Gardens are unique and understudied systems that can have multi-faceted and positive impacts on environmental and public health. But, key to realizing the potential, positive impact of gardens are the decisions that are made when planning, installing and maintaining garden beds and features. These decisions are especially important, because gardeners manage and maintain a significant amount of land in the United States. Take lawns, for example. Studies suggest that lawns represented the single largest irrigated crop in the United States, and that there are more acres of lawn than the combined acreage of corn, alfalfa, soy, orchards and rice1.
Of course, lawns are just one component of a garden ~ perhaps the least interesting component, from an ecological point of view. Gardens are special, because of their unique levels of plant abundance and diversity2, which in some cases can be considered ‘biodiversity hotspots’3. In New York, my lab group documented the important role that plant abundance and diversity in urban and suburban gardens can play in conserving pollinator biodiversity4, 5, 6. Recently, some of the top researchers in the country argued that conservation plans could better harness the positive environmental benefits of gardens and landscapes7. But, before we can get there, we need to answer some basic questions.
This is where the Garden Ecology Lab comes in. Our group works at the interface of ecology and sociology, to try and understand the benefits of gardens to the environment and to human health and well-being. We want to document the biodiversity of plants, pollinators and other organisms in Oregon gardens, and analyze what factors constrain or promote garden biodiversity. I’ve done this work in New York, but want to repeat these first steps in Oregon. Ultimately, the goal is to understand how gardens ~ and the decisions we make in our gardens ~ either promotes or constrains ecosystem services, such as pollination, pest control, and more.
Our group is diverse, and includes students interested in ecology, horticultural therapy and urban soils. Extension and outreach is embedded in all that we do, such that we plan to work closely with gardeners (as citizen scientists) to describe and understand garden biodiversity, and to communicate findings to broader audiences. We’ll be looking for garden study sites and cooperating gardeners in the coming months, and invite you to get to know us, just a bit more.
References
1Milesi, C., S. W. Running, C. D. Elvidge, J. B. Dietz, B. T. Tuttle, R. R. Nemani. 2005. Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States. Environmental Management 36:426–438.
2Thompson, K. K. C. Austin, R. M. Smith, P. H. Warren, P. G. Angold, K. J. Gaston. 2003. Urban domestic gardens (I): putting small-scale plant diversity in context. Journal of Vegetation Science 14:71-78.
3Gea Galluzzi, G., P. Eyzaguirre, V. Negri. 2010. Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodiversity and Conservation 19: 3635–3654.
4Fetridge, E., J. S. Ascher, G. A. Langellotto. 2008. The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea). Annals of the Entomological Society of America 101:1067-1077.
5Matteson, K. C., G. A. Langellotto. 2010. Determinates of inner city butterfly and bee species richness. Urban Ecosystems 13:333-347.
6Matteson, K. C., J. S. Ascher and G. A. Langellotto. 2008. Richness and composition of the bee fauna of urban gardens in New York City (Hymenoptera: Apoidea). Annals of the Entomological Society of America 101:140-150.
7Hall, D. M., G. R. Camilo, R. K. Tonietto, J. Ollerton, K. Ahrne, M. Arduser, J. S. Ascher, K. C. R. Baldock, R. E. Fowler, G. W. Frankie, D. Goulson, B. Gunnarsson, M. E. Hanley, J. I. Jackson, G. Langellotto, D. Lowenstein, E. S. Minor, S. M. Philpott, S. G. Potts, M. H. Sirohi, E. M. Spevak, G. Stone, C. G. Threlfall. 2016. The city as a refuge for insect pollinators: conservation for the city. Conservation Biology. Online First.