Ashlee M. C. Foster, MSEd | Instructional Design Specialist | Oregon State University Ecampus


Whether a pedagogical approach is affirmed by research and/or practical evidence intentional design and effective deployment of pedagogical strategies are essential. We will begin with an exploration of evidence-based design components, which build upon the characteristics of Project-based Learning (PjBL), as discussed in Project-based Learning (Part 1) – Architecture for Authenticity.

Getting Started

Begin with the end in mind. Take a moment to establish the outcomes, goals, and real-world connections that will underpin the project. Consider using the following elements as your guide.  

  • Identify the Course Learning Outcomes (CLO) students should be able to demonstrate upon successful completion of the course
  • Identify the intended project outcomes and the alignment to the course learning outcomes
  • Identify skills students will practice and master while engaging with the project 
  • Articulate the purpose of the project within the contexts of the course, academic program, field of study, and profession
  • Articulate authentic connections between the project, across academic disciplines, and professional practice
  • Connect the project to an authentic purpose that extends beyond the confines of the course

Course Design Elements

Next, reflect on how you can design your project to incorporate most of the following PjBL core design elements.  

Project-based learning process

Image credit: Gold Standard Project Based Learning by PBLWorks is licensed under CC BY-NC-ND 4.0.

Authentic Challenge

Initially, consider creating an opportunity for students to self-select a challenge. This can be anything from finding a solution to existing problems, a remedy for historical barriers, answers for disciplinary relevant questions, or asking new questions. Whatever the challenge may be, a best practice is to contextualize it within a real-world context. Affirm student voice and choice by explicitly sharing how the project connects to the academic discipline, professional field of practice, and real issues by providing feedback. Lastly, help students to see how they can connect the challenge to themselves.

Authentic Product

Development of an artifact that is relevant, timely, impactful, and piques personal interest help to bridge the concepts to the real world. To effectively create an artifact that produces a public good, students should engage in an iterative process that includes: planning, prototyping, seeking and applying feedback from diverse stakeholders (i.e., public, target audience, instructor, peers, Subject Matter Expert), personal reflection, and revisions. To determine whether your project is authentic, consider whether the product(s) create a lasting and meaningful impact beyond the classroom. Examples of authentic products could include a business plan to innovate an existing accessibility tool, a podcast to share about (DEI) Diversity Equity and Inclusion practices or to generate oral histories (i.e., audio interviews) of underrepresented populations. 

Sustained Inquiry

Incorporation of formal and informal opportunities for students to question, research, gather information, conduct analysis, apply new knowledge, generate additional inquiries, and highlight evidence is key to the design. These opportunities should be integrated into the architecture of the project, but the actions should be student-driven. This strategy will help promote knowledge construction.

Student Autonomy

Create varied opportunities for students to make their own choices, both collectively and individually. Student-driven choice can extend to such elements as question development, selection of public a product, identification of target audiences, establishment of collaboration protocols, application of knowledge and feedback, and prototype revision methods. Doing so situates students as the diver of their own learning process and creates space for students to hone their metacognitive skills (i.e., self-regulation, monitoring, and self-directed learning).

Reflection

Due to its roots in constructivism, reflection is commonly used in PjBL. Reflection is used as a strategy to foster deep learning, personal ownership of learning, assimilation of new knowledge, integration of lived experiences, effective inquiry, assessment of quality, and the navigation of challenges. While serving as a guide on the side, consider integrating activities to foster ongoing reflection of critical questions. Such questions may include:

  • What is known?
  • What needs to be known?
  • What evidence exists?
  • Will the product have an impact on the world outside of the course? How?
  • Do I/we bring any personal biases to the project which impacts the design of the product?
  • Does the design of the product represent the diversity of the target audiences?  
  • What works or does not work? Why?
  • How can the product be improved? What is the rationale behind the recommended changes?
  • How can the quality and efficacy of the product be tested?
  • Does the project extend on what the academic domain and professional field have established? If not, how can the project be modified to contribute additional knowledge or insights?
  • How does the project connect to my life, my lived experiences, and that of others?
  • How will the project help me to develop my professional skills?

An example of a PjBL reflective activity is a design journal. Design journals can include text, visualization, and media elements. Each entry can be structured to cover the following: knowledge gained, ideas, sustained inquiry (i.e., questions, additional research needed), the rationale for product changes, and next steps.

Critique & Revision

Integrating activities, such as a design journal, provides students the opportunity to actively critique, revise, and obtain feedback throughout the duration of the project. There is a multitude of scenarios that may call for critique. Students may find their initial idea to be too broad or specific. The original line of inquiry may have been faulty. One may find the product does not generate the intended public good or service. Therefore, revising the goal and creating a new product may be necessary. Alternatively, situations can arise where students learn of a product’s unintended harm, so a new prototype may need to be created. The goal is to create a course climate that is psychologically safe enough to encourage iteration.

Success Tips

Please note that these best practices and design elements offer a framework. Your course is unique. There is an unending list of potential factors that can impact the design of your course and project (e.g., accreditation, professional competencies, academic rigor, program outcomes, administrative expectations, etc.).

  • Keep in mind that you do not have to incorporate everything and the kitchen sink. Take what you can from existing literature, practitioner testimonials, industry needs, professional practices, real-world examples, and lessons learned from your own lived experiences.
  • Begin with small additions to your course, assess the impact of those changes, and revise as you deem appropriate.
  • Remember that nothing will be perfect, and there are always opportunities to improve. Design with the best fit in mind!

Looking Ahead!

You are cordially invited to revisit the Ecampus Course Development and Training Blog for Project-based Learning (Part 3) – Practical Preparation. In the final installment of this series, we will explore additional project-based learning activities, identify opportunities to integrate technology and examine actual project samples.

References

Project

By: Ashlee M. C. Foster MSEd, Instructional Design Specialist | Oregon State University Ecampus

Did you know a pedagogical approach exists that positively impacts student academic achievement and engages them as active participants in learning? Great news…there is! Let me introduce you to the world of Project Based Learning (PBL). 

What is PBL?

PBL is a student-centered pedagogical approach where students, both individually and within small groups, engage with meaningful, relevant, and authentic projects which result in a product. Oftentimes, PBL is commonly associated and/or thought to be interchangeable with Problem Based Learning. However, there is a distinction between the two. The principal focus of PBL is on the active construction of knowledge. Additionally, student autonomy, beliefs, values, and motivations are situated as a fundamental driving force of the instructional approach.

What are the characteristics of PBL?

The essence of PBL is anchored in attributes, which foster high-quality learning experiences. Direct instruction is no longer the principal mechanism for delivery. Negotiation of knowledge between the educator and the students occurs through an exchange of ideas, questioning, inquiry, considerations, and perspectives. PBL often engages students in an ongoing process consisting of investigation, collection, analysis, prototyping, testing, peer/instructor feedback, revisions, and reflection. Learner autonomy is key in that students make their own decisions about various aspects of the projects (i.e., line of inquiry, collaborative processes, application of feedback, types of revisions, solutions).

Is it effective? Prove it!

As reported by Chen and Yang (2019), a positive impact on student achievement has been observed across 20 years (i.e. 1998-2017) of PBL peer-reviewed literature. The researcher’s principal investigation was to compare traditional instruction with that of PBL. Traditional instructional delivery was found to prompt students to apply low-level cognitive processes (e.g., understand, remember). Whereas, PBL can encourage the development of (HOTS) Higher Order Thinking Skills (i.e., analysis synthesis) and metacognitive skills (i.e., regulation, monitoring, self-directed learning, evaluation, assessment). According to the meta-analysis, the aforementioned benefits were found not to be impacted by academic discipline, educational stage (undergraduate, post-baccalaureate, graduate), or geographic location. This is great news for our distance and hybrid learners!

How do I get started?

When considering PBL there are a few questions to reflect on before implementing this practice. First, ask yourself, is this a best-fit approach? Consider the academic discipline, subject content, course learning outcomes, your instructional style, student attributes, and the intended goals to answer this foundational question. A word of caution is to use PBL in a way that is relevant, authentic, and collaborative in nature. Steel clear of using projects as a shiny solution. Lastly, contextualize the project. Doing so will help students connect the project to their academic career, professional development, and personal growth. Remember to share the ‘why’!

Project Examples

Here are a few project examples to spark some ideas: 

  • solve a problem (e.g., uninformed voting) 
  • generate a plan (e.g., foster sustainability)
  • create a product (e.g., computer/mobile application, oral history interviews)
  • seek valid answers and recommend solutions (e.g., electing national officials) 
  • engage with a persistent issue in a tangible way (e.g., advocating, protesting, public speech) 

Do you have an example to share?

Respond in the comments if you currently use, have used, or intend to incorporate PBL in your course. Do you have any tried and true strategies for effective projects? Have you experienced any wins or challenges? Share with the community and join the discussion. Make sure to return to read Project-Based Learning (Part 2) – Mindful Design for practical implementation tips! 

References

Image of mountaineers with quote by John Dewey.

What is Experiential Learning?

You may have heard the terms experiential education and experiential learning. Both terms identify learning through experience as a foundational understanding. However, experiential learning is associated with individual learning.

Traditionally experience-based learning in higher education has been presented as educational opportunities complimentary to classroom instruction. These experiences might include clinical experiences, cooperative education experiences, apprenticeships, fellowships, field work, volunteerism, study abroad, practicum and internships, service learning, and student teaching experiences. These types of learning experiences are offered in and across many different disciplines (Giesen, 2012). These familiar experiential education programs demonstrate the value of individual experiential learning. But, the question remains: Is experiential learning a viable approach for online instruction?

Understanding the potential for experiential learning for online courses turns upon recognizing experiential learning as a process. The experiential learning process has been described as a cycle of learning (Kolb and Kolb, 2018). The model below illustrates The Experiential Learning Cycle.

Model of experiential learning showing sequence of Concrete Experience, Reflective Observation, Abstract Conceptualization, and Active Experimentation.

Experiential learning is understood as constructive pedagogy approach that is highly student centered. The Experience Learning Cycle begins with a concrete experience of some kind. Commonly we think of this as a real world event. That experience is followed by reflective observation of the experience, abstract conceptualization of what was learned, and the application of new learning via active experimentation. That experimentation is integrated as part of the next concrete experience.

The interactive and progressive nature of the experiential learning cycle is considered a driver of personal growth and development. The dialectics between concrete experience and abstract conceptualization as well as reflective observation and active experimentation are theorized to drive motivation for learning. 

Online Experiential Learning In Practice 

Problem-based learning, case-based learning, and  project-based learning are examples of design models that may include learning via experience in the real world (Bates, 2014). These models are often used as a way of bringing engagement into online instruction. So, if you have been incorporating these models of learning in an online course you are engaged at some level with experiential learning. But, what if you wanted to design an experiential learning assignment that does not fall within one of these models?  What might that look like?

Let’s examine the application of the experiential learning cycle to an online learning experience in a course recently offered through Ecampus at Oregon State University. The asynchronous course, Introduction to Organic Agriculture Systems, is a survey style course with an enrollment of students from Oregon and more distant.

Let’s step through The Cycle of Experiential Learning with an assignment from this course as our sample context. Hopefully it will reveal some insights into both the process of experiential learning and its practice.

1. Concrete Experience

The concrete experience for this course was an organic scavenger hunt assignment that was to be completed in the first week of the course. Although the overt activity of was a guided scavenger hunt the learning experience focus was to begin to learn systems thinking in organic agriculture. This is important to identify, as it is the authentic learning goal of the experiential learning.

As the professor framed this assignment: “This introductory activity will provide you the opportunity to explore organic availability, marketing, and farming in your community.”This concrete experience is the direct experience of organics in the student’s community.

The objectives of the scavenger hunt were to:

  • Identify organic products and marketing techniques that differentiate organic from conventional products
  • Conduct a survey of organic availability in your local store and region
  • Participate in hands-on exploration of different components of the organic system

Students were provided with a detail scavenger hunt instruction set and told to complete there first part of the assignment in a local store using an organic scavenger hunt questionnaire-work sheet. Time estimates for completion of the scavenger hunt was up to three hours at the store site. Completed work sheets were turned in to the instructor.

The key to this assignment is the real life exploration of the local organic system. Although this will be elaborated on in subsequent weeks of the course, this concrete experience will become a touchstone students can reference as they build new knowledge and skills in systems thinking in organic agriculture.

2. Reflective Observation

Part 2 of the scavenger hunt assignment includes independent student work guided by questions that ask about the presence of organic farms in the student’s area, type of organic farms, scale of the farms and evidence of their independent research work.

This element of the assignment encourages students to search for, identify, and reflect upon gaps in the local organic system in their own backyard. This work encourages students to reflect upon their own concrete experience, the quality of their work, and its linkage to understanding systems thinking.

3. Abstract Conceptualization

In week three of the course students were assigned a course discussion to share their findings from the scavenger hunt with peers. Here they compare and contrast their scavenger hunt findings and observations. In particular, students were asked to connect the social, environmental and economic dimensions of sustainability in organic agriculture to their observations taken from the scavenger hunt experience. Additionally students were asked to review other student work from different locals and explore common understandings about organic agriculture systems.

The value of this exercise from an experiential learning perspective is the application of concrete experience to more abstract concepts described by others or found in other agricultural regions. This provides opportunities for the re-conceptualizing of prior experiences with the goal of expanding on the process of organic agriculture systems thinking.

4. Active Experimentation

The Cycle of Experiential Learning rounds out with planning and applying new learning about organic agriculture systems thinking to a future concrete experience. Abstract conceptualization completed in the previous discussion will contribute to the formulation of new questions and ways of examining a local organic agriculture system. Students will likely apply these ideas to ongoing organic agriculture systems thinking in the course. In this way prior reflective observation becomes the root of new questions and predicted results for the next learning experience in organic agriculture systems thinking.
 

Final Thoughts

The final project of this course is the production of an organic systems map that explains the relationships between organic system stages (i.e., production, processing, distribution/marketing, consumption, and waste) and the dimensions of sustainability (ie. social, environmental, and economic).

In order to complete the final project students learn a great deal between their initial scavenger hunt and the final project. Their original concrete experience in systems thinking will likely inform decisions about how to re-apply new organic agriculture systems thinking.

The experiential learning assignment we just examined only works if students perceive that moving through the cycle of experiential learning addresses an authentic learning need. As the course is focused on introducing organic agriculture systems the idea of learning systems thinking makes sense. It captures the fundamental truth of what is expected to be learned (Jacobson, 2017) making the learning appropriate.

What Now?

As you explore the possibility of using experiential learning in your online course it is valuable for you to first consider formulating answers to a number of questions.

  • What is the authentic learning needed?
  • What concrete experience provides students with access to that learning? 
  • How will students carry that concrete experience through the cycle of experiential learning?
  • How will you provide the opportunity for concrete experiences for remote learners in a way that fosters individual learning and contributes to large scale learning in the course?

As you explore experiential learning for your online course revisit the model shared in this article. For help in this process contact your Ecampus instructional designer. They can help focus the key questions and suggest instructional strategies and tools to help you achieve your online experiential learning goals.

 

References

Bates, T. (2014). Can you do experiential learning online? Assessing design models for experiential learning. Retrieved from https://www.tonybates.ca/2014/12/01/can-you-do-experiential-learning-online-assessing-design-models-for-experiential-learning/

Dewey, J. (1938). Experience and Education. New York: Simon and Schuster.

Giesen, J. (2012). Experiential Learning. Faculty Development and Instructional Design Center, Northern Illinois University. Retrieved from https://www.niu.edu/facdev/_pdf/guide/strategies/experiential_learning.pdf

Jacobson, J. (2017). Authenticity in Immersive Design for Education. In Virtual, Augmented, and Mixed Realities (Ch 3). Singapore, Springer Nature.
Retrieved from https://link.springer.com/book/10.1007%2F978-981-10-5490-7

Kolb, A. & Kolb, D. (2018). Eight important things to know about The Experience Learning Cycle. Australian Educational Leader, 40 (3), 8-14.


Experiential Education Resources

Association for Experiential Education
http://www.aee.org/ 

Journal of Experiential Education
http://www.aee.org/publications/jee 

Experience Based Learning Systems Inc.
https://learningfromexperience.com

Experiential Learning & Experiential Education
http://www.wilderdom.com/experiential/