at the agricultural level about this?
University of Florida researchers interviewed in this article have some answers to your question. Having diverse bloom times in pollinator plantings can help bees experiencing phenological mismatch to an extent.
https://www.flawildflowers.org/mismatch/#:~:text=%E2%80%9COne%20of%20the%20best%20things,student%20researching%20bee%20phenology.
In regards to agriculture, if pollinators aren’t around when pollinator-dependent crops bloom, yields suffer. Managed honeybees can be brought in to provide pollination services in some situations when native pollinator services aren’t sufficient. The classic example in regards to phenology is bringing in honeybee hives to almond crops in California which bloom in February before most native bees are active. Mason bees are also being utilized as managed pollinators in early some blooming crops like cherry. I wonder if agricultural crops ever provide forage for native bees who are out of sync with their usual native host plants. Thank you for your wonderful question!