Oregon State’s Department of Physics recently underwent a major reform of their graduate program and requirements. 

Introduction:

U.S. Physics Departments generally require that doctoral students complete core advanced courses in Quantum Mechanics, Electrodynamics, Classical Mechanics, and Statistical Mechanics, with additional electives depending on the field of study.  Most Departments also require that all students demonstrate proficiency by passing written or oral examinations in the core topics.  These examinations have different names (Preliminary, Qualifying or Comprehensive) but generally involve several multi-hour written tests.  Students are normally given several chances to pass but if they fail to pass these examinations by the end of their second year, they are usually asked to leave the program.

At OSU, as at most Physics Departments, graduate students in their first 1-2 years are normally supported as graduate teaching assistants with significant teaching responsibilities while they are taking the required courses.  As graduate and undergraduate courses start at the same time in the Fall, new graduate students typically find themselves teaching several undergraduate laboratory or recitation sections and taking three challenging courses, right after they arrive.  The combination of a new environment, challenging courses, and teaching duties, all at once, can become overwhelming.   Institutions can help with preparation, for example with pre-term orientation sessions, but the transition is still very difficult.  

Oregon State physics recently did a major reassessment of the early requirements for our doctoral program which has led to three major changes. 

Second, the graduate teaching load in the first term has been reduced and the third core course for entering students is now replaced by a pedagogy course, taught by a faculty member with experienced graduate teaching assistants as mentors.  This helps incoming graduate teaching assistants gain the skills they need very early in their graduate career.

First, entering graduate students are assessed individually by a group of faculty on arrival.  The Core Graduate Advising Committee meets with all incoming students to assess their preparation for the Core graduate courses.  Students who have missed a component (for example Statistical Mechanics) in their undergraduate preparation, or feel underprepared, are given the chance to take the appropriate undergraduate course in the first year, and then proceed to the advanced courses in the second year.  

Third, the written comprehensive examination has been replaced by a series of assessments over the first 2-3 years.  These include the grades in the core courses and demonstration of written and oral communication skills.  In particular, candidacy for the doctorate now requires a writing sample and a researched presentation on a general topic posed by the committee and communicated to the students several weeks before the exam. 

These changes resulted from a multi-year process, initiated by both faculty and graduate students.   Both groups realized that talented students were being lost due to overload in the first term or later, through failure to pass the written examination or, more often, out of worry that they would not pass after a failed attempt. 

Inputs and proposed solutions:

Several years ago, a group of graduate students, led by students in the Physics Education Research group, researched and presented a paper on studies of known sources of bias in high stakes testing.  In parallel, the faculty had long recognized that the skills needed to be a successful physicist were not solely correlated with an ability to take timed tests. Over the years, various reforms of the written examination had been tried, with little change in outcomes; talented students were still leaving the program.   An elected graduate student representative committee was formed, with an elected (by the students) faculty liaison to provide input. A series of Town Halls led by the graduate representatives were held.  At those Town Halls, students described their concerns about the program, in particular the sink or swim nature of the first term and the high stakes exams.

The faculty formed a committee of Associate Professors to recommend major changes to the doctoral program requirements. Their work was informed by Oregon State’s training in unbiased hiring practices and the modern methods they used in developing learning objectives and assessments for their courses.   The committee spent most of a year formulating the learning objectives for a physics doctorate.   5 objectives were identified: 

  1. Analyze Physical Systems Apply physical laws and principles to formulate and produce solutions to questions that arise from a broad range of physical phenomena; master quantitative techniques (exact techniques and various levels of approximation including order-of-magnitude estimates); and devise and adopt ways of making meaning of their results. 

2. Learn Physics Expertly Learn and apply new concepts, methodologies, and techniques by identifying and engaging with various resources including, e.g., research literature and books, both individually and in collaboration with peers and other experts. 

3. Create and Share Novel Physical Insight Design and conduct original research within a chosen specialty and disseminate the results through effective presentations in professional settings and in the scientific literature. Research expectations include: familiarity with primary literature, identification of central issues and knowledge gaps, ability to develop original questions, ability to identify and mitigate obstacles in research, ability to engage in productive discussions and work synergistically within a group or collaboration, and ability to write effective scientific publications that include citations and clear descriptions of methods and results. 

4. Communicate with Learners Design and facilitate physics learning experiences at an appropriate level of sophistication for a broad range of audiences (e.g., colleagues, students, and the general public). 

5. Do Physics Ethically and Inclusively Conduct themselves ethically and inclusively in all professional settings, in accordance with the American Physical Society code of ethics (https://www.aps.org/policy/statements/ethics.cfm), as well as proactively identify areas where ethical and/or discrimination issues may arise and articulate strategies for dealing with them.  

Curricula and projects were then proposed to cover each of the objectives and new methods of assessing mastery were proposed.  In particular, the committee proposed replacement of the written comprehensive examinations with grades in core courses and replacement of the general physics portion of the doctoral candidacy exam with a writing sample and a prepared pedagogical presentation on a set topic.   

In addition, the first-year graduate curriculum and graduate teaching training were revamped to make the first year more inviting and flexible. The substantial faculty effort previously put into setting three written examinations per year was redirected into the expanded Core Graduate Advising committee to provide initial and continuing personal advising to beginning students.  

Implementation:

A professional facilitator worked with the faculty committee to prepare for a retreat to discuss the new requirements. At the retreat, after considerable discussion, the new requirements were approved by consensus of the faculty. Graduate students were then given an opportunity to provide feedback on the proposed changes.  Their comments were generally positive but led to several clarifications and improvements.  The new system was voted upon in February 2020 and became the only policy for students arriving in the Fall of 2020. Most existing students who had not yet advanced to candidacy have also opted to follow the new program. 

Preliminary Assessment:

It is early to do a full evaluation but preliminary feedback from 1st year students indicates that the flexible course scheduling and emphasis on training in the first term have had positive results.  Core faculty were initially concerned that their new role as grading gatekeepers would work against their roles as champions for their students. However, the Core Advising Committee’s attention to student needs early in the program has led to increased student success in the core courses.

The doctoral qualifying process has become somewhat more complex with the addition of writing samples and set presentation topics requiring additional planning.  

The new methods may lead to changes in admissions policy.  Talented students with unusual backgrounds are likely to do better in the program, thanks to more intensive advising and flexibility early in the program.  However, the absence of the required examinations may lead to greater attention to undergraduate grades as a predictor of ability in academic courses. 

Summary: 

Based on student input and faculty experience, Oregon State Physics has substantially modified the initial experience for incoming students and evaluation practices.  Initial results are positive, with improved retention. 

Sept. 29, 2021

Oregon State Physics is leading a Department of Energy Office of Science funded project to design computing and software infrastructure for the DUNE experiment.   DUNE is a future neutrino experiment that will aim a neutrino beam from Fermilab, in Batavia Illinois, at a very large detector in the Homestake mine in Lead, South Dakota.  The experiment is currently under construction with a 5% prototype running at CERN in 2018 and 2022 and the full detector expected in 2029. These experiments generate data at rates of 1-2 GB/sec, or 30 PB/year which must be stored, processed and distributed to over 1,000 scientists worldwide.

This image has an empty alt attribute; its file name is lbnf-dune-fermilab-sanford-15-0031-01-2000-1024x340.jpg
The LBNF neutrino beam traveling (right to left) from Fermilab in Illinois to the Sanford Lab in South Dakota

The project “Essential Computing and Software Development for the DUNE experiment” is funded for 3M$ over 3 years, shared among 4 Universities (Oregon State, Colorado State, Minnesota and Wichita State) and three national laboratories (Argonne National Laboratory, Fermi National Laboratory and Brookhaven National Laboratory). The collaborators will work with colleagues worldwide on advanced data storage systems, high performance computing and databases in support of the DUNE physics mission.  See https://www.dunescience.org/ for more information on the experiment.

PI Heidi Schellman (Oregon State Physics) leads the DUNE computing and software consortium which is responsible for the international DUNE computing project. Physics graduate student Noah Vaughan helps oversee the global grid processing systems that DUNE uses for data reconstruction and simulation and recent graduate Amit Bashyal helped design the DUNE/LBNF beamline.  Graduate student Sean Gilligan is performing a statistical analysis of data transfer patterns to help optimize the design of the worldwide data network.  Postdoc Jake Calcutt recently joined us from Michigan State University and is designing improved methods for producing data analysis samples for the ProtoDUNE experiment at CERN.

One of the major thrusts of the Oregon State project is the design of robust data storage and delivery systems optimized for data integrity and reproducibility.  30 PB/year of data will be distributed worldwide and processed through a complex chain of algorithms. End users need to know the exact provenance of their data –  how was it produced, how was it processed, was any data lost – to ensure scientific reproducibility over the decades that the experiments will run.  Preliminary versions of the data systems have already led to results from the protoDUNE prototype experiments at CERN which are described in https://doi.org/10.1088/1748-0221/15/12/P12004 and https://doi.org/10.1051/epjconf/202024511002.

As an example of this work, three Oregon State Computer Science Majors (Lydia Brynmoor, Zach Lee and Luke Penner) worked with Fermilab scientist Steven Timm on a global monitor for the Rucio storage system shown below. This illustrates test data transfers between compute sites in the US, Brazil and Europe. The dots indicate compute sites in the DUNE compute grid while the lines illustrate test transfers. 

This image has an empty alt attribute; its file name is Rucioimage-1024x492.png
Data transfer diagram for DUNE data.

Other projects will be a Data Dispatcher which optimizes the delivery of data to CPU’s across the DUNE compute systems and monitoring of data streaming between sites.

Congratulations to Prof. Davide Lazzati , Head of Physics, who garnered the 2021 Impact Award for Outstanding Scholarship at OSU’s University Day Award ceremony on September 14th. Davide was cited for his ground-breaking work on gamma-ray bursts and neutron star mergers.

Davide Lazzati

Davide and his co-workers were the first to correctly predict the electromagnetic signature of the binary neutron star merger GW170817, which was first detected through gravitational wave emission and faint gamma ray emission, then across the electromagnetic spectrum from optical to radio through various follow-up observations. This was the first event of its kind, and ushered in the era of “multi-messenger astronomy.” Lazzati & co. had laid the theoretical groundwork for this prediction over the years, most recently with two papers published before the observation of GW170817 [1,2].

After the observation of GW17081, he published the explanation for how a binary neutron star could result in the observations made. The puzzling part of the observation was that the gamma ray burst observed accompanying GW170817 was faint, and it was unclear how such faint emission could be used to associate GW170817 with a binary neutron star merger model for gamma ray bursts; the latter are observed to be very luminous and involve highly relativistic emission. Lazzati realized that a structured highly relativistic jet surrounded by slower and less energetic material produces afterglow emission that brightens characteristically with time, exactly as was observed in GW170817. Furthermore, he showed how to constrain the geometry of the jet and surrounding material using the observational data. This confirmed a single origin/explanation for short gamma ray bursts and binary neutron star mergers [3].

The nominators noted Davide’s impact not only on science, but also on students through his teaching and mentorship. His astrophysics research program draws many students. Two of his most successful graduate students are McNair Fellow Tyler Parsotan, who also received a NASA FINESST grant and is now a postdoc at NASA Goddard Space Flight Center in Maryland; and Black student leader, Isabel Rodriguez who graduated with an M. S. in Physics and received the Harriet “Hattie” Redmond Award for her groundbreaking work to improve diversity in Physics and beyond. He has also mentored over a dozen OSU undergraduate research dissertation projects and undergrads enthusiastically line up to join his research group.

The full list of award recipients is on the Awards Day website at https://universityday.oregonstate.edu/award-recipients.

[1] D. Lazzati, D. Lopez-Camara, M. Cantiello, B. J. Morsony, R. Perna, J. C. Workman, “Off-axis Prompt X-Ray Transients from the Cocoon of Short Gamma-Ray Bursts,” The Astrophysical Journal Letters, 848, L6 (2017) (https://arxiv.org/abs/1709.01468)

[2] D. Lazzati, A. Deich, B. J. Morsony, J. C. Workman, “Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers,” Monthly Notices of the Royal Astronomical Society, 471, 1652 (2017) (https://arxiv.org/abs/1610.01157)

[3] D. Lazzati, R. Perna, B. J. Morsony, D. Lopez-Camara, M. Cantiello, R. Ciolfi, B. Giacomazzo, J. C. Workman, “Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817,” Physical Review Letters, 120, 241103 (2018) (https://arxiv.org/abs/1712.03237).


Rosalyn Fey, OSU Astronomy Club Secretary

On May 17, 2021, the Astronomy Club hosted a virtual star party featuring Tom Carrico, local amateur astrophotographer and instructor of astrophotography at OSU. Tom used his telescope in Dark Sky, New Mexico to remotely image the night sky and give everyone a chance to make astronomical observations from the comfort and safety of their homes.

The party started with a presentation from Elaine Swanson, a post-baccalaureate student and founder of OSU’s Astrobotany Research Group, and continued with 2 hours of real-time astrophotography image capture and processing. Tom imaged some classic astronomical objects, such as the Sombrero Galaxy (M104), and also took requests from participants. Favorite objects included the Pinwheel Galaxy (M101), the Owl Nebula (M97), the Ring Nebula (M57), and the Great Globular Cluster (M13). Other objects of astronomical interest included M87, the galaxy which hosts the supermassive black hole first imaged in 2019 by an international collaboration using the network of telescopes known as the Event Horizon Telescope.

Participants learned about each imaged object, and about the equipment, software and procedures used for remote astrophotography. Tom covers many of these topics in PH299: Astrophotography and Astronomy, currently offered in spring term.

The Astronomy Club plans to continue hosting virtual star parties with Tom in the future to increase accessibility of night observations, and engage more people in this exciting experience! Please join us at our next virtual star party! For information about our club and events, visit our website at https://blogs.oregonstate.edu/astronomyclub/.

Messier 51, also known as the Whirlpool Galaxy. It is the sum of 7 each 1-minute exposures imaged with a 4″ telescope and an SBIG STT 8300 8.4 Mpixel CCD camera. (Image acquired by Tom Carrico and displayed with his permission.)

Messier 101, sometimes referred to as the Pinwheel Galaxy. It is the sum of 7 each 1-minute exposures imaged with a 4″ telescope and an SBIG STT 8300 8.3 Mpixel CCD camera. (Image acquired by Tom Carrico and displayed with his permission.)

Congratulations to Isabel Rodriguez, M.S. for being the 2021 recipient of the Harriet “Hattie” Redmond Award! This award celebrates a member of the OSU community who works as an agent of change in service of racial justice and gender equity. This ” Breaking Barriers” award  is sponsored by the President’s Commission on the Status of Women (PCOSW), the Office of Institutional Diversity (OID), the Office of the Provost and OSU Athletics.
https://leadership.oregonstate.edu/pcosw/events/breakingbarriers 

Isabel is a brilliant example of a scientist who works tirelessly and effectively for change in service of racial justice and gender equality. The STEM culture at Oregon State University is changing profoundly because of her influence. As a Black woman in astrophysics, she has expertly navigated the terrain in this white-male-dominated field to emerge as a powerful example to other marginalized people of how to be successful on their own terms and teaching her mentors to change the ways they interact with their students.

Isabel has been a powerful agent of change in our Department and College. She has challenged her research group, her peers, her mentors and the administration to look at our workplace differently and through the eyes of those marginalized. As an elected member of the graduate student committee, she helped lead discussions among the faculty and students in a series of Town Hall meetings that ultimately resulted in significant changes to the physics graduate program to make it more fair, flexible, and inclusive. She has also been an important member of the departmental DICE committee and a founding member of CoSMAC, the College of Science Multidisciplinary Antiracism Coalition, which advocates for the adoption of antiracist policies, practices, and actions in the College. She was also Vice President of the Black Graduate Student Association, where she organized regular on-campus events to foster a sense of community and belonging for Black undergraduate and graduate students. For her positive, measured and always relentless advice and guidance, Isabel is a worthy member of a spectacular group of leaders that have been recognized with the Harriet “Hattie” Redmond Award.

Thank you for your service Isabel, and for raising our collective consciousness.

Briony Horgan (B.S. OSU Physics, 2005), Associate Professor of Planetary Sciences at Purdue University, is a member of the science team that will launch the NASA Mars rover Perseverance in the next few weeks. The rover will travel to Jezero Crater, which preserves evidence of a time when rivers flowed on Mars. Prof. Horgan led a study of the mineralogy of the site, which produced one of the major results that contributed to its selection. She was also on the team that designed the camera that will be the scientific eyes for Perseverance. Well done Briony – and best of luck with the mission!
For the full story and image credit, see this link.

horgan-portrait

The Physics Department at Oregon State University stands with the Black community. The continued murders of Black people by police are a consequence of long-standing, unacceptable social and economic systems that dehumanize people, particularly the Black community.

We recognize that the academy, and our department by extension, is complicit in these structures of racism. The conspicuous dearth of Black department members points to the racism and structural inequities that exist within our hiring and recruitment processes, our teaching and mentoring, and our broader social culture. Removing these structures is long overdue. We will strive to promote equity across all areas, including but not limited to: race, gender, gender identity or expression, national or ethnic origin, religion, age, marital status, sexual orientation, disability, veteran status, and economic status. We are committed to making our workplace and classroom environments supportive of all community members by: (i) creating policies and a culture that work against historical oppressions, and (ii) seeking a diversity in the recruitment, selection, promotion, and celebration of students, staff, faculty, and other scientists, that is representative of the global community.

One of the most recent steps the department has taken is forming the Diversity Inclusion Climate and Equity (DICE) Committee. This committee is composed of members representing all subsets of the physics community – from undergraduates to faculty and staff – and is charged with recommending policies and resources that will help foster a more welcoming and inclusive physics environment. The DICE Committee is seeking new members this academic year.

If you would like to get involved, or would like access to the department’s antiracism resource list, please contact physdice@lists.oregonstate.edu.


Current DICE members

Acacia Patterson (graduating)

Isabel Rodrigues

Xavier Siemens

Evan Thatcher

Physics students and faculty are well-represented in the College of Science 2020 Summer Undergraduate Research Experience (SURE) Awards. These awards provide 11-week employment in the summer for students, though this year, because of closures during the covid-19 pandemic, the research may have to be stretched out over the academic year.

This year’s physics student awardees are:
Hunter Nelson advised by Tuan Pham (Mathematics)
Rohal Kakepoto advised by Janet Tate
Alan Schultz advised by Hoe Woon Kim (Mathematics)
Alexander van Balderen advised by Liz Gire
Jessica Waymire advised by Matt Graham
Ryan Wong advised by Bo Sun

Students from other departments working with Physics faculty are:
Emily Gemmill, (Biochemistry & Biophysics), advised by Weihong Qiu
Ruben Lopez (BioHealth Sciences) advised by Bo Sun

Congratulations all!

Physics professor Weihong Qiu with Haelyn Epp, a BioHealth Sciences SURE awardee in 2019, in Prof Qiu’s biophysics laboratory at OSU (image from the CoS SURE website).