When the novel coronavirus pandemic hit, the Physics Department, like the rest of Oregon State University, scrambled to get its course offerings ready for remote learning in a few days.  Professor David Roundy and his teaching team scrambled as hard as anyone – and incorporated some beginning epidemic modeling into the computational physics class so that the students would begin to acquire the skills that will serve them well as members of the technological community of which they are now junior members.

PH366 – Computational Physics – is a course in which students learn how to solve mathematical equations in real-world, complex situations where analytical, “pencil-and-paper” solutions are far too difficult.  For example, it’s easy for a student in Introductory Physics to solve a simple differential equation to find a solution in the form of an equation that describes how a ball falls towards the earth under the influence of gravity, a constant force near the earth’s surface.  But add extra forces that describe real conditions like air resistance, wind and the earth’s rotation, and a simple equation to describe position as a function of time is impossible.  The computer solves the problem numerically, chopping it up into very small time slices and finding a position and velocity for each of the times based on what is was at the previous time. In the PH36x Computational Physics series, students learn techniques to find numerical solutions to many differential equations and they can explore very complex, real-world situations. Roundy has chosen the Python programming language for this class, but the lessons are applicable to any language. In real physics research, few problems are already worked out in a textbook and numerical methods to solve them improve all the time, so the best information is often distributed all over the internet. Physics students must learn to navigate the body of existing literature and identify what information they need to solve a problem.

Another view of the solution shows the difference between displaying results on a linear plot and a logarithmic plot. The logarithmic plot (below) highlights the infection and recovery numbers, which are a small fraction of the overall population and we’d be tempted to ignore the fact that there are hundreds of thousands of sick people if we saw only the linear plot (above).

An example that David Roundy chose for the Spring 2020 Computational Physics course was about the spread of an epidemic, like covid-19.  It was all everyone was talking about, and he wanted the students to learn how their new computational skills are at the heart of epidemiological modeling that gives us the information to understand and mitigate the spread of the coronavirus.  This isn’t an accurate model, Roundy stresses, but it has valuable elements – start with a simple model, probably unrealistic, test it, make sure it works as expected.  Add some complexity, test that, and then proceed. In his easy-to-read description at the PH366 course website, Roundy shows students how to model exponential growth – the increase in number of covid-19 cases is proportional to the number of cases: dI/dt = RI. Then you have to add in the real-world fact that the population is finite (with a doubling time of 1 day, the world human population would be infected in a little over a month). Some people recover and have immunity (we hope), so that must be factored into a more realistic model.  More complexity comes in when you consider how long infected people are contagious, and whether there is a period of immunity following recovery.

Actually, the problem is not too hard to set up – it’s the solution that becomes tedious.  That’s the beauty of computers is that they don’t care about tedium.  They swiftly toil through tedious calculations without becoming bored or tired and their error rate is effectively zero!  The humans have to set up the problem correctly, though, otherwise the results are meaningless.  And this is the skill that Roundy teaches his students. The screenshots below show an example of the students’ work in PH366, with the by-now-familiar plot of an exponential rise in infections at the start, with a peak and fall.  We see the basic recovery and death trends, too.

Another view of the solution shows the difference between displaying results on a linear plot and a logarithmic plot. The logarithmic plot (below) highlights the infection and recovery numbers, which are a small fraction of the overall population and we’d be tempted to ignore the fact that there are hundreds of thousands of sick people if we saw only the linear plot (above).

Julian Wulf, one of the Physics majors currently in PH 366 commented, “My favorite part of the class is how it allowed me to model physical situations that were too complex to picture, or model by hand. I have found it quite rewarding to finish coding something and have it modeled in front of me, a model that is often easy to adjust to new circumstances.” It’s easy to see how Julian would relish the challenge of modeling a much more complicated solution that factored in even more complexity such as social contact and real transmission rates.

Teaching in the age of coronavirus:

To deliver PH366, David Roundy goes into Weniger Hall by himself every Tuesday and Thursday and turns on some 20 computers with separate Zoom sessions running (see the panorama view below).  The 40 students and the 4 TAs (teaching assistants) log in from their remote locations. The students implement Roundy’s “pair programming” strategy where they decide how to solve the problem and code in pairs, each providing the crucial check on the other to ensure that the steps make sense.  They constantly question their results, and look up techniques to improve their code and to interpret the results. It’s a real-world programmer situation!  Roundy and the teaching assistants hop between the Zoom breakout rooms to discuss with each pair of students how to troubleshoot and debug their code.  It wasn’t easy for the instructors to change their mode of operation from in-person to remote learning. TA Elena Wennstrom comments, “At the beginning, our TA meetings were devoted to brainstorming possible class formats, testing the limits of our Zoom powers, and discussing issues and possible improvements to the class we had the day before. Now we are more able to focus on the content, and trying out the assignments ourselves (like usual). I’m really proud of the system we’ve developed. Classes go surprisingly smoothly, and the time flies.”  Wennstrom adds that she gets more and better questions from the students in the remote mode.  Roundy remarks that he will offer this new mode of teaching to students with seasonal influenza in “normal” times to help curb the spread of that particular virus.

The students’ response:

The students agree. Julian Wulf says, “I think the transition to remote learning has mostly gone smoothly. There has been a rapid increase in how well things are being communicated remotely, as well as an increasing ability of the teaching assistants and professor to respond to difficulties we encounter while programming. I find myself looking forward to the continued improvement as each class has run more smoothly than the last, with the teaching assistants and Professor Roundy being increasingly able to react to difficulties people encounter by jumping in and out of Zoom breakout rooms to help.”

As “newbie programmer”, Wulf feels that the pair programming method helped him get over an initial fear of programming, and that he has learned to appreciate how quickly he learns to solve new problems. He found the disease and epidemic modeling project interesting, intellectually stimulating and fun.

Wulf says that the coding skills he is developing will be useful in the future, and that they have already entirely changed his perspective.  He now routinely plots equations in Mathematica to visualize a physical situation, and his new skills make the task “pain-free” and fun rather than being as a dreaded chore.

Former Physics major John Waczak, now a graduate student in Physics at the University of Texas at Dallas, offers similar observations about the Computational Physics series. He says that Computational Physics is an incredibly powerful tool for building physics understanding and to tackle problems that are otherwise unsolvable. It also enables him to create detailed visualizations of just about anything, and those visualizations don’t have to be static! Computers makes it possible to manipulate 2-, 3-, and even 4-dimensional data and create animations. “I have been using this skill a lot lately to visualize results in my [graduate] classes,” he says. Waczak further appreciates that PH36x made him an autodidact. “Dr. Roundy encouraged us to become familiar with the documentation and common programming forums like Stack Exchange. Instead of giving us working code to start with, we had to learn how to diagnose bugs and navigate the wide variety of (often incorrect) answers that exist online.” This meant that he became better programmer (and physicist). “I certainly do not know all of the tools and features that exist in the python programming language. What I do understand is how to evaluate the credibility of a resource and how to extract what’s important from the large body of existing information.”

Prof. Roundy’s PH366 covid-19 assignment is available at http://sites.science.oregonstate.edu/~roundyd/COURSES/ph366/epidemic.html
The TAs for the class are Elena Wennstron, Kira McCoy, Alex Kuepper and Steven Neiman.

David Roundy is an Associate Professor of Physics at Oregon State University, and has been teaching and researching at OSU since 2006.  His work in computational physics spans exotic superconductors, metal-organic frameworks, classical and quantum density functional theory, biological motor proteins and many other topics. He invented the Darcs version control software.  He is a member of the Paradigms in Physics team with significant funding from the National Science Foundation for education-related research focusing on thermal physics and computational physics.

Dear Physics community,

Oregon State Physics is still operating, although our labs are in standby mode and our teaching is now all remote.   We’re using online channels like Zoom and Slack to maintain our tradition of student interaction in courses.  Students are still working together on problems and the Society of Physics Students  is launching an online game night.  We could not have done this without herculean efforts by faculty and students to create online labs, videos, and sophisticated live classes in 3 weeks.  Grad students are writing new labs and undergraduates are serving as learning assistants in the Virtual Wormhole.  See this video on vectors produced in our Lightboard studio to see what our students see.

On campus, research is on standby. Biophysicists Weihong Qiu and Bo Sun led the Physics effort to collect personal protective equipment (PPE) that Oregon State then donated to Oregon Emergency Management agencies.  https://today.oregonstate.edu/news/oregon-state-collects-nearly-200000-pairs-gloves-other-medical-supplies-covid-19-crisis  But, you can’t grow carbon nanotubes or cancer cell lines at home so on-campus research is now on hold.  In the short run, we can work on writing things up, doing the literature searches we never have time for and analyzing data, but we’re eager to get back to our labs.

If you are interested in helping students financially in the short term, Oregon State has set up an emergency fund for students in need.  Many students (or their parents) have lost their jobs and are struggling with basics like books, rent,  food and the now vital internet connection. Please consider donating to the Beavers Care fund which is providing emergency funding to OSU students https://app.fundmetric.com/qvRUQF9u4 (You can designate the College of Science) or to the Human Services Resource Center (HSRC) https://studentlife.oregonstate.edu/hsrc which provides food boxes, loaner computers and other emergency supplies for students.

We’ll be providing updates as things progress.

Heidi Schellman

As part of Oregon State University’s COVID-19 mitigation plans, most Physics activities are moving to remote access.

Courses will be taught via remotely starting March 30: https://learn.oregonstate.edu/keep-learning

Colloquia and Seminars will also use video connections

We’ll keep you updated as we know more.

Undergraduate volunteers from the Department of Physics presented kid-friendly demonstrations last week at the 2020 Family Science Night at Franklin School, Corvallis.

The activities and demonstrations focused on mechanical phenomena: Marbles racing down tracks, carts on a frictionless rail, a chain fountain, and weight lifting with pulleys and double pulleys. In addition to mechanics, there were some new demos related to the physics of air included a curve-ball demonstration with paper cups, and a cloud in bottle.

Many thanks to our undergraduate volunteers Steve Nieman, Ryan French, Stephanie Keyes, and Genevieve Connolly, and faculty mentors Weihong Qiu and Ethan Minot.

Physics will attend several more Family Science Nights at local schools in the upcoming weeks.

With departmental funding and an SPS travel grant, undergraduate student Acacia Patterson attended PhysCon, the 2019 Physics Congress, in Providence, Rhode Island 11/14-11/16. Over 1000 people attended the conference, which is hosted by the jointly by Sigma Pi Sigma and the Society of Physics Students and has occurred every 4 years since 1928. A group of OSU students attended the last conference in San Francisco, California.

The 2019 Congress began with tours at Harvard, MIT, and Brown physics departments and at Optikos Corporation, Woods Hole Oceanographic Institute, Naval Submarine Base New London, and Rhode Island Hospital. The conference included speeches on the work of Einstein and Eddington from Dame S. Jocelyn Bell-Burnett and on the projects of GoogleX and how physics majors can prepare for a career in industry from Sandeep Giri. In addition, there were talks on the use of disruptive technology to mitigate climate change from Ellen Williams, on intellectual property rights from Jami Valentine Miller, and on the Big Bang and the future of astronomy from John Mather. Finally, Jim Gates shared a talk on how to use physics to become like Indiana Jones. A Congress workshop was held in which students brainstormed solutions to the issues that they and their organizations face.

The most important issues which the conference identified were imposter syndrome, mental health, and inclusiveness in physics. Two breakout sessions were offered with topics including science policy and communication, physics careers, physics and astronomy outreach, inclusivity, climate change, and graduate student panels.

Acacia, who is a member of Janet Tate’s research group, was among the 150 students who presented their research during two poster and art exhibit sessions. Other activities included a lunch with scientists, a demo show at Brown and a tour at the LADD Observatory, a game night with Brown’s SPS chapter, and career and graduate school fairs. Acacia is grateful for this rewarding experience and looks forward to bringing what she learned to OSU.

Physics research isn’t just for Physics majors. Biophysicist Weihong Qiu hosts students from BioHealth Sciences and Biochemistry in his lab as well.

BioHealth student Haelyn Epp used her #SUREScience scholarship to work in a biophysics lab on motor proteins. “My scholarship replaced one of my jobs, [and] allowed me to focus on research in a way I had not been able to,” says Haelyn. Read the full article at:

Prof. Bo Sun has received an NSF CAREER award for his biophysics research. Please look at the longer IMPACT article for details. (And he’s also the 2019 Richard T. Jones New Investigator Award for the Medical Research Foundation of Oregon, more details on that after the ceremony in Portland later this term.)

Robert  “Jake” Jacobs has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the competitive Earth Science Division. With this award, he is developing a method to analyze latitudinal circulation utilizing satellite measurements of ocean surface vector winds measured by the QuickSCAT and ASCAT scatterometers. Our objectives are to improve understanding of climatological atmospheric circulation patterns and how surface winds in the tropical Pacific influence El Niño-Southern Oscillation (ENSO) events. Latitudinal circulation plays an important role in weather and climate variability as it shapes where precipitation falls and how heat moves from the equator to polar regions. Improved accuracy of the boundaries between large-scale atmospheric cells can advance our understanding of climate and weather models.

Robert “Jake” Jacobs has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the competitive Earth Science Division.  With this award, he is developing a method to analyze latitudinal circulation utilizing satellite measurements of ocean surface vector winds measured by the QuickSCAT and ASCAT scatterometers.  Our objectives are to improve understanding of climatological atmospheric circulation patterns and how surface winds in the tropical Pacific influence El Niño-Southern Oscillation (ENSO) events.  Latitudinal circulation plays an important role in weather and climate variability as it shapes where precipitation falls and how heat moves from the equator to polar regions.  Improved accuracy of the boundaries between large-scale atmospheric cells can advance our understanding of climate and weather models.

This type of work while exciting is not new, as astronautical projects have been a driving force in Jake’s life. His passion for space has taken him from an undergraduate degree in Aerospace Engineering, from Purdue University, to satellite remote sensing at Oregon State University (OSU) where he is completing a PhD in Physics. Before arriving at OSU, Jake obtained a master’s degree in physics from Eastern Michigan University (EMU). While there, he worked with funds from the NASA Space Grant to develop an ion source that would be used in sputtering experiments to model the solar wind.

Connecting with his advisor, Dr. Larry O’Neill at OSU, has created an excellent partnership, as they bring different strengths to the table.  Dr. O’Neill’s wealth of experience has helped Jake to greatly advance his knowledge of atmospheric and oceanic sciences.  While Jake’s physics and math background have assisted with advancing spatial derivative analysis techniques.  This newest project has combined Jake’s passion for physics and math with a novel astronautical venture. He greatly looks forward to continuing this project with the support of the FINESST Fellowship.

In his limited free time, Jake enjoys reading, hiking, swimming and playing disc golf with his two small children, wife and two dogs.  An extra joy in his life is watching his children grow to love the universe and all its boundless opportunities.  The family also enjoys star gazing, which can be difficult in Oregon, so they use a home star theater system to learn about space, stars and the world above.

Tyler Parsotan has been awarded a NASA Future Investigators in NASA Earth and Space Science and Technology (FINESST) award for 2019 in the extremely competitive Astrophysics category. His proposal, titled “Demystifying the Interplay between Explosion Dynamics and Electromagnetic Radiation in Gamma Ray Bursts”, was one of the 11% of selected proposals in this category.

Originally from NY, Tyler is a first generation student. His family is from the Caribbean island nation of Trinidad and Tobago. He acquired a BS in Space Physics from Embry-Riddle Aeronautical University and is now working on a PhD in Physics at Oregon State University.

Tyler is currently a fourth year graduate student working with Dr. Davide Lazzati on understanding the most powerful explosions in the Universe known as Gamma Ray Bursts. These events are so energetic that in the first few seconds of the explosion, they release more energy than our sun will emit in its entire lifetime. Understanding these events allows us to get a better handle on how matter behaves in extreme conditions and may eventually lead to using these Gamma Ray Bursts as tools that can uncover new cosmological truths.

Besides working on his research project, Tyler is the president and co-founder fo the OSU astronomy Club. The club is focused on fostering interest in astronomy at OSU and the community of Corvallis in general. Tyler, with the help of many other undergraduate and graduate students, has hosted the Astronomy Open House events where members fo the public are invited to Weniger Hall to learn about astronomy though interactive demos and rooftop observations. More information regarding OSU Astronomy can be found at: https://physics.oregonstate.edu/astronomy-club

The Apollo Chronicles: Engineering America’s First Moon Missions” (Oxford University Press) is Professor Brandon R. Brown‘s second book, published to coincide with the 50th anniversary of the first moonwalk by the astronauts of Apollo 11 in 1969. Brown’s book chronicles the work of the engineers driving the endeavor, and his family was part of that experience – his father was an engineer at NASA working on the Apollo missions at the time.

The book made its debut June 13 and there was a launch party at Folio Books in San Francisco. The Apollo Chronicles is reviewed in the “Books and Arts” section of the July 8 edition of Nature and by American Scientist, which said, “Brown shows the engineers meeting tough deadlines and performing technical miracles, drawing schematics around the clock, making mistakes, coping with warning lights that blinked at the worst possible time, and regrouping after the tragic death of three astronauts in a fire that broke out in the capsule during a simulated countdown early in 1967.”

Now Professor and Chair of Physics at the University of San Francisco, Brandon is a graduate of our department. He earned his Ph.D. degree in Physics from OSU in 1997, studying vortex depinning in single-crystal YBaCuO in Janet Tate’s group. He subsequently spent a year studying science writing at the University of Santa Cruz, earning a post-doctoral certificate in Science Communication. After joining USF as an Assistant Professor of Physics, he pursued research in biosensing, and published several well-received articles on how sharks perceive temperature changes using a sensitive gel present in their noses. He has taught many, many different courses and is a gifted teacher. He has done several stints as department chair and has also served as Associate Dean for Sciences.

In 2015 Brandon published his first book, Planck: Driven by Vision, Broken by War (Oxford University Press), a biography of Max Planck and his path through World War II. From Planck to the Apollo missions – where will he go next?!

[Images from Professor Brown’s web page and Oxford University Press.]