The Anthropocene is Not Formally a Geological Epoch  ̶  So, What is It?

David P. Turner / April 3, 2024

A surprising outcome emerged from the March meeting of the Subcommission on Quaternary Stratigraphy (within the International Union of Geological Sciences).  The surprise came in the form of a vote regarding the official status of the Anthropocene concept, with a majority of the subcommission members voting against a proposal to identify the Anthropocene as a new geological epoch.

The term Anthropocene was originally inspired by the observation that the impacts of the human enterprise on Earth’s environment  ̶  notably a rise in the atmospheric CO2 concentration  ̶  have begun to rival those of the background geologic forces.  Since divisions of the geologic time scale are generally associated with major changes in the global environment, naming a new epoch was a reasonable suggestion.

The formal proposal to do so came from the multidisciplinary Anthropocene Working Group (AWG), which has deliberated on the issue for the last 14 years.  The AWG proposal specified that the Anthropocene be named a new epoch, with a beginning point in the early 1950s.  Its stratigraphic marker was to be a layer of chemical residues from post-World War II nuclear weapons testing. 

The Vote

The vote against designating the Anthropocene as a new Epoch was a surprise because the proposal had been made with a strong scientific foundation and had a lot of support.  The decision against the proposal was not because the Anthropocene is geologically insignificant, but rather because the Anthropocene concept is highly significant to many disciplines besides geology.  In the last 20 years, the concept has received widespread attention in both academia and popular media.  Indeed, the term has taken on a life of its own, a life outside the staid world of Quaternary Stratigraphy.

The term Anthropocene has come to signify a rupture in human history  ̶  the end of a time when the biophysical environment was mostly a background to the march of human progress.  The rupture is evident from a suite of global indicators, ranging from oil consumption to the rate of deforestation, that all began rising dramatically in the last 100 years.  The word Anthropocene now has broad cultural significance; it implies that humanity has acquired a new responsibility to self-regulate, or face its own demise from a self-induced inhospitable environment. 

The negative vote within the subcommission was also based on a more technical issue about whether, considering that humans have been altering the environment at many scales for many thousands of years, the beginning of the Anthropocene Epoch could be narrowed down to the early 1950s.

An alternative proposal, with considerable cross-disciplinary support, is to designate the Anthropocene a geologic “event”.  This term is used in the geosciences to reference a wide variety of Earth system changes or transformations.  Designating something as an event does not require the kind of formal approval process associated with designating an epoch.

The Scope of the Anthropocene Event

Despite this quasi-downgrade to Event status, the Anthropocene has really just begun and will ultimately have a massive impact on the Earth system.  The Anthropocene Event, as we will call it here, will eventually push the global mean temperature up 2-3 oC or more, a range associated with the early Pliocene Epoch 3-5 million years ago (Figure 1).  Because of human influences on the atmosphere, Earth may well miss its next scheduled glacial period (as prescribed by the Milankovitch solar forcings).  

The graphic is a time series plot going back 5 million years ago showing the trend in global mean temperature.

Figure 1.  The geologic record of global mean temperature, with projections to 2100.  The x-axis units differ by panel.  The graphic is adapted from work by Glen Fergus.

What is also quite extraordinary is that the Anthropocene Event is concurrent with the origin of a whole new Earth system sphere – the technosphere.  This term refers to the accumulation of human artifacts  ̶  including buildings, transportation networks, and communication infrastructure  ̶  that now cloaks the surface of the Earth.

From an Earth system science perspective, the parts of the Earth system are its spheres, i.e. the lithosphere, atmosphere, hydrosphere, cryosphere and biosphere interact with each other over geological time to determine the state and dynamics of the Earth system.

The biosphere (defined by geochemists as the sum of all life on Earth) is of particular interest here.  The biosphere did not exist early in Earth’s history, but after the origin of life and its proliferation around the planet, the impacts of the biosphere on Earth’s energy flow and chemical cycling became profound (e.g. the oxygenation of the atmosphere).

Now the technosphere, a product of human history, has joined the biosphere as an active force on the surface of the planet.  Like the biosphere, it has mass and uses energy to maintain itself and grow.  It has become a significant factor in the global biogeochemical cycles.  Unlike the biosphere, the technosphere has not been around long enough to become well integrated with the rest of the Earth system, e.g. it largely does not recycle its own waste

During the Anthropocene Event, the technosphere could be destroyed or self-destruct by various mechanisms, or could come into a stable state of sorts with the rest of the Earth system, in which case it might last quite a long while. 

The Role of the Anthropocene Event in Cultural Evolution

Transition to global sustainability will require the emergence and evolution of a global culture, i.e. a globally shared set of beliefs and practices.  The Anthropocene Event is a concept that can help anchor a robust integration of human history and Earth history.

Transdisciplinary investigations covering a wide range of issues associated with managing the human enterprise on Earth  ̶  including  aspects of the social sciences, humanities, and biophysical sciences  ̶  may hinge on having this shared reference point. 

The Right Call

In light of the need for broadly unifying concepts related to global environmental change, I think the geologists made the right call.  The Anthropocene has become a politically potent idea and deserves the widest possible attention in the domains of scholarship, education, entertainment, and advocacy.

This post was featured on the Millennium Alliance for Humanity and the Biosphere (MAHB) web site.

Positive Feedback Loops to Propel the Sustainability Transition

David P. Turner / March 8, 2024

In the jargon of systems theory, a positive feedback means that a change in a system initiates other changes within the system that amplify the original change.

A clear example in the Earth system is the water vapor feedback:  as the atmosphere warms (e.g. from increasing CO2) it can hold more water vapor (mostly evaporated from the ocean), and since water vapor itself is a greenhouse gas, the atmosphere warms further (Figure 1).

A box and arrow diagram shows the steps in the water vapor and snow/ice albedo feedbacks to climate warming.

Figure 1. The water vapor (blue loop) and snow/ice albedo (red loop) feedbacks. Climate warming induced by anthropogenic CO2 emissions drives changes in the hydrosphere and cryosphere that amplify the warming. A plus sign means causes to increase and a minus sign mean causes to decrease. Image Credit: David Turner and Monica Whipple.  Figure appeared originally in the Technosphere Respiration Feedback blog post.

Positive feedbacks are generally considered destabilizing to a system, potentially pushing it into a new state.  Negative feedbacks aremore familiar, e.g. the furnace/thermostat cycle in home heating; they tend to stabilize a system.

The Earth system has significant negative feedbacks that have helped keep global mean temperature in a habitable range over its 4-billion-year existence.  However, these feedbacks (e.g. the rock weathering thermostat) operate at a geologic time scale, and are thus not going to save humanity from the vast geophysical experiment that we began by burning fossil fuels and boosting atmospheric concentrations of greenhouse gases.

We need something faster.  Hence, it is worth identifying and perhaps cultivating various positive feedback mechanisms that could support global sustainability.  Here, I’ll consider three varieties of positive feedback loops that might help us.

Type 1.  Psycho-social Positive Feedback Loops.

Humans have various cognitive biases, meaning our decisions are sometimes subject to unconscious tweaking.  These tweaking tendencies have genetic as well as experiential origins, and may or may not be helpful in any given decision.  Prestige bias, under which we are drawn to believe and emulate individuals who have achieved high status in our society, is an example. 

A cognitive bias that might help the spread of sustainability principles and practices is the conformity bias.  As the name suggests, we tend to adopt ideas and practices that are already embraced by a significant proportion, or the majority, of our society.  The positive feedback comes in because converts increase the proportion of the society that are believers, which strengthens the pressure on nonbelievers to conform.

Figure 2.  Conformity Bias Positive Feedback Loop.  Image Credit: David Turner and Monica Whipple.

The history of social norms and behaviors related to littering and paper recycling show evidence of conformity bias kicking in at some point.

Now that greater than 50% of Americans believe that climate change is for real, conformity bias may help enlarge the pool of believers, and hence the support for relevant policy changes. 

Type 2.  Technical-economic Positive Feedback Loops.

As new technologies become more widely adopted, the associated manufacturers begin to benefit from economies of scale, i.e. the marginal cost of production comes down as usage increases because larger production facilities are typically more efficient than smaller ones.  More efficient production means that the product can be offered at a lower price, and hence demand will likely increase.  This positive feedback loop can lead to rapid growth in product use.

An essential requirement for mitigating climate change will be conversion of the power sector from fossil fuel to renewable sources of energy.  This conversion is ongoing and is benefitting from economies of scale.  Installation of solar and wind power generators is expanding rapidly, in part because the economics are beginning to favor these sources over coal-fired plants.  The cost of installed solar panels and wind turbines has decreased over time because of economies of scale and rapid technical advances.  Hence, a virtuous cycle of more installations favors more decisions to go with renewables.

A second powerful technology-oriented positive feedback involves “network effects”.  Here, as a new technology becomes more widely utilized, its value to the user increases, and more users are recruited.  The spread of the telephone is the classic example. 

Figure 3.  Example of a Network Effect Positive Feedback Loop.  Image Credit: David Turner and Monica Whipple.

The network effect is readily applicable to the proliferation of electric vehicles (EVs).  The replacement of internal combustion engine powered vehicles with EVs is widely advocated to mitigate climate change.  This transition has started, and is fortunately accelerating because of positive feedbacks.  One feedback loop is that as more EVs enter the market, the economic incentives to build more charging stations has increased.  More charging stations makes it easier to take long trips, which reduces range anxiety and incentivizes drivers to purchase EVs rather that gas powered vehicles.

Type 3.  Socio-cultural Niche Construction Loops

Cultural evolution is the process by which the beliefs and practices of individuals and groups of various sizes change over time.  At the level of group selection, particular ideas and group practices may strengthen the group when faced with intergroup competition (e.g. intertribal warfare).

There are many group traits that are shaped by cultural group selection; for analytical purposes we can divide them into three types: sociological, technical, and ecological (Table 1, also below).  It is the constellation of these traits, including how they influence each other, that determines the success of a group.

Socio-cultural niche construction refers to the idea that human societies alter their physical environment (e.g. the vegetation, the energy infrastructure) in ways that reciprocally influence how the society is structured and functions.  Positive feedback loops among two or more of the group traits in Table 1 can result in rapid societal change.

If a group (e.g. a nation) invests (a sociological trait) in research and implementation of renewable energy technologies, the outcome may be a change in the mix of societal energy sources (a technical trait), which could result in cheaper and more reliable energy delivery to the society, which strengthens the society and encourages further investment in renewable energy sources.  The societal choice of energy source also influences the ecological trait of local air quality.  Improvement there would further strengthen the society and enhance group strength.

Figure 4.  Example of a Socio-cultural Niche Construction Positive Feedback Loop.  Image Credit: David Turner and Monica Whipple.

Conclusion

The various feedback loops reviewed here suggest that societal principles and policies are not simply top-down impositions on citizens.  Rather, they can be significantly strengthened or weakened by reciprocal interactions with features of the social, technological, and ecological environment.  To propel conformity bias regarding a particular value or technology, leaders and media can package it as a new social norm.  To propel sustainable technologies that benefit from economies of scale and network effects, societies can subsidize early stages of their development.  To foster revolutionary changes in technology (e.g. a renewable energy revolution), leaders must advocate for them based on the full range of their benefits to society.

These psychological and sociological considerations make the transdisciplinary aspects of Earth System Science ever more apparent.

Table 1. Examples of group traits that may interact to influence group selection.


Sociological Traits

Laws
Customs
Policies
Belief system (e.g. religion)
Type of political organization (e.g. tribe vs. nation state)
Type of military organization
Civic institutions

Technological Traits

Type of fuel for energy production
Form of transportation
Form of electronic communication

Ecological Traits

Local species composition
Local net primary production
Local air quality


Commentary on “The Letter: Laudato Si Film”, and “Laudato Si” (the encyclical)

David P. Turner / January 23, 2023

Pope Francis issued an encyclical (Laudato Si) in 2015 about “care for our common home”.  The document discussed a wide range of global environmental change topics, notably climate change and loss of biodiversity.  It aimed to provide a moral rationale for simultaneously addressing the issues of global environmental change and human inequity.  The encyclical runs to nearly 200 pages and is not a light read.  Perhaps to make its message more accessible, the Vatican recently produced and released (October 12, 2022) a related video (The Letter: Laudato Si Film), clocking in at 81 minutes.

The encyclical was released just prior to the United Nations Framework Convention on Climate Change COP21 meeting that was held in Paris.  The product of that meeting was The Paris Agreement, which is widely perceived as a significant step towards mitigating global climate change.  Considering that there are 1.3 billion Catholics who ostensibly consider the pope infallible, the encyclical may well have strengthened global political will to seriously address the climate change issue.

The film is a very different vehicle from the encyclical, leaving behind the encyclical’s more controversial aspects (discussed below) and presenting an engaging narrative about global change with good visuals and music.  The premise of the film is that the Pope invites a set of 5 people from widely different backgrounds to Rome for a “dialogue” about the encyclical.

The five participants included the following.

1.  A poor black man from Senegal who is considering an attempt to migrate to the EU because of the deteriorating environment in his home country.  He represents the billion or so people expected to be displaced by climate change this century.

2.  An indigenous man from Brazil whose forest homeland in the Amazon Basin is under siege.  He represents forest dwellers throughout the tropical zone who are losing their homes to rampant deforestation.

3.  A young woman from India.  She represents the voice of a younger generation who will be forced to deal with the massive environmental change problems caused by their elders (intergenerational inequity).

4.  A man and a woman from the U.S. who are scientists working on monitoring and understanding coral reef decline.  They represent the community of research scientists trying to understand climate change impacts and what to do about them.

Each participant is shown in their home environment receiving a letter of invitation from the Pope.  The film then documents their experiences in Rome, including discussions amongst themselves and with the pope.

The film was engaging and had a positive message about the need for solidarity across all humanity in the face of threats from climate change and loss of biodiversity.

However, I did have some concerns.

First was that the film seemed to be more about the victims of global environmental change (both human and nonhuman) than about the solutions.  The participants were certainly sincere, and helped put a human face on the challenges ahead; but little was said about the personal changes and the political realities involved in transitioning to global sustainability.

Second was the emphasis on climate change as the sole driving force in the current surge of migration.  Climate change is indeed driving international migration but a host of other factors are of equal or greater importance, including civil war, overuse of local natural resources, and gross defects in local governance.  If indeed a billion people will potentially be displaced by climate change in this century, they can’t all migrate.  Alternatives to migration include foreign aid for adaptation, and aid to improve local educational opportunities that would help train citizens for local economic activity and help limit population growth (the fertility rate in Senegal is 4.3 births per woman).

Third was that the film may point viewers towards reading the actual encyclical, which has inspired much more commentary  ̶  both positive and negative  ̶  than the film.

The proclamations of the pope usually do not draw much attention from the scientific community, but in the case of the Laudato Si encyclical, the science of global environmental change is front and center.

As I started reading the encyclical, I was surprised because the tone sounded as if it were written by an environmental science policy analyst rather than a religious leader (apparently there was a ghost writer).  The scientific causes of climate change and biodiversity loss were reasonably explained, and it was refreshing to see the “dominion” over the Earth given to humanity by God presented more in terms of responsibility to conserve environmental quality than as a license to exploit limitless natural resources.  The intrinsic value of all species, independent of their utility to humans, was recognized.  When the text veered into explaining the Christian belief system (e.g. the Holy Trinity), it lost cogency from an Earth system science perspective.

The encyclical was well received by scientific authorities in some cases, perhaps because the Pope broadened the usual rationales for caring about climate change and biodiversity loss to include the moral dimension.  Wealth-based inequity (relatively wealthy people have caused most of the greenhouse gas emissions but it is relatively poor people who will suffer the greatest impacts) and intergenerational inequity (recent generations have caused most of the greenhouse gas emissions but future generations will suffer the greatest impacts of climate change) are  clearly moral issues.

Critiques of the encyclical have referred to its limited regard for the full suite of dimensions (technical, political, and economic) needed to address global environmental change.  The encyclical comes across as hostile to the “technocratic paradigm”, suggesting some technofixes will induce more problems than they solve.  There is much emphasis on reducing excess consumption.  Realistically though, there must be a revolutionary change in technology towards renewable energy and complete product recycling.  Likewise, beyond calling for a stronger climate change treaty (as the Pope did), we must have stronger institutions of global environmental governance, and new economic policies that prioritize sustainability.

The section of the encyclical about population control was especially provocative.  The pope took issue with calls for limiting population growth for the sake of the environment, a position  consistent with formal Catholic doctrine against contraception.  This view rings false, however, because of the contradiction between saying that Earth’s natural resources are limited (as stated several times in the encyclical) and that all humans deserve a decent quality of life (which inevitably consumes natural resources), while at the same time maintaining that high rates of population growth in developing countries are not an issue.  In contrast, the recent World Scientists’ Warning of a Climate Emergency 2022  called for “stabilizing and gradually reducing the human population by providing education and rights for girls and women”.  Ehrlich and Harte also point out that unchecked population pressure on food supply and natural resources pushes development into ever more vulnerable ecosystems, and fosters ever more inegalitarian forms of government.

Pope Francis deserves credit for bringing attention to the moral questions raised by anthropogenically-driven global environmental change.  Our contemporary materialistic and instrumental value system has proven to be unsustainable and should indeed be influenced by values based on respect for the natural environment, as well as values derived from human solidarity.  The Laudato Si encyclical and film (along with associated praise and critique) are contributing in a positive way to the ongoing process of cultural evolution, which has now begun to operate at the global scale.

Genetic Programming, Cultural Programming, and Self-programming

image of axons in the human brain
Axonal nerve fibers in the brain as determined by the measured anisotropy (directionality) of water molecules inside them.  Image Credit: Connectome

David P. Turner / March 13, 2022

There are many specific prescriptions about how humanity must change to restore a hopeful future (e.g. a global renewable energy revolution), and implementing these prescriptions will require new pro-environmental behaviors by individuals along with shifts in societal values.  In this post, I briefly examine four aspects of a simple psychological framework that shapes the personal sphere of social transformation, and I consider how adoption of that framework could inspire pro-environmental behavior.

A common first approximation to explaining how humans behave is by reference to “nature and nurture”.  I will add a third factor – the influence of self-determination, i.e. the products of self-directed thought.  My fourth factor in this framework is one’s personal experience, which of course can crush us or enable us to blossom.

1. Nature refers to our genetic inheritance.  Neurologists broadly understand the genetically-based architecture of the brain, and the role of neural circuity in brain function, but they are still working on how processes like memory and consciousness actually work biophysically. 

Studies of brain function associated with specific activities show that certain areas or modules of the brain (genetically derived) perform particular functions, e.g. mathematical operations or making music.  Psychologists and neurologists generally believe that humans are born with genetic predispositions in how we feel, think, and act (presumably related to the wiring of our brain).  Some examples include our attraction to sweet foods, our fear of snakes, and how readily as children we learn a language.  

Without going overboard (i.e. espousing that genes alone determine behavior), we might use a computer programming metaphor to indicate significant genetic influences on behavior.  Sociobiologist E.O. Wilson opined that “genes hold culture on a leash”, referring specifically to the influence of genes on values. 

Regarding our feelings and behaviors related to the environment, it is important to recognize that some genetically-influenced traits – while being the product of millions of years of biological evolution – may be obsolete in the context of our contemporary high technology civilization.  We are much better at paying attention to rapidly changing threats (e.g. a charging rhinoceros) than to slow onset threats (e.g. climate change), yet now we must attend closely to threats in the long-term future. 

On the other hand, some proposed genetically-based traits – such as biophilia (love of nature) – may be particularly helpful in the context of fostering pro-environmental behavior.

2) Nurture refers to the influences of our cultural environment on how we think, feel, and act.  The success of Homo sapiens is attributed in part to our capacity for social learning.  Children mimic behaviors of their caregivers and tend to adopt their belief system.  As adults, we continue to learn from a variety of cultural sources.

Learned behaviors (e.g. hunting in a hunter/gatherer society) are often adapted to the local environment, and learned cultural beliefs help bind us to our local social group.  Here again, I think the term “programming” is appropriate if used in a metaphorical sense.  We are culturally programmed in some respects. 

Richard Dawkins referred to the units of cultural inheritance as memes.  Note that memes do not have to be true to be useful.  A mythical narrative of tribal origins may help create a sense of tribal identity, which could strengthen within group solidarity in the face of inter-tribal rivalry.

As with our genetic influences, some of our cultural influences may be obsolete or need modifying in the context of on-going environmental change, e.g. the current emphasis on consumerism in the developed countries.

To complicate things, we have significant biases (going back to our genetic programming) about what we learn.  We are particularly likely to believe or imitate leaders (prestige bias) and tend to believe what is believed by a majority of our peers (conformity bias).

3) Self-determination (self-programming) is an overlay on genetic and cultural programming.  Mature human beings can consciously consider alternative views and reflect on what to believe and how to act (albeit there is always a lot going on unconsciously).  This capacity introduces a sense of agency and inspiration.

Self-determination is certainly impacted by emotions, thoughts, and information that originate from genetic and cultural programming.  To some degree, however, impulses from these sources can be consciously recognized and over-ridden

Education is in a sense cultural programming, but training in critical thinking and more broadly learning how to learn, can open the door to robust self-programming.  The firehose of information now available through the various media (some true and some not) makes this kind of thinking especially relevant now. 

4.  Personal Experience.  Many genes are expressed only under particular circumstances, and learned behaviors can only be acquired when there is exposure to a relevant example or information.  Additionally, the degree to which learned information is internalized and begins to affect behavior depends on other psychological factors.  Motivation to learn is stimulated by a) a positive connection between teacher and learner, b) a sense of autonomy or self-direction rather than being controlled, and c) a feeling of competence associated with accomplishing a well-designed gradation of tasks and getting approval from significant others.

Let’s consider two cases of pro-environmental behavior in which the three types of programming and experience interact.

Slowing Population Growth.  Historically, most cultures encouraged high levels of reproduction, which is certainly predictable in the face of the kind of intergroup competition common in human history.  More group members make for stronger groups.

Considering the importance of reproduction in biological evolution, it also makes sense that there is a strong genetic influence in favor of reproductive behavior (e.g. mate seeking and sexual pleasure in humans). 

For a woman or couple to decide to have few or no children for pro-environmental reasons (potentially in the face of their own instincts and pro-natal cultural policies) would require significant self-programming.  Growing up (experiencing) a society that values education and opportunities for self-actualization other than parenthood would make the choice easier.

Global and Planetary Citizenship.  Global scale problems, like anthropogenic climate change, require humanity to work collaboratively towards changing the current dangerous trajectory.  However, we seem to be genetically primed to identify with a social group of some kind, which also implies a tendency to classify everyone outside the group as suspect. 

Our local society inculcates a unique language and a belief system that differentiates us from outsiders and may induce xenophobia.  Nationalism is on the ascendency these days, but it is not the limit of what a society can be. 

Thus, becoming a global citizen requires some degree of self-programming.  Individuals must learn about issues of global environmental change and deliberate on how to participate in ameliorating the problems.

Besides identifying with humanity as their tribe, it will be important that people identify with the Earth system as their home, as a whole of which they are a part

A common model for societal change begins with an early adopter minority that inspires broader uptake of new values, leading (with some help from prestige and conformity biases) to a majority view (e.g. the broad adoption of anti-littering in the U.S. in the 1960s).  The early adopter minority may come from people who recognize the possibility that the majority view is wrong, and then begin to envision and act on alternatives.  It is encouraging to see a bubbling up of pro-environmental minorities nearly everywhere on the planet now that could grow in an organic manner to become a pro-environment majority.

Differentiating the Concepts of Technosphere, Noosphere, and Global Brain

Computer generated image of world-wide internet connections.  Image credit: The OPTE Project

David P. Turner / November 14, 2021

The threat of anthropogenically-induced global environmental change imposes a challenge on humanity to reconceptualize its relationship to the other components of the Earth system.  Historically, Nature was the background for the human enterprise.  It provided unlimited sources of ecosystem services, such as ocean fish, clean air, and clean water.  However, as the human enterprise expanded  – especially after the “Great Acceleration” of technological development beginning about 1945 – real limits have become obvious. 

Because the sum of human impacts on the environment is now global, humanity as a collective must act to self-regulate.  Unfortunately, humanity is not at present a collective, and we are only beginning to construct a worldview that is consistent with living within the biophysical limits of the planet.  This post examines three concepts that may help move us towards those goals.

The Technosphere

The term technosphere has been used for decades in the field of Science and Technology Studies and is loosely construed as the sum of all technological artifacts on Earth.  Often it is credited with having a degree of autonomy in the sense of its growth having a direction and momentum outside of human control.  The current difficulty in reducing fossil fuel related emissions of greenhouse gases is indicative of that autonomy.

In the last decade, the technosphere concept has been more formally defined as:

the set of large-scale networked technologies that underlie and make possible rapid extraction from the Earth of large quantities of free energy and subsequent power generation, long distance, nearly instantaneous communication, rapid long-distance energy and mass transport, the existence and operation of modern governmental and other bureaucracies, high-intensity industrial and manufacturing operations including regional, continental and global distribution of food and other goods, and a myriad additional ‘artificial’ or ‘non-natural’ processes without which modern civilization and its present 7 × 109 human constituents could not exist.

Earth system scientists now make quantitative estimates of the properties of the technosphere such as total mass and annual energy throughput.  The juxtaposition of technosphere metrics like global fertilizer use, with biosphere metrics like global nitrogen fixation, reveals the growing dominance of the technosphere in the global biogeochemical cycles and points to the limits to technosphere growth.

The technosphere is in some ways analogous to the biosphere.  Both are globe girdling aggregations of quasi-independent subsystems.  In energetic terms, both the biosphere and the technosphere are dissipative structures, meaning they capture and use energy to maintain order.  The biosphere changes by way of biological evolution; the technosphere changes by way of cultural evolution.

Humans and their institutions are parts of the technosphere, and human thinking is required to organize the technosphere.  But the question about technosphere autonomy, and its possible danger to humanity, remains.  Notably, the capitalist economic system that underlies the technosphere thrives on growth.  Relentless technosphere growth is in effect consuming Earth system capital, such as biodiversity and fossil fuel, that has accumulated over millions of years.  Astrobiologists, who ponder evolution of intelligent life on other planets, suggest that an environmentally self-destructive technosphere may significantly limit (filter) how often sustainable high technology planetary civilizations arise in the universe.

A critical problem with Earth’s current technosphere is that due to its rapid and recent evolution, it does not have the kind of feedback loops (as found in the biosphere) needed for self-regulation.  Humans are programmed (biologically) to exploit all available resources, but we haven’t evolved culturally to understand limits.  Haff emphasizes that the lack of recycling within the technosphere (with the accumulation of CO2 in the atmosphere from fossil fuel combustion as an iconic example).  Life cycle analyses of all manufactured products, and better monitoring of input/recycling/output budgets (e.g., for aluminum) at the global scale is required for a sustainable technosphere. 

Limitations of the Technosphere Concept

The technosphere concept hints that its structure and function can be shaped by humanity, but there is little sense of economic, political, and legal obstacles to global sustainability.  The concept does not capture the reflexive capacity characteristic of human individuals and organizations.

The Noosphere

Russian biogeochemist Vladimir Vernadsky (1863 – 1945) was one of the first scientists to explicitly study Earth as a whole.  He understood that the biosphere (the sum of all living matter) added an unusual feature to the planet.  The biosphere uses the energy in solar radiation to maintain a new form of order (life) on the surface of the planet.  That layer of living matter is a major driver of the global biogeochemical cycling of elements such as carbon, nitrogen, and phosphorus.  Vernadsky emphasized that the biosphere was a new kind of thing in the universe, i.e. a step forward in cosmic evolution

He also recognized that humanity, as a result of the industrial revolution, had become of geological significance.  Like the biosphere, humanity and its technology are a product of cosmic evolution – in this case relying upon an organism-based nervous system capable of consciousness and symbolic thinking.  By extension from the existing concepts of lithosphere, hydrosphere, atmosphere and biosphere, Vernadsky adopted the term noosphere for this new layer of thinking matter that could alter the global biogeochemical cycles. 

The noosphere as conceived by Vernadsky was just getting powered up in his lifetime.  He defined it more as a potential transformation of the biosphere – “a reconstruction of the biosphere in the interests of freely thinking humanity as a single entity”.

Vernadsky’s noosphere concept lay mostly dormant for much of the 20th century (although see Sampson and Pitt 1999).  Around the turn of the century, Nobel Prize winning atmospheric chemist Paul Crutzen evoked Vernadsky’s idea of transforming the biosphere into a noosphere.  But in this 21st century usage, the issue of dangerous human meddling with the Earth system had risen to prominence and the inevitability of a stabilized noosphere was less certain.  Similarly, Turner proposed that an updated meaning for noosphere would refer to a planetary system as a whole in which an intelligent life form had developed advanced technology but had learned to self-regulate so as to not degrade the planetary life support system.

In a slightly different take, noosphere is proposed as a paradigm for an era to follow the Great Acceleration.  In this case, the noosphere is still imagined as emerging from the biosphere, but here in response to the threats of anthropogenic global environmental change.  The maturation of the noosphere would mean the arrival of a global society that collaboratively self-regulates its impact on the Earth system.

Limitations of the Noosphere Concept

As noted, Vernadsky was writing before the scientific discovery that humanity was altering the atmosphere, e.g., by increasing the concentrations of greenhouse gases.  Thus, he did not foresee humanity’s possible self-destructive tendencies.  His noosphere concept was more about Promethean management of the Earth system than about humanity learning how to self-regulate, which is what we need now. 

In most versions of the noosphere concept, the biosphere is “transformed” into a noosphere, hence in its fruition it would physically include the biosphere.  However, the biosphere (much of it microbial) will always be capable of functioning independent of human attempts to manage the Earth system.  The biosphere could be said to have agency relative to human impacts, which might be a more realistic basis on which to attempt to manage it.

Vernadsky’s noosphere was purely physical, but other users of the term have interpreted it more metaphysically, especially Teilhard de Chardin who referred to a purely spiritual endpoint of noosphere evolution.  This spirituality and teleology have made the noosphere concept aversive to many scientists (see Medawar in Sampson and Pitt 1999).

The Global Brain

About the same time (1920s) that the noosphere meme was fostered by Vernadsky, Teilhard de Chardin, and Le Roy, the concept (or metaphor) of the global brain also emerged.  Novelist and futurist H.G. Wells (1866 – 1946) proposed that all knowledge be catalogued in a single place and be made available to anyone on the planet.  His hope was that this common knowledge base might lead to peace and rapid human progress.  Given that World War II was soon to erupt at the time of his “World Brain” proposal, Wells was clearly ahead of his time.

Like the noosphere concept, the World Brain concept was not much referred to in the decades following its origin in Well’s imagination.  However, the late 20th century Information Technology revolution has reinvigorated discussion about it.  With rapid build out of the global telecommunications infrastructure, the global brain has begun to be envisioned as something wired together by the Internet.  

Systems theorist Francis Heylighen and his collaborators at the Global Brain Institute have devoted considerable attention to building the analogy between the human brain and a proposed global brain, especially in relation to the process of thinking.

Heylighen sees the global brain as a necessary part of an emerging social superorganism – a densely networked global society.  His global society will coalesce because information technology now offers a growing proportion of the global population access to a wealth of information and an efficient way to organize production and consumption of goods and services.  Rather than totalitarianism, the high level of connectivity in Heylighen’s model of the social superorganism stimulates individuals to develop themselves (while still acknowledging membership in a global collective).  This model leads to more distributed, less hierarchical, power centers.

How the global brain will think is not well characterized at present.  Cultural evolution has always been a form of collective intelligence and the binding power of the Internet now provides a forum for a global collective to exchange ideas (memes).  Changes in the frequency distribution of search term or web page usage would be one means of monitoring global thinking. 

Collaborative development of the Community Earth System Model is an example of collective thinking on a limited scale.  Specialist scientists work to improve the many subsystems of the model, and periodically the computer code is updated based on a consensus decision.

One other intriguing analogy relates to a characteristic feature of the human brain in which it makes frequent (conscious or unconscious) predictions.  If they are not fulfilled, a motivation to act may be instigated.  With Earth system model scenarios now produced in the context of climate change assessment, the global brain might also be said to be constructing scenarios/predictions for itself.  Comparisons of scenarios, or detection of discrepancies between favorable scenarios and how reality is playing out, could inspire corrective action by the global collective.

Limitations of the Global Brain Concept

The analogy of global brain to individual brain is certainly a stimulant to conceptualizing new global scale structures and processes.  However, since we barely understand our own consciousness and decision-making processes, it is an analogy that still needs a lot of work, especially with respect to the executive function.  In the near-term, humanity needs research and models on how to integrate governance among 8-10 billion people (i.e. what form of institutions?) and how to convince billions of planetary citizens to cooperate in the effort that humanity must make to self-regulate.  The global brain concept does not facilitate the coupling of the human enterprise to the rest of the Earth system.

Conclusions

The technosphere, noosphere, and global brain concepts share a common concern with understanding the relationship of the burgeoning human enterprise, including its technology, to the entirety of the Earth system.  Anthropogenic global environmental change poses an existential threat to humanity and there is a clear need for a Great Transition involving massive changes in values as well as technology.  These three concepts serve as beacons pointing towards global sustainability.

The utility of the technosphere concept is that it refers to measurable entities, and formally meshes with the existing Earth system science paradigm.  Given that humans are only part of the technosphere, and a part does not control the whole, awareness of the technosphere argues against hubris.  However, the technosphere concept doesn’t engage the host of psychological and sociological issues that must be addressed to rapidly alter the Earth system trajectory.  It helps reveal the danger humanity faces but doesn’t foster a worldview that will ameliorate the danger.

The chief utility of the noosphere concept is its cosmic perspective and aspirational quality.  A weakness is ambiguity about what the noosphere includes and how it operates.

The utility of the global brain concept is that it confirms we have the technical means to actualize global collective intelligence, which will be required to deal with the overwhelming complexity of the Earth system.  A weakness is a limited model of global governance and a lack of attention to the rapid erosion of the human life support system (the biosphere) that must function well for the emerging global brain to flourish. The capacity of individuals to know themselves, i.e. to reflect on their own behavior and its consequences, can potentially be scaled up to the global human collective.  This process will depend on the communication possibilities opened up by the Internet. 

The technosphere, noosphere, and global brain concepts will contribute to synthesizing a new model of the planetary future that includes a functioning global society and a technological support system that maintains a sustainable relationship to the rest of the Earth system. 

The Great Transition: A Foundational Concept for an Emerging Global Culture

David P. Turner / October 11, 2020

Given the gathering storm of global environmental change, our world is in dire need of new ways of thinking.  Culture is, in part, the set of beliefs, customs, and knowledge shared by a society; and cultural evolution happens when new ideas or concepts are generated by individuals and spread by way of social learning.  If a concept is successfully replicated in the minds of most of the people in a society, it could be said to become part of the culture of that society.  Here, I examine the concept of the “Great Transition”, an idea that may help a nascent global society grapple with planetary scale environmental change issues.

The “Great Transition” is a theme employed by authors from a variety of disciplines to characterize how humanity must change in the coming decades. 

We can begin with Kenneth Boulding (1910-1993).  He was an academic economist who published The Great Transition in 1964.  Boulding was an expansive thinker and an early advocate of the spaceship Earth metaphor.  Because he was publishing in the middle of the Cold War era, he was concerned about human self-destructive tendencies associated with both the global geopolitical situation and the global environment. 

Boulding’s Great Transition called for a gradual augmentation or replacement of “folk knowledge” with scientific knowledge.  Both are honed by cultural evolution, i.e. specific beliefs are generated, spread, and retained as part of the cultural heritage within specific social groups.  Faith in folk beliefs is based on tradition rather than on an understanding of underlying mechanisms.  Folk knowledge sometimes serves mainly to foster group identity (e.g. creation myths that build a shared sense of destiny) but other folk beliefs may have practical significance (e.g. knowledge of medicinal plants). 

Various alternative ways of knowing (epistemologies) operate quite differently from folk knowledge.  In the scientific epistemology, a consensus model of how the world is structured, and how it functions, is built up over time by way of hypothesis formation and testing.  One great virtue of the scientific epistemology is that the consensus model of reality can change based on new observations, ideas, and experiments.  Specifically, regarding global environmental change, the scientific community has discovered anthropogenically-driven trends in the global environment and has suggested that they pose a threat to human civilization.  As is evident in today’s political battles over climate change, scientific discoveries and science-based mitigation strategies are not always consistent with folk knowledge.

Boulding advocated a more consistent reflexivity in human thinking, i.e. a questioning attitude and an openness to changing beliefs.  This thinking strategy was something he wanted all humans to share, even though they might be supporting different ideologies. 

Another economist (Mauro Bonaiuti) also wrote a book entitled The Great Transition.  For Bonaiuti, a global economic crisis is imminent driven by 1) limits on natural resources such as fossil fuels, and 2) an overshoot in societal complexity. 

Bonaiuti focused on a trend in growth of Gross Domestic Product (GDP) for developed countries in recent decades.  He found a long-term decline in GDP growth (% per year) across a wide range of developed countries.  The driving mechanism was Diminishing Marginal Returns (DMR) on investments associated with reaching the biophysical limits of natural resources (e.g. land available for agricultural expansion). He feared this economic trend portended eventual collapse of capitalism and the ascendancy of autocratic regimes.

Bonaiuti’s Great Transition away from that trajectory was characterized by degrowth − reduction in the importance of market exchange, reduced production and consumption, and transitioning towards forms of property and company ownership that feature local communities, small shareholders, and public institutions.     

As an Earth system scientist, I agree with Bonaiuti about the human enterprise on Earth hitting the biophysical limits of the Earth system.  Regarding complexity though, I am more sanguine.  A transition to global sustainability is likely to require more complexity, especially in the form of a more elaborate set of global governance institutions. The energy costs could be paid by an expanded renewable energy infrastructure (hopefully without the expansion hitting its DMR).

Physicist Paul Raskin developed another version of the “Great Transition”, this one aimed more directly at addressing the problems of biophysical limits.  The Tellus Institute, with which he is affiliated, produced a broad program of policy prescriptions designed to foster societal change towards sustainability.  One of their prescriptions is a renewable energy revolution (which, not surprisingly is also the subject of a recent book by Lester Brown called The Great Transition).  The Tellus Institute published Journey to Earthland in 2016, with Earthland here referring to an emerging “country” that includes all nations on Earth (hence a planetary civilization). 

For Raskin, the key factor that could unify humanity is the systemic environmental crises that are rapidly engulfing the world (e.g. climate change).  People will be forced to work together to address these crises.  He sees the needed change as a bottom-up driven process, i.e. a “global citizens movement” with strong participation of civil society.

Considering this convergence by earlier authors on the theme of transition, I adopted the “Great Transition” label for a phase in what I call A Positive Narrative for the Anthropocene.  From an Earth system science perspective on the Earth’s history, I developed this six-phase story of humanity’s relationship to the rest of the Earth system.  The Anthropocene Epoch alludes to the recognition by geoscientists, social scientists, and humanities scholars that humanity (by way of the technosphere) has become the equivalent of a geologic force.  My Great Transition phase comes between a Great Acceleration phase (1945 – 2020) and an idealized future of global sustainability.

An essential aspect of my Great Transition usage is that a new social entity is born – a collective humanity working together to manage (or at least avoid wrecking) the Earth system as we know it.  The coalescence of the United Nations − and its successes such as the Montreal Protocol −  hints at the possibilities. 

The great inequality in wealth at all scales, the differential responsibility for causing the current global environmental problems, and the differences among people regarding their vulnerability to anthropogenic environmental change, makes it fair enough to question whether there even can be a global “we”.  However, a majority of humans (5.2 billion out of 7.7 billion) now have a cell phone.  Almost all contemporary humans aspire to use energy and natural resources to achieve and maintain a reasonably high standard of living.  That striving is, of course, causing global environmental change.  So, indeed, there is a global “we”.  And a transition to global sustainability is impossible unless most people on the planet acknowledge membership in that “we”.

The Great Transition must be a global scale phenomenon.  However, the actual changes required will be made across a range of scales from individuals (decisions as consumers and voters), to nation-states (e.g. subsidies for renewable energy), to global (e.g. resolutions of the United Nations).  Let’s consider several of the important dimensions of the Great Transition.

The Biophysical Dimension

Earth system scientists have identified a set of nine planetary boundaries (e.g. the atmospheric CO2 concentration), and the Great Transition will mean regulating human impacts on the environment enough to stay within those boundaries.  At present, the quantitative estimates for those boundaries have significant uncertainties and a robust commitment to continued research is needed.  The research will include continued improvement in our capability to monitor and model the Earth system.  Model simulations are needed to evaluate the consequences of overshooting the planetary boundaries, as well as possible mitigation strategies (e.g. a carbon tax) that could prevent the overshoot.

The Technological Dimension

The technological dimension of the Great Transition is concerned with discovering and implementing the changes to the technosphere that are needed to achieve global sustainability.  As noted, a key requirement will be a new renewable energy infrastructure.  Pervasive advances are also needed in transportation technology, life cycle analysis, and in closed loop manufacturing.  Technological fixes must be carefully scaled up since unintended impacts may emerge in the process.  The field of Science and Technology Studies is beginning to systematically address the relevant issues.  I have previously characterized the product of integrating the technosphere and biosphere as the sustainable technobiosphere (Figure 1).

Figure 1. A stylized rendering of the integration of biosphere and technosphere. Image credit: Original Graphic.

The Psychological Dimension

We all have a personal identity.  It begins with the self-awareness that we grow into during childhood; and it evolves over the course of our life.  We typically identify ourselves as members of various groups and there is often a psychological tension within a human being between independence and group membership. 

These groups may include family, ethic group, professional group, and religious affiliation, as well as citizenship in a city, a state, and a nation.  Membership in a group is recognized as conveying rights and responsibilities. 

As noted, an essential feature of the Great Transition will be that individuals augment their multiple existing group memberships with membership in new groups focused on addressing human-induced environmental change. 

The Education Dimension

One of humanity’s most important evolved traits is the capacity to transfer knowledge by way of social learning.  Language is a tool for efficient communication of information horizontally (within a generation) and vertically (across generations).  The Great Transition will require a global society with citizens who understand enough Earth system science to appreciate the need for humanity to manage its impact on the biosphere and the rest of the Earth system.  They must generally be literate, so as to assimilate basic information about what is going on in the world, and to some degree be scientifically literate so they can understand the underlying mechanisms that explain what is going on.   

The Geopolitical Dimension

Since the Treaty of Westphalia in 1648, what happens within national borders is in principle largely left to the inhabitants of the nation.  Nations have subsequently become protective of their national sovereignty.

Issues of global environmental change now disrupt and challenge that principle.  National emissions of greenhouse gases sum up to a major global scale impact on the environment.  National sovereignty is thus not sacrosanct; nations must cooperate, or they will all suffer.  The current global wave of nationalism, especially the push back against commitments to international negotiations and agreements, is inhibiting movement towards a Great Transition.  A significant step forward would be formation of a new global environmental governance institution, such as the proposed World Environment Organization.

The Great Transition concept has thus far spread rather thinly across humanity.  But as a global society forms in response to global environmental change, it should become foundational.

Can Humanity be a “We”?

David P. Turner / February 16, 2020

The peer-reviewed literature and the popular media today abound with concern about human-induced global environmental change.  Articles often argue that global scale problems require global scale solutions: humanity is causing the problem and “we” must rapidly implement solutions.  Environmental psychologists have found that people who sympathize with or identify with a group are energized to support its cause.  Can a majority of human beings identify with humanity in a way that motivates collective change towards global sustainability?      

Let’s consider several key constraining factors and unifying factors relevant to making humanity a “we” with respect to global environmental change.

Constraining Factors

Notable sociopolitical factors that impede global solidarity include the following.

1.  Climate Injustice among Nations 

In the process of their development, the most developed countries burned through a vast amount of fossil fuel and harvested a large proportion of their primary forests, hence causing most of the observed rise in atmospheric CO2 concentration.  But these countries are now asking the developing countries to share equally in the effort to curtail global fossil fuel emissions and deforestation to prevent further climate change.  At the same time, the impacts of climate change will tend to fall most heavily on the developing countries because of their lower capacity for adaptation.  The developing countries are pushing back on the basis of fairness, e.g. the outcome of the Kyoto protocol (albeit now obsolete) was that only the developed countries made commitments to reduce greenhouse gas emissions.

2. Rising Nationalism

Economists generally agree that economic globalization has spurred the global economy and helped lift hundreds of millions of people out of extreme poverty.  However, globalization of the labor market beginning around 1990 has also meant a large transfer of manufacturing from the developed to the developing world – and with it many jobs.

Likewise, immigration is helping millions of people a year find a better life by leaving behind political corruption, resource scarcity, and environmental disasters. 

Unfortunately, one effect of economic globalization and mass immigration has been political backlash within developed countries in the form of populism and nationalism.  Hypersensitivity to loss of national sovereignty is not conducive to international agreements to address global environmental change issues.

3.  Climate Science Skeptics

Although the global scientific community is broadly in consensus about the human causes of climate warming and other global environmental change problems, the rest of the world is more divided.  Most people in the U.S. accept that the global climate is changing, but only about half accept the scientific consensus that climate warming is caused by human actions.  Sources of skepticism about climate science include religious beliefs and vested interests. 

4.  Economic Inequality

Wealth inequality, both within nations and among them, is a pervasive feature of the global economy.  The rich end of the wealth distribution contributes to the vested interests problem as just noted.  At the poor end of the wealth distribution, the hierarchy of needs discourages concern for the environment; solidarity with the fight against climate change is a luxury when you are starving.

These four constraining factors are deeply rooted and are only the head of a list that would also include competition for limited natural resources and geopolitical conflict.  It is daunting to think about overcoming these obstacles to a “we” that includes all of humanity.  There are substantive ongoing research and applied efforts (not documented here) to overcome them, but in a general way let’s consider some equally significant factors that may help foster a global “we”.

Unifying Factors

The following rather disparate set of factors supply some hope for human unification under the banner of environmental concern.

1.  Our Genetic Heritage

Humans are social creatures.  Sociobiologists, such as Harvard Professor E.O. Wilson, have argued that many of our social impulses are genetically based.  We have an instinctual propensity to identify with a particular social group, and to draw a distinction between that group (us) and outsiders (them).  The average ingroup size during the hunter/gatherer phase of human evolution, which largely shaped our social instincts, is believed to have been about 30 people.  Remarkably, the size of the social group that humans identify with has vastly expanded over historical time − from the level of tribe, to the level of village, empire, and the modern nation-state.  Conceivably, that capacity could be extended to the global scale:  we might all eventually consider ourselves citizens of a planetary civilization.

The historical expansion of social group size was driven in part by military considerations  − the need to have a larger army than your neighbor.  Obviously, this rationale breaks down at the global scale, but a distinct possibility for inspiring global solidarity is the looming threat of global environmental change. 

Note that being a citizen of the world does not require rejecting one’s local or national culture.  Multiple sources of identity could include being an autonomous individual, being a member of various ingroups, and being a member of humanity in its entirety.

2.  The Advance of Earth System Science

A conspicuous general trend favorable to achieving a collective sense of responsibility for managing human impacts on the Earth system is growth in our scientific understanding of the Earth system.  From studies of the geologic record, scientists know that Earth’s climate has varied widely, from cool “snowball” Earth phases to relatively warm “hothouse” Earth phases.  Greenhouse gas concentrations have consistently been an important driver of global climate change, which gives scientists confidence that as greenhouse gas concentrations rise, Earth’s climate will warm. 

The scientific community also has expansive monitoring networks that reveal the exponentially rising curves for metrics such as the atmospheric CO2 concentration.  Earth system models that simulate Earth’s future show the dangers of Business-as-Usual scenarios of resource use, as well as the benefits of specific mitigation measures.  At the request of the United Nations, the global scientific community periodically assembles the most recent research about climate change, the prospects for mitigation (i.e. reduction of greenhouse gas concentrations), and the possibilities for adaptation. 

If improved understanding of the human environmental predicament can filter down to the global billions, we might hope for a strengthening support for collective action.

3.  The Evolution of the Technosphere

The technosphere is a new global-scale part of the Earth system.  It joins the pre-existing geosphere, atmosphere, hydrosphere, and biosphere.  However, just as the evolution of the biosphere was a major disturbance to the early Earth system, the evolution of the technosphere is proving to be disruptive to the contemporary Earth system.  

Around 2.3 billion years ago, cyanobacteria evolved that could split water molecules (H2O) in the process of photosynthesis.  The resulting oxygen (O2) began to accumulate in the atmosphere, radically changing atmospheric chemistry.  Oxygen was toxic to many existing life forms, but eventually micro-organisms capable of using oxygen in the process of respiration evolved, which in time led to the evolution of multicellular organisms (and eventually to us). 

In the case of technosphere evolution, a process that emits excessive amounts of CO2 (combustion of fossil fuels) has arisen, which is altering the global climate and ocean chemistry in a way than may be toxic to many existing life forms.  One potential solution is that the technosphere can further evolve (by way of cultural evolution) to subsist on renewable energy rather than combustion of fossil fuels, thus moderating its influence on the atmosphere, hydrosphere, and biosphere.

A characteristic feature of technosphere evolution is ever more elaborate means of transportation and telecommunications.  These capabilities – especially the on-going buildout of the Internet – allow for increased integration across the technosphere and tighter coupling of the technosphere with the rest of the Earth system.  Sharing results of environmental monitoring in its many dimensions over the telecommunications network can help with creating and maintaining sustainable natural resource management schemes.   

Through the popular news and social media, nearly everyone in the world can learn about events such as regional droughts and catastrophic forest fires that are associated with climate change.  It is thus becoming easier to have a common frame of reference among all humans about the state of the planet.

There is not yet anything like a global consciousness that coordinates across the whole technosphere.  However, the Internet is facilitating the emergence of a global brain type entity.  One indication of what the nascent global brain is thinking about is the relative frequencies of different search terms on Google.  Interestingly, in the algorithms that determine the response to search engine queries, a high frequency of previous usage for a relevant web site makes that site more likely to reach the top of the response list.  That process is evocative of learning, i.e. reinforcement through repetition.  Similarly, the Amygdala Project monitors Twitter hashtags.  They are classified according to emotional tone, and a running visual summation gives a sense of the collective emotional state (of the Twitterers).  Advances in artificial intelligence and quantum computing may soon improve the module in the global brain that simulates the future of the Earth system.

4.  The Expanding Domain of Human Moral Concern

In “The Slow Creation of Humanity”, psychologist Sam McFarland recounts the history of the human rights movement.  Writer H.G. Wells, humanitarian Eleanor Roosevelt, and others have helped develop the rationale and legal basis for including all human beings in our “circles of compassion” (Einstein’s term).  The concept of rights has now begun to be legally extended to Nature (in Ecuador) and specifically to Earth (in Bolivia).  Since protecting the rights of Earth (e.g. to be free of pollution) clearly requires that humans work collectively, we come to an incentive for global human solidarity.

Again, these four unifying factors are only the start of a list that might also include global improvements in education, as well as growth in the activities of global non-governmental environmental organizations. 

Conclusions

The field of Earth system science is producing an increasingly clear understanding of the human predicament with respect to global environmental change.  Scientist know what is happening to the global environment, what is likely to happen in the future under Business-as-Usual assumptions, and to some degree, what must change to avert an environmental catastrophe.

The process of changing the trajectory of the Earth system cannot be done unilaterally.  From the top down, an important step will be genesis or reform of the institutions of global governance – including institutions concerned with the political, economic, and environmental dimensions of governance.  This is a task for a generation of researchers, political leaders, and diplomats.  From the bottom up, individuals must be brought around as adults, and brought up as children, to adopt an identity that includes global citizenship and associated responsibilities for the global environment.  This is a task for a generation of educators, religious leaders, and business leaders.

If “we” human dwellers on Earth don’t gain a collective identity and begin to better manage the course of technosphere evolution, then we may no longer thrive on this planet.

Recommended Audio/Video, Mother Earth, Neil Young