A Systems Theory View of the Emerging Planetary Socio-ecological System

David P. Turner / May 6, 2021

A Great Transition is hopefully underway − from humanity’s current chaotic rush towards environmental disaster, to a more ordered Earth system in which the global human enterprise (the technosphere) becomes sustainable.  However, achieving the necessary planetary scale organization of the human enterprise will be a challenge. 

The discipline of systems theory offers insights into how new forms of order emerge, and here I will introduce two of its concepts − holarchy and metasystem transition − as they relate to the process of creating a sustainable planetary civilization.

The technosphere is commonly presented as a whole.  I like to draw the analogy between the technosphere and the biosphere: both use a steady flow of energy to maintain and build order.  Just as the biosphere evolved by way of biological evolution from microbes to a verdant layer of high biodiversity ecosystems cloaking the planet, the technosphere is evolving by way of cultural evolution into a ubiquitous layer of machines, artifacts, cities, and communication networks that likewise straddles the planet.

This formulation of the technosphere as a global scale entity is a glossy overview that allows one to make the point that the growth of the technosphere has altered the Earth system in ways that are toxic to some components of the biosphere, and indeed to the technosphere itself.  Technosphere emissions of greenhouse gases leading to rapid climate change is the iconic example.

The view of the Earth system as composed of interacting spheres (geosphere, atmosphere, hydrosphere, biosphere, cryosphere, technosphere) is also useful for imagining and modeling the feedbacks that regulate Earth system dynamics, e.g., the positive feedback of the cryosphere to climate warming in the atmosphere, or the negative feedback to climate warming by way of the geosphere-based rock weathering thermostat.

But systems theory offers another lens through which to examine the technosphere and its relationship to the contemporary Earth system.  This view relies on further disaggregation.

Systems theory is a discipline that studies the origin and maintenance of order.  The objects of study are systems − functional entities that can be analyzed in terms of parts and wholes. 

Complex systems are often structured as holarchies , i.e., having multiple levels of organization.  Complexity in general refers to linkages among entities at a range of spatial and temporal scales, e.g., a city is more complex than a household. 

Like the more familiar hierarchy (e.g., a military organization), there are levels in a holarchy; lower levels are functional parts of the levels above.  The entities (holons) at each level are “wholes” relative to the level below but “parts” relative to the level above.  The difference between holarchy and hierarchy lies in representation of both upward and downward causation in a holarchy compared to primary concern with downward-oriented control in a hierarchy.

Let’s consider the environmental management aspect of the Earth system as a holarchy (Table 1). 

Table 1.  Levels in a planetary natural resources management holarchy.  The Integrating Factors refer to how the components within a holon interact.

The emphasis in this management-oriented holarchy is on holons that consist of coupled biophysical and sociotechnical components.  Environmental sociologists term a holon of this type a socio-ecological system (SES) (Figure 1).  In an SES, stakeholders coordinate amongst themselves in management of natural resources.   

Figure 1. A socio-ecological system holon.  Integration of the Biophysical Subsystem and the Sociotechnical Subsystem is achieved by management of natural resources and delivery of ecosystem services.  Adapted from Virapongse et al. 2016.  Image Credit: David Turner and Monica Whipple.

At the base of the Earth system SES holarchy (Figure 2) are managed properties, such as a farm or wildlife refuge, where humans and machines manipulate the biophysical environment to produce ecosystem services such as food production and biodiversity conservation.

Figure 2. The planetary socio-ecological system holarchy.  Arrows are indicators of interactions, with larger arrows suggestive of slower more powerful influences.  Adapted from Koestler 1967. Image Credit: David Turner and Monica Whipple.

A step up, at the landscape level, are mosaics of rural and urban lands.  A town with parks and an extensive greenbelt, or a national forest in the U.S., which is managed for wood production as well as water quality and other ecosystem services, are sample landscapes.  Disturbances within a landscape, such as wildfire on the Biophysical side or a change in ownership on the Sociotechnical side, can be absorbed and repaired by resources elsewhere in the landscape (e.g., reseeding a forest stand after a fire).

At the ecoregion level, there is a characteristic climate, topography, biota, and culture.  My own ecoregion, the Pacific Northwest in western North America, is oriented around the Cascades Mountains, coniferous forests, high winter precipitation, and an economy that includes forestry, fishing, and tourism.  These features help define optimal natural resources management practices.  A significant challenge at the ecoregion level is integration of management at the property and landscape scales with management of the ecoregion.  Ecoregions interact in the sense of providing goods and services to each other, as well as collaborating on management of larger scale resources such as river basin hydrology.

The national level is somewhat arbitrary as a biophysical unit, but the sociotechnical realm is significantly partitioned along national borders, so the nation is in effect a clear level in our SES holarchy.  Nations have, in principle, well organized regulatory and management authorities that aim for a sustainable biophysical environment as well as a stable and prosperous socioeconomic environment.

At the planetary level, the sociotechnical aim is to manage the global biophysical commons − the atmosphere and oceans − and coordinate across nations on transborder issues like conservation of biodiversity.  That would mean agreements on policies to limit greenhouse gas emissions, reduce air and water pollution, and manage open ocean fisheries.

A strong global environmental governance infrastructure is needed at the planetary level to ensure a sustainable relationship of the technosphere to the rest of the Earth system.

But what we have now at the global scale is a weakly developed array of intergovernmental organizations (e.g., the United Nations Environmental Program), transnational corporations that heavily impact the global environment, and international nongovernmental organizations like Greenpeace.  We do not have a fully realized planetary level of environmental governance. 

The systems theory term for emergence of a new level in a holarchy is “metasystem transition”.  This process involves an increasing degree of interaction and interdependency among the constituent holons (nations in this case).  Eventually, positive and negative feedback relationships are established that promote coexistence and cooperation.  The origin of the European Union is a relevant case study of a metasystem transition in the geopolitical realm. 

Resistance to planetary scale management is understandable – notably because nations fear losing sovereignty.  Less developed nations worry about external imposition of constraints on their economic development that may be unjust considering the global history of natural resource use.  Working through these political issues is fraught with complications, thus the process would benefit from focused institutions.  Global environmental governance researchers have proposed creation of a United Nations-based World Environment Organization, which would coordinate building environmental management agreements with follow through monitoring and enforcement. 

A key driver for the success of planetary-level SES integration is that each nation is faced with environmental problems, like climate change, that it cannot address on its own.  Survival will require a new level of integration with its cohort of national-level holons.  Possibly, progress in collaboratively addressing global environmental threats like climate change could even lead to further progress in collaboratively addressing global geopolitical threats like the proliferation of nuclear weapons.

Planetary Citizenship

David P. Turner / March 7, 2021

The developmental task of building a personal identity is becoming ever more complicated.  While some aspects of identity come with birth, others are adopted over the course of maturation.  Increasingly, each person has multiple identities that are managed in a complex psychological juggling act.

Citizenship − generally defined in terms of loyalty to the society within a specified area − is a key component of personal identity.  National citizenship most readily comes to mind, but the term is also used at other levels of organization.  Members of a tribe, residents concerned about watershed protection, and neighbors attending to local quality of life all qualify as citizens.

The concept of citizenship at the planetary scale is rather new, in part because our global governance infrastructure (environmental, geopolitical, and economic) is rudimentary.  However, if there is to be a purposeful (teleological) attempt to mitigate and adapt to global environmental change, we residents of Earth must become planetary citizens.

The impetus to identify as a planetary citizen typically comes from growing awareness of planetary scale environmental threats to human welfare.  The result is a commitment to rein in the human enterprise (the technosphere) and work towards global sustainability

Earth system scientists generally reject the Gaian notion that the planet is in some way self-regulating or purposeful.  But if humanity indeed manages to join together and intentionally reverse the trend of rising greenhouse gas concentrations and mass extinction, the Earth system as a whole (Gaia 2.0) would in a sense gain purpose.

Embrace of planetary citizenship is a pushback against unbridled individualism.  In the widely held neoliberal belief system, individuals are viewed most fundamentally as autonomous consumers who live in a biophysical environment that is a limitless source of materials and energy as well as a limitless sink for wastes.  In fact, the human impact on the global environment is a summation of the resource demands from the 7.8 billion people who now inhabit the planet.  The cumulative impact of humanity has clearly begun to induce changes in the Earth system that endanger both developing and developed nations. 

Rights and Responsibilities

Planetary citizens have rights, in principle.  As noted though, the global governance forums for establishing those rights are weak.  In the realm of environmental quality, a planetary citizen certainly should have a right to an unpolluted environment. 

Correspondingly, a planetary citizen’s responsibilities include understanding their own resource use footprint, and endeavoring to control it (e.g., having fewer children).  Understanding the environmental impacts of their society and advocating in support of conservation-oriented governmental policies and actions (e.g., by voting) is also essential.

Because global change is happening so quickly and persistently, a commitment to lifelong learning about local and global environmental change is a foundation of planetary citizenship.

Identifying with any collective evokes a tension between personal autonomy and obligations to the greater good.  Thus, the addition of planetary citizenship to personal identity creates psychological demands.  Mental health requires that those new demands (e.g., pressure for less consumerism and more altruism) be calibrated to individual circumstances and to the state of the world.

Collective Intelligence

Possibilities for the emergence of collective intelligence and agency among planetary citizens at various scales have grown rapidly as the Internet has evolved.  Besides the general sense of a global brain emerging from the mass of online communication, various online groups now specifically address global environmental change issues, e.g. the MIT Center for Collective Intelligence sponsors a crowdsourced web site aimed at finding solutions to climate change.  

Civil society organizations like 350.org, Millennium Alliance for Humanity and the Biosphere, and Wikipedia are testaments to the power of collective intelligence among planetary citizens.  Participation of planetary citizens in self-organized groups of activists creates a sense of agency, which can be hard to find when a person confronts the enormity of global environmental change on their own.  What is glaringly missing is a planetary forum for global environmental governance, something like the proposed World Environment Organization.

Global Citizenship

It is worth making a distinction between planetary citizenship and global citizenship.  Both concepts are relevant to building global sustainability, with planetary citizenship more focused on the biophysical environment and global citizenship more concerned with human relationships. The global perspective is fundamentally political.

Global Citizenship is often discussed in the context of Global Citizenship Education (GCE).  GEC theory commonly calls for “recognizing the interconnectedness of life, respecting cultural diversity and human rights, advocating global social justice, empathizing with suffering people around the world, seeing the world as others see it and feeling a sense of moral responsibility for planet Earth”.

Traditional GCE theory may be oriented around experiential learning by way of immersive experiences in other cultures, often including volunteer work.  However, persistent concerns that the relationship of visitor to host replicates the colonial model of dominance have led to more critically oriented versions of GCE theory.  Here, the emphasis is on examining injustices and power differentials among social groups and evaluating effective means to foster greater equity. 

The thrust of the global citizenship concept tends towards differentiating the parts of humanity and fulfilling the obligation to address injustices of all kinds; the thrust of planetary citizenship is on humanity as a collective entity playing a role in Earth system dynamics.  A comprehensive approach to teaching global citizenship would emphasize both  aspects and even transcend them.


Since identity as a planetary citizen is a choice, the question of how education can be designed to foster that choice is significant.

The idealized outcome of education for planetary citizenship is a human being who understands the impacts of the technosphere on the Earth system and has a willingness to engage in building global sustainability (Go Greta Thunberg!).  These individuals would share a sense of all humans having a common destiny.

Two disciplines are particularly relevant. 

The field of Big History covers the history of the universe leading to the current Earth system.  It juxtaposes cosmic evolution, biological evolution, and cultural evolution to give perspective on how humanity has become aware of itself and come to endanger itself.  A recently developed free online course in Big History aimed at middle school and high school students nicely introduces the subject.  My own text, The Green Marble, and my blog posts such as A Positive Narrative for the Anthropocene, examine Big History at a level suitable for undergraduate and graduate students.

The field of environmental sociology is likewise important.  It explores interactions of social systems with ecosystems at multiple spatial scales.  The concept of a socioecological system, composed of a specific ecosystem and all the relevant stakeholders, is a core object of study.  Nobel prize winning economist Elinor Ostrom helped elucidate the optimal structural and functional properties of socioecological systems at various scales.


Identifying as a planetary citizen means seeking to understand humanity’s environmental predicament and trying to do something about it.  An important benefit from this commitment is the acquisition of a sense of agency regarding global environmental change.  The aggregate effect of planetary citizenship across multiple levels of organization (individual, civil society, nation, global) will be purposeful change at the planetary scale.

The Great Transition: A Foundational Concept for an Emerging Global Culture

David P. Turner / October 11, 2020

Given the gathering storm of global environmental change, our world is in dire need of new ways of thinking.  Culture is, in part, the set of beliefs, customs, and knowledge shared by a society; and cultural evolution happens when new ideas or concepts are generated by individuals and spread by way of social learning.  If a concept is successfully replicated in the minds of most of the people in a society, it could be said to become part of the culture of that society.  Here, I examine the concept of the “Great Transition”, an idea that may help a nascent global society grapple with planetary scale environmental change issues.

The “Great Transition” is a theme employed by authors from a variety of disciplines to characterize how humanity must change in the coming decades. 

We can begin with Kenneth Boulding (1910-1993).  He was an academic economist who published The Great Transition in 1964.  Boulding was an expansive thinker and an early advocate of the spaceship Earth metaphor.  Because he was publishing in the middle of the Cold War era, he was concerned about human self-destructive tendencies associated with both the global geopolitical situation and the global environment. 

Boulding’s Great Transition called for a gradual augmentation or replacement of “folk knowledge” with scientific knowledge.  Both are honed by cultural evolution, i.e. specific beliefs are generated, spread, and retained as part of the cultural heritage within specific social groups.  Faith in folk beliefs is based on tradition rather than on an understanding of underlying mechanisms.  Folk knowledge sometimes serves mainly to foster group identity (e.g. creation myths that build a shared sense of destiny) but other folk beliefs may have practical significance (e.g. knowledge of medicinal plants). 

Various alternative ways of knowing (epistemologies) operate quite differently from folk knowledge.  In the scientific epistemology, a consensus model of how the world is structured, and how it functions, is built up over time by way of hypothesis formation and testing.  One great virtue of the scientific epistemology is that the consensus model of reality can change based on new observations, ideas, and experiments.  Specifically, regarding global environmental change, the scientific community has discovered anthropogenically-driven trends in the global environment and has suggested that they pose a threat to human civilization.  As is evident in today’s political battles over climate change, scientific discoveries and science-based mitigation strategies are not always consistent with folk knowledge.

Boulding advocated a more consistent reflexivity in human thinking, i.e. a questioning attitude and an openness to changing beliefs.  This thinking strategy was something he wanted all humans to share, even though they might be supporting different ideologies. 

Another economist (Mauro Bonaiuti) also wrote a book entitled The Great Transition.  For Bonaiuti, a global economic crisis is imminent driven by 1) limits on natural resources such as fossil fuels, and 2) an overshoot in societal complexity. 

Bonaiuti focused on a trend in growth of Gross Domestic Product (GDP) for developed countries in recent decades.  He found a long-term decline in GDP growth (% per year) across a wide range of developed countries.  The driving mechanism was Diminishing Marginal Returns (DMR) on investments associated with reaching the biophysical limits of natural resources (e.g. land available for agricultural expansion). He feared this economic trend portended eventual collapse of capitalism and the ascendancy of autocratic regimes.

Bonaiuti’s Great Transition away from that trajectory was characterized by degrowth − reduction in the importance of market exchange, reduced production and consumption, and transitioning towards forms of property and company ownership that feature local communities, small shareholders, and public institutions.     

As an Earth system scientist, I agree with Bonaiuti about the human enterprise on Earth hitting the biophysical limits of the Earth system.  Regarding complexity though, I am more sanguine.  A transition to global sustainability is likely to require more complexity, especially in the form of a more elaborate set of global governance institutions. The energy costs could be paid by an expanded renewable energy infrastructure (hopefully without the expansion hitting its DMR).

Physicist Paul Raskin developed another version of the “Great Transition”, this one aimed more directly at addressing the problems of biophysical limits.  The Tellus Institute, with which he is affiliated, produced a broad program of policy prescriptions designed to foster societal change towards sustainability.  One of their prescriptions is a renewable energy revolution (which, not surprisingly is also the subject of a recent book by Lester Brown called The Great Transition).  The Tellus Institute published Journey to Earthland in 2016, with Earthland here referring to an emerging “country” that includes all nations on Earth (hence a planetary civilization). 

For Raskin, the key factor that could unify humanity is the systemic environmental crises that are rapidly engulfing the world (e.g. climate change).  People will be forced to work together to address these crises.  He sees the needed change as a bottom-up driven process, i.e. a “global citizens movement” with strong participation of civil society.

Considering this convergence by earlier authors on the theme of transition, I adopted the “Great Transition” label for a phase in what I call A Positive Narrative for the Anthropocene.  From an Earth system science perspective on the Earth’s history, I developed this six-phase story of humanity’s relationship to the rest of the Earth system.  The Anthropocene Epoch alludes to the recognition by geoscientists, social scientists, and humanities scholars that humanity (by way of the technosphere) has become the equivalent of a geologic force.  My Great Transition phase comes between a Great Acceleration phase (1945 – 2020) and an idealized future of global sustainability.

An essential aspect of my Great Transition usage is that a new social entity is born – a collective humanity working together to manage (or at least avoid wrecking) the Earth system as we know it.  The coalescence of the United Nations − and its successes such as the Montreal Protocol −  hints at the possibilities. 

The great inequality in wealth at all scales, the differential responsibility for causing the current global environmental problems, and the differences among people regarding their vulnerability to anthropogenic environmental change, makes it fair enough to question whether there even can be a global “we”.  However, a majority of humans (5.2 billion out of 7.7 billion) now have a cell phone.  Almost all contemporary humans aspire to use energy and natural resources to achieve and maintain a reasonably high standard of living.  That striving is, of course, causing global environmental change.  So, indeed, there is a global “we”.  And a transition to global sustainability is impossible unless most people on the planet acknowledge membership in that “we”.

The Great Transition must be a global scale phenomenon.  However, the actual changes required will be made across a range of scales from individuals (decisions as consumers and voters), to nation-states (e.g. subsidies for renewable energy), to global (e.g. resolutions of the United Nations).  Let’s consider several of the important dimensions of the Great Transition.

The Biophysical Dimension

Earth system scientists have identified a set of nine planetary boundaries (e.g. the atmospheric CO2 concentration), and the Great Transition will mean regulating human impacts on the environment enough to stay within those boundaries.  At present, the quantitative estimates for those boundaries have significant uncertainties and a robust commitment to continued research is needed.  The research will include continued improvement in our capability to monitor and model the Earth system.  Model simulations are needed to evaluate the consequences of overshooting the planetary boundaries, as well as possible mitigation strategies (e.g. a carbon tax) that could prevent the overshoot.

The Technological Dimension

The technological dimension of the Great Transition is concerned with discovering and implementing the changes to the technosphere that are needed to achieve global sustainability.  As noted, a key requirement will be a new renewable energy infrastructure.  Pervasive advances are also needed in transportation technology, life cycle analysis, and in closed loop manufacturing.  Technological fixes must be carefully scaled up since unintended impacts may emerge in the process.  The field of Science and Technology Studies is beginning to systematically address the relevant issues.  I have previously characterized the product of integrating the technosphere and biosphere as the sustainable technobiosphere (Figure 1).

Figure 1. A stylized rendering of the integration of biosphere and technosphere. Image credit: Original Graphic.

The Psychological Dimension

We all have a personal identity.  It begins with the self-awareness that we grow into during childhood; and it evolves over the course of our life.  We typically identify ourselves as members of various groups and there is often a psychological tension within a human being between independence and group membership. 

These groups may include family, ethic group, professional group, and religious affiliation, as well as citizenship in a city, a state, and a nation.  Membership in a group is recognized as conveying rights and responsibilities. 

As noted, an essential feature of the Great Transition will be that individuals augment their multiple existing group memberships with membership in new groups focused on addressing human-induced environmental change. 

The Education Dimension

One of humanity’s most important evolved traits is the capacity to transfer knowledge by way of social learning.  Language is a tool for efficient communication of information horizontally (within a generation) and vertically (across generations).  The Great Transition will require a global society with citizens who understand enough Earth system science to appreciate the need for humanity to manage its impact on the biosphere and the rest of the Earth system.  They must generally be literate, so as to assimilate basic information about what is going on in the world, and to some degree be scientifically literate so they can understand the underlying mechanisms that explain what is going on.   

The Geopolitical Dimension

Since the Treaty of Westphalia in 1648, what happens within national borders is in principle largely left to the inhabitants of the nation.  Nations have subsequently become protective of their national sovereignty.

Issues of global environmental change now disrupt and challenge that principle.  National emissions of greenhouse gases sum up to a major global scale impact on the environment.  National sovereignty is thus not sacrosanct; nations must cooperate, or they will all suffer.  The current global wave of nationalism, especially the push back against commitments to international negotiations and agreements, is inhibiting movement towards a Great Transition.  A significant step forward would be formation of a new global environmental governance institution, such as the proposed World Environment Organization.

The Great Transition concept has thus far spread rather thinly across humanity.  But as a global society forms in response to global environmental change, it should become foundational.

The Teleological Feedback

January 6, 2020/David P. Turner

Earth system scientists commonly refer to feedbacks in the climate system. 

A feedback loop within a system means that a change in one part or component of the system induces a change in another component that either amplifies (positive feedback) or dampens (negative feedback) the initial change. 

The classic positive feedback related to global climate change and the Earth system is that warming of the global climate caused by increasing greenhouse gas concentrations in the atmosphere results in reduction in snow cover and sea ice, which causes less reflectance of solar radiation, and hence more absorption of solar radiation by Earth’s surface, and more warming.  A potential negative feedback is if warming increases evaporation, which causes more clouds, which reflect more solar radiation, and hence cool the climate.  Most of the feedbacks in the climate system are positive.

By burning fossil fuels and pushing up the atmospheric CO2 concentration, humanity is unintentionally warming the global climate and inducing multiple climate system feedbacks.

A big question is whether humanity can collectively begin to purposefully impact the Earth system in the form of a negative feedback to climate change, i.e. begin to slow down the rise in greenhouse gas concentrations and even begin to draw down those concentrations.  This willful action would be a teleological feedback to our unintended warming of the Earth system by way of greenhouse gas emissions.

Teleological feedback. The segmented line indicates the potential for a deliberate societal influence on the Earth system.

A disturbing paradox about current climate change is that by increasing the atmospheric CO2 concentration, humanity has shown that we are the equivalent of a geological force.  But humanity thus far is not organized enough to purposefully shape the Earth system. 

What we don’t have is much political will to reduce greenhouse gas emissions, nor the right international institutions to manage a global scale response. 

Political will comes from lots of sources, but maybe the most likely source is that as more and more people experience extreme weather events, sea level rise, and the other impacts of climate change, they will support mitigation efforts (e.g. a carbon tax).  Australia in 2020 appears to be a test case for this proposition.

Also, we might hope for political leaders who understand the situation and are committed to doing something about it.

Regarding global environmental governance, the size and strength of relevant international institutions are incommensurate with the challenge of global environmental change.  At the very least, a stronger United Nations Environmental Program or a new U.N. World Environmental Organization is needed.

Recommended Reading

Lenton, T. 2016. Earth System Science: A very short introduction. Oxford University Press.

Recommended Audio/Video

Joni Mitchell, They Paved Paradise