A Positive Narrative for the Anthropocene

David P. Turner / July 16, 2020

Humans are story-telling animals.  Our brains are wired to assimilate information in terms of temporal sequences of significant events.  We are likewise cultural animals.  Within a society, we share images, words, rituals, and stories.  Indigenous societies often have myths about their origin and history.  Religious mythologies remain prevalent in contemporary societies.

The discipline of Earth System Science has revealed the necessity for a global society that can address emerging planetary scale environmental change issues – notably climate change.  A shared narrative about the relationship of humanity to the biosphere, and more broadly to the Earth system, is highly desirable in that context. 

The most prevalent narrative about humanity’s relationship to the Earth system emphasizes the growing magnitude of our deleterious impacts on the global environment (think ozone hole, climate change, biodiversity loss).  The future of humanity is then portrayed as more of the same, unless radical changes are made in fossil fuel emissions and natural resource management.

In the process of writing a book for use in Global Environmental Change courses, I developed an elaborated narrative for humanity − still based on an Earth system science perspective but somewhat more upbeat.  I used the designation Anthropocene Narrative to describe it because Earth system scientists have begun to broadly adopt the term Anthropocene to evoke humanity’s collective impact on the environment. 

There are of course many possible narratives evoked by the Anthropocene concept (e.g. the historical role of capitalism in degrading the environment), all worthy of study.  But for the purposes of integrating the wide range of material covered in global environmental change classes, I identified a six stage sequence in the relationship of humanity to the rest of the Earth system that serves to link geologic history with human history, and with a speculative vision of humanity’s future (Figure 1).  The stages are essentially chapters in the story of humanity’s origin, current challenges, and future.  The tone is more hopeful than dystopian because our emerging global society needs a positive model of the future.  

Figure 1.  An Earth system science inspired Anthropocene narrative with six stages.  Image credits below.

The chapters in this Anthropocene narrative are as follows.

Chapter 1.  The Pre-human Biosphere

The biosphere (i.e. the sum of all living organisms) self-organized relatively quickly after the coalescence of Earth as a planet.  It is fueled mostly by solar energy.  The biosphere drives the global biogeochemical cycles of carbon, nitrogen, and other elements essential to life, and plays a significant role in regulating Earth’s climate, as well as the chemistry of the atmosphere and oceans. The biosphere augments a key geochemical feedback in the Earth system (the rock weathering thermostat) that has helped keep the planet’s climate in the habitable range for 4 billion years.  By way of collisions with comets or asteroids, or because of its own internal dynamics, the Earth system occasionally reverts to conditions that are harsh for many life forms (i.e. mass extinction events).  Nevertheless, the biosphere has always recovered − by way of biological evolution − and a mammalian primate species recently evolved that is qualitatively different from any previous species. 

Figure 2.  The pre-human biosphere was a precondition for the biological evolution of humans.  Image Credit: NASA image by Robert Simmon and Reto Stöckli.

Chapter 2.  The Primal Separation

Nervous systems in animals have obvious adaptive significance in term of sensing the environment and coordinating behavior.  The brain of a human being appears to be a rather hypertrophied organ of the nervous system that has evolved in support of a capacity for language and self-awareness.  These capabilities are quite distinctive among animal species, and they set the stage for human conquest of the planet.  The most recent ice age receded about 12,000 year ago and a favorable Holocene climate supported the discovery and expansion of agriculture.  With agriculture, and gradual elaboration of toolmaking, humanity ceased waiting for Nature to provide it sustenance.  Rather, Nature became an object to be managed.  This change is captured in the Christian myth of Adam and Eve’s expulsion from the Garden of Eden (Figure 3).  They lived like all other animals in the biosphere until they became self-aware and began to consciously organize their environment.

Figure 3.  The story of Adam and Eve symbolizes the separation of early humans from the background natural world.  Image Credit: Adam and Eve expelled from Eden by an angel with a flaming sword. Line engraving by R. Sadeler after M. de Vos, 1583. Wellcome Trust.

Chapter 3.  The Build-out of the Technosphere

The next phase in this narrative is characterized by the gradual evolution and spread of technology.  An important driving force was likely cultural group selection, especially with respect to weapons technology and hierarchical social structure.  The ascent of the scientific worldview and the global establishment of the market system were key features.  Human population rose to the range of billions, and the technosphere began to cloak Earth (Figure 4).  The Industrial Revolution vastly increased the rate of energy flow and materials cycling by the human enterprise.  Telecommunications and transportation infrastructures expanded, and humanity began to get a sense of itself as a global entity.  Evidence that humans could locally overexploit natural resources (e.g. the runs of anadromous salmon in the Pacific Northwest U.S.) began to accumulate.

Figure 4.  The Earth at night based on satellite imagery displays the global distribution of technology dependent humans.  Image Credit: NASA/GSFC/Visualization Analysis Laboratory.

Chapter 4.  The Great Acceleration

Between World War II and the present, the global population grew from 2.5 billion to 7.8 billion people.  Scientific advances in the medical field reduced human mortality rates and technical advances in agriculture, forestry, and fish harvesting largely kept pace with the growing need for food and fiber.  The extent and density of the technosphere increased rapidly.  At the same time, we began to see evidence of technosphere impacts on the environment at the global scale – notably changes in atmospheric chemistry (Figure 5) and losses in global biodiversity.

Figure 5.  The impacts of the global human enterprise on various indicators of Earth system function take on an exponential trajectory after World War II.  Image Credit: Adapted from Steffen et al. 2015.

Chapter 5.  The Great Transition

This phase is just beginning.  Its dominant signal will be the bending of the exponentially rising curves for the Earth system and socio-economic indicators that define the Great Acceleration (Figure 5 above).  Global population will peak and decline, along with the atmospheric CO2 concentration.  Surviving the aftermath of the Great Acceleration with be challenging, but the Great Transition is envisioned to occur within the framework of a high technology infrastructure (Figure 6) and a healthy global economy.  To successfully accomplish this multigenerational task, humanity must begin to function as a global scale collective, capable of self-regulating.  Neither hyper-individualism nor populist tribal truth will get us there.  It will take psychologically mature global citizens, visionary political leaders, and new institutions for global governance.

Figure 6.  A critical feature of the Great Transition will be a renewable energy revolution.  Image Credit: Grunden Wind Farm

Chapter 6.  Equilibration

Human-induced global environmental change will continue for the foreseeable future.  The assumption for an Equilibration phase is that humanity will gain sufficient understanding of the Earth system – including the climate subsystem and the global biogeochemical cycles – and develop sufficiently advanced technology to begin using the technosphere and managing the biosphere to purposefully shape the biophysical environment from the scale of ecosystems and landscapes (Figure 7) to the scale of the entire planet.  Humanity is a part of the Earth system, meaning it must gain sufficient understanding of the social sciences to produce successive generations of global citizens who value environmental quality and will cooperate to manage and maintain it.  The challenges to education will be profound.

Figure 7.  An idealized landscape in which the biosphere and technosphere are sustainably integrated.  Image Credit: Paul Cézanne, Mont Sainte-Victoire, 1882–1885, Metropolitan Museum of Art.

As noted, this Anthropocene Narrative is largely from the perspective of Earth system science.  In the interests of coherence, humanity is viewed in aggregate form.  Humanities scholars reasonably argue that in the interests of understanding climate justice, “humanity” must be disaggregated (e.g. by geographic region or socioeconomic class).  This perspective helps highlight the disproportionate responsibility of the developed world for driving up concentrations of the greenhouse gases.  The aggregated and disaggregated perspectives on humanity are complimentary; both are needed to understand and address global environmental change issues.

The Anthropocene Narrative developed here is broadly consistent with scientific observations and theories, which gives it a chance for wide acceptance.  The forward-looking part is admittedly aspirational; other more dire pathways are possible if not probable.  However, this narrative provides a solid rationale for building a global community of all human beings.  We are all faced with the challenge of living together on a crowded and rapidly changing planet.  The unambiguous arrival of global pandemics and climate change serve as compelling reminders of that fact.  A narrative of hope helps frame the process of waking up to the perils and possibilities of our times.

Recommended Video:  Welcome to the Anthropocene (~ 3 minutes)

This blog post was featured as a guest blog at the web site for The Millennium Alliance for Humanity and the Biosphere (MAHB).

https://mahb.stanford.edu/blog/a-positive-narrative-for-the-anthropocene/

Redesigning Technosphere Metabolism

David P. Turner / April 7, 2020

When I was 20 years old, I picked up a paperback version of “Life and Energy” by Isaac Asimov.  This lucid scientific description of the chemical basis for life was very compelling, indeed, it helped inspire me to pursue a career in biology and ecology.  The time around its publication in the mid 1960s was quite exciting in biology because the fields of biochemistry and cell biology were in full flower; scientists had worked out the role of DNA in regulating cellular metabolism and had achieved a good understanding of the chemistry of photosynthesis and respiration.

Metabolism is broadly defined as the chemical machinery of life, the networked sequences of chemical reactions that build and maintain living matter.  Biologists think of living matter in terms of levels of organization – from cells, through organisms, communities, and the biosphere.

In Asimov’s days, the concept of metabolism was mostly applied at the level of the cell or organism.  However, ecologists in recent years have also applied it in the context of ecosystems and the Earth system as a whole.  Here I would like to consider metabolism at the scale of the technosphere

An ecosystem is a biogeochemical cycling entity, e.g. a pond or a patch of forest.  Like an organism, it requires a source of energy and it cycles nutrients such as nitrogen from one chemical form to another.  Strictly speaking, it is the biota (the set of all organisms) that in a sense has a metabolism.  Component organisms are classified into nutrient cycling guilds — most simply as producers (photosynthesizes), consumers, and decomposers. 

Ecosystem metabolism can be described in terms of energy fluxes, as well as the stocks and fluxes of key chemical elements. The element carbon plays a central role in ecosystem metabolism.  Its cycle extends from the atmosphere, through plants, to animals, and to decomposers, then back to the atmosphere.

The ecosystem carbon cycle. Image credit, Figure 4.1, The Green Marble, David Turner, 2018, Columbia University Press.

At the scale of the Earth system, we can likewise talk about biogeochemical cycling guilds and the associated biogeochemical cycles.  Biosphere metabolism is based on photosynthesis on the land and in the ocean.  Biosphere driven element fluxes help regulate the atmospheric chemistry, ocean chemistry, and global climate. 

Despite repeated intervals in the geologic record of Hothouse Earth and Icehouse Earth, the metabolism of the biosphere has run steadily for over 3 billion years.  

Quite recently in geologic time, a new sphere has emerged within the Earth system.  This “technosphere” is the cloak of technological devices and associated human constructs that has come to cover the Earth.  Like the biosphere, it has a metabolism.

We can think about technosphere metabolism in terms of three key factors: energy flows, materials cycling, and information processing. 

Humans are a part of the technosphere and mostly benefit from its metabolism.  The technosphere produces a vast array of goods and services that support billions of people.  However, the metabolism of the technosphere has begun to disrupt the formerly background global biogeochemical cycles.  It is effectively now a geological force and the changes it has precipitated are not necessarily favorable to advanced technological civilization.  Notably, the delivery of vast amounts of CO2 into the atmosphere is destabilizing the global climate.  A course correction in the evolution of the technosphere is required.

Energy flow into the technosphere is predominantly from the combustion of fossil fuels (coal, oil, and natural gas).  The problem is that the resulting source of carbon to the atmosphere is orders of magnitude greater than the background source from volcanoes.  The background geologic sink for CO2 by way of mineral formation in the ocean depths is likewise small.

Some of the technosphere-generated CO2 is sequestered by land plants and in the ocean, but most of it is accumulating in the atmosphere and causing the planet to rapidly warm.  The technosphere has begun to disrupt the entire Earth system. 

The solution, as is well known, is conversion of the global energy infrastructure to renewable energy sources (solar, wind, hydro, geothermal, biomass, and renewable natural gas).  That conversion is a daunting task but technically it can be accomplished.  The challenge is as much to economists and politicians as it is to engineers.

Converting from fossil fuel-based energy sources to renewable energy sources.
Image credit for power plant and wind turbines.

The materials cycling factor in technosphere metabolism is problematic because the technosphere as currently configured is not effective at recycling its components.  Unlike the biosphere, in which nutrients are cycled, there is often a one-way flow of key chemical elements in the technosphere − from a mineral phase, to a manufactured product, to a landfill.

The problem is that sources of the technosphere components are not infinite.  Building the next mega-mine to extract aluminum degrades the biosphere, a key component of the global life support system. 

Again, this is a largely solvable problem using advanced industrial practices.  We now speak of the emerging circular economy and of dematerializing the technosphere.  More comprehensive recycling may require more energy than dumping something into a landfill, but the potential for renewable energy sources is large.

The information processing aspect of technosphere metabolism refers to its regulatory framework.  Regulation requires information flow, a receiver of that information, and a mechanism to act on it.   

Homeostasis at the level of an organism is a clear case of regulation.  Homeostasis of internal chemistry, such as the blood sugar level in mammals, depends on factors including signals based on chemical concentrations, DNA-based algorithms to formulate a response, and organs that implement a response.

Ecosystems also self-regulate in a sense.  Disturbances (e.g. a forest fire) are followed by vigorous regrowth.  As a result, nutrients that are released in the process of the disturbance are captured and prevented from loss by leaching.  Damaged ecosystems, say that lack species specialized for the early successional environment, may deteriorate after a disturbance.

At the global scale, Earth system scientists have long debated the issue of planetary homeostasis.  James Lovelock famously hypothesized that indeed the Earth system (Gaia) is homeostatic with respect to conditions that favor life.  His idea inspired much research, and many significant biophysical feedbacks to global change have been identified.  The biosphere clearly exerts a strong influence on global climate by way of its impacts on greenhouse gas concentrations, specifically through its role as an amplifier in the rock weathering thermostat.

A new research question concerns the degree to which the technosphere is homeostaticContinued exponential growth in many of the indices of technosphere metabolism is suggestive of inadequate regulation.  To begin with, the regulatory capability of the technosphere is obviously diffuse and underdeveloped. 

Monitoring is a necessary component of effective management systems but the self-monitoring capability of the technosphere barely existed until quite recently.  An anomalous growth in the atmospheric CO2 concentration was measured in the late 1950s by atmospheric chemist Charles David Keeling.  This observation was the first clear signal of technosphere impact on the Earth system.

The Landsat series of satellite-borne sensors that monitor land cover change, e.g. deforestation and urbanization, was initially launched in 1972.  These satellites have since tracked the explosive spatial expansion of the technosphere.  A fleet of other satellites now monitors many other features of the global environment.

From synthesis efforts by agencies such as the United Nations Food and Agriculture Organization, we have good observational data on the growth of key technosphere variables like global population size and energy use. 

As far as a decision-making organ for the technosphere, one barely exists at present.  You might say that market-based capitalism is the organizing principle of the current technosphere.  Everyone wants cheap, plentiful energy (the demand side) and the global fossil fuel industry has managed to keep ramping up the supply.  Under the current neoliberal economic regime, the environmental costs are externalized, and no global oversight is imposed.

However, a new constraint has arisen.  The scientific community has built Earth system models to refine our understanding of Earth’s biophysical regulatory mechanisms and to simulate effects of various greenhouse gas concentration scenarios.  These simulations make clear that uncontrolled emissions of CO2 from fossil fuel combustion must cease or advanced technological civilization will be imperiled.  The 2015 Paris Agreement on Climate Change was a step towards reining in the technosphere, but the influence of that international agreement is not commensurate with the challenges of current global environmental change.

An essential feature of a needed paradigm shift regarding technosphere regulation is the development of a global environmental governance infrastructure.  The technosphere is having global scale impacts on the environment and must correspondingly be evaluated and regulated at the global scale.

A proposed World Environment Organization would not necessarily supersede the traditional nation-state-based architecture of global governance, but it could go a long way towards the required scale of integration needed to address global environmental change issues.

A revamped technosphere metabolism must be built over the course of the 21st Century in which the energy sources are renewable, the material flows are cyclic, and the regulatory framework is rooted in an understanding of limits.  Societies are more likely to change under extreme circumstances, and the economic shock of the 2020 coronavirus pandemic will certainly qualify as extreme.  As the global economy recovers, there will be significant opportunities to change technosphere metabolism.  Let’s hope they are not wasted.

Land Photosynthesis is Increasing


January 20, 2020/David P. Turner

An image of the global biosphere in which depth of greenness on land represents annual photosynthesis.  Wikimedia Commons

Natural Processes are Slowing the Accumulation of Carbon Dioxide in the Atmosphere Strategic Land Management Could Boost That Trend

As global climate warms in response to rising greenhouse gas concentrations, various components of the Earth system are responding in ways that amplify or suppress the rate of change.  Most of these feedbacks are positive (amplify warming).  However, a natural negative feedback (suppresses warming) exists and it could be augmented by human actions.

Scientists generally agree that an increase in the concentration of carbon dioxide (CO2) in the atmosphere, precipitated by human activities, is a major driver of climate change.  Hence, any process induced by rising CO2 and climate change in which less CO2 is added to the atmosphere, or more CO2 is removed from the atmosphere and sequestered, constitutes a negative feedback to climate change. 

The most obvious and necessary negative feedback is a rapid reduction in fossil fuel emissions.  The 2015 Paris Agreement on Climate Change points to progress in that direction.  Unfortunately, fossil fuel emissions continue to rise

Research in Earth system science is examining the operation of another significant, but naturally occurring, negative feedback to climate change.  Observations suggest that the rising atmospheric CO2 concentration and associated climate change is spurring carbon sequestration by the terrestrial biosphere. 

Earth system scientists speak of the “carbon metabolism” of the terrestrial biosphere, referring to the uptake of carbon by way of photosynthesis and its release back to the atmosphere by way of respiration of plants, animals, and microbes (Figure 1).  When photosynthesis exceeds respiration, carbon is sequestered from the atmosphere.  A critical question concerns the degree to which humanity can purposefully augment this negative feedback and help slow climate change.

Figure 1.  The atmospheric CO2 concentration is a function of uptake by processes such as plant photosynthesis, and release by processes such as respiration and combustion of fossil fuels.  Wikimedia Commons.

The Terrestrial Biosphere is Speeding Up

Laboratory and chamber studies show that plant photosynthesis is generally sped up, and drought stress is alleviated, as CO2 concentration increases.  At the global scale, long-term observations are finding a trend of increasing global photosynthesis in recent decades as the CO2 concentration in the atmosphere rises.  The estimated increase is on the order of 30% based on four independent line of evidence.

Terrestrial respiration (see Figure 1) also appears to be increasing, but at a slower rate.  The carbon mass difference between global photosynthesis and respiration is accumulating in the biosphere and helping restrain growth of the atmospheric CO2 concentration. 

The dominant reservoir for sequestered carbon is most likely wood.  Note that forests accumulate wood as they recover from disturbances.  Thus, the terrestrial biosphere uptake or “sink” for carbon is a function of both the disturbance history of global forests and the stimulation of wood production by high CO2.

One indication of an invigorated biosphere comes from observations of the atmospheric CO2 concentration at Mauna Loa Hawaii.  The iconic “Keeling curve” (Figure 2) shows an upward trend attributable mostly to fossil fuel emissions, and an annual oscillation, which is attributable to terrestrial biosphere metabolism.  The annual drawdown in concentration is driven by an excess of photosynthesis over respiration in the northern hemisphere spring, and observations of CO2 in recent decades find a strengthening of that drawdown.  Contributing factors include a longer growing season, deposition of nitrogen from polluted skies (= fertilization), and CO2 stimulation of growth.

Figure 2.  Monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, Hawaii (in red).  The black curve represents the seasonally corrected data. NOAA.

Increasing carbon sequestration by the biosphere is evident from the observation that the proportion of human generated carbon emissions that stays in the atmosphere (the airborne fraction) has fallen in the last decade, despite the large upward trend in fossil fuel emissions.  The airborne fraction was 44% for the 2008-2017 period, with the remainder of emissions accumulating on the land (29%) or in the ocean (22%).

Human Augmentation of Terrestrial Biosphere Carbon Sequestration

So, we have a natural brake on the rising CO2 concentration.  And it is one that could potentially be augmented by human intention. 

Thus far, human land use impacts such as deforestation and agriculture have tended to decrease biosphere carbon storage.  However, there is a large potential to deliberately sequester carbon in terrestrial ecosystems by way of several approaches.   

1.  Expansion of the UN-REDD Programme (United Nations Reducing Emissions from Deforestation and Forest Degradation).  REDD consists of intergovernmental agreements that pay developing countries to protect forests.  The carbon benefit is both in terms of reducing carbon emissions and maintaining carbon sinks.  Remote sensing is increasingly effective in monitoring carbon stocks.  Norway has begun to make payments to Indonesia for reducing rates of deforestation.

2.  Making land management decisions in the context of the whole suite of ecosystem services.  Carbon sequestration in biomass and soil is a climate related service that compliments other services such as conservation of biodiversity.  Management of both public and private land could be shifted towards this comprehensive perspective.

3.  Planting trees − something that can be done at the scale of a suburban back yard, whole urban areas, or regions (Figure 3).  Satellite-observed greening in China is attributed in part to large scale tree planting.  Trees affect the absorption and reflection of solar radiation as well as the carbon balance, so care must be taken about planning large scale plantings.

Figure 3.  Forests accumulate large stocks of carbon relative to other vegetation cover types.  Wikimedia Commons.

These human-mediated carbon sinks will all benefit from high CO2 impacts on biosphere metabolism.  In contrast, the impacts of continuing climate change − independent of CO2 impacts − on these carbon sinks and on biosphere metabolism generally are difficult to anticipate.  At high latitudes, climate warming appears to be associated with vegetation greening.  In contrast, increased rates of disturbance in mid-latitudes − such as climate warming induced forest fire − may offset the strength of biosphere carbon sequestration.

In an optimistic scenario, radically reduced fossil fuel emissions along with increased carbon uptake by the land and ocean will cause the atmospheric CO2 concentration to peak within this century, leading to a gradual decline that is powered by biosphere sequestration (natural and augmented). 

Since we are already committed to significant climate change, that CO2 trajectory would still leave us with major − but hopefully manageable − adaptation challenges.  A stabilized CO2 concentration, would also reduce the possibility that the Earth system will cascade through of series of positive feedback tipping points.  That scenario would take hundreds to thousands of years to play out but it could push Earth into a state threatening to even a well-organized, high-technology, global civilization.

The Second Revival of Gaia

January 11, 2020/David P. Turner

Gaia was originally a figure from Greek mythology: the mother goddess who gave birth to the sky, the mountains, and the sea.  Gaia was adopted by the Romans when they conquered the Mediterranean basin, but her myth was largely abandoned with the ascendency of Christianity by the third century CE.

The first revival of Gaia was a product of the nascent Earth system science community in the 1970s.  Atmospheric chemist James Lovelock was impressed by the finding of geologists that life had persisted on Earth for over 3 billion years despite a 25% increase in the strength of solar radiation (associated with an aging sun), and numerous catastrophic collisions with asteroids.  He also understood that the chemistry of the atmosphere − which provides oxygen for animal respiration, protection from toxic solar UV-B radiation, and influences the global climate − was maintained by the metabolism of the biosphere. 

These observations led him to suggest that the Earth as a whole was in a sense homeostatic, it was able to maintain certain life enhancing properties in the face of significant perturbations.    

In casting around for a name to give this organism-like version of the planet, he was inspired by author William Golding to revive the term Gaia.  Lovelock and microbiologist Lynn Margulis went on to write many influential peer-reviewed papers, and later books, on Gaia.

By the 1990s, the question of what regulated the functioning of the Earth system had become of more than academic interest.  Earth system scientists had observed that the Earth system was changing and begun to worry about possible impacts of those changes on the human enterprise.  Concentrations of greenhouse gases were rising, stratospheric ozone was declining, and a wave of extinctions was sweeping the planet. 

Geoscientists were initially intrigued by the Gaia Hypothesis about planetary homeostasis, hoping perhaps that Gaian homeostasis might save us from ourselves.  But by around 2000 they had largely rejected Gaia as an entity.  Many of the feedbacks in the Earth system (see my Teleological Feedback blog) were positive (amplifying climate change) rather than negative (damping), hence not contributing to homeostasis.

The second revival of Gaia came predominantly from scholars in the humanities.  Historians typically begin human history about 10,000 years ago when humans adopted an agricultural way of life.  However, the discovery that humans have recently begun to alter the global environment on a geologic scale changes everything (as activist Naomi Klein says).  The Earth system is no longer a benevolent background state that will provide a growing humanity with unlimited resources.  Earth has a Gaian history that is now imposed upon by human history.  The new field of Big History aims to juxtapose the geologic and anthropocentric time frames.

Historians needed a term to evoke an Earth system that in a sense has its own agency, and scholars like science historian Bruno Latour and philosopher Isabelle Stengers settled on Gaia.  They emphasized Gaia not as a nurturing mother, but rather a force that will smack humanity down if the current trajectory of global environmental change continues.

In a recent hybrid interpretation, geoscientist Tim Lenton and humanities scholar Bruno Latour have dubbed the newly revived Gaia as Gaia 2.0.  This version refers to an Earth system on which a sentient species has evolved and begun to alter the planet but has collectively taken on the project of developing an advanced technological civilization (a technosphere) that will live on the planet sustainably.  That means comprehensive renewable energy, nearly closed material cycling, conservation of biodiversity to support the background metabolism of Gaia 1.0, implementation of multiple strategies to moderate climate change, and forms of governance that facilitate self-regulation at multiple scales.

Gaia 2.0 is the combination of the pre-human Gaian Earth system and the recently emergent technosphere.

Discovery of the Technosphere

Earth System Science Discovery of the Technosphere

January 5, 2020/David P. Turner

The field of Earth System Science is a relatively young and is still working out how best to characterize Earth’s parts.  A key difficulty is with including the human dimension in a comprehensive description of the contemporary Earth system.  Earth scientists like to think in terms of the Earthly spheres and their interactions, e.g. the geosphere, atmosphere, hydrosphere, and biosphere.  By way of its industrial might, the global human enterprise recently has begun to exert an influence on the Earth system that is the equivalent to one of these spheres – effectively we have become a “geologic force”.  One proposal for characterizing this newly evolved global scale presence is to call it the “technosphere”.

To gain an appreciation for the meaning of technosphere, it helps to draw an analogy to the term biosphere.  We consider the biosphere to consist of all life on Earth.  It lives on energy, mostly in the form of solar radiation that is converted to biomass by photosynthesis, and it has a throughput or cycling of mass, mostly in the form of carbon and essential nutrients.

The Earth system existed before the origin of life and the evolution of the biosphere.  But once in place, the biosphere began exerting a strong influence on the chemistry of the atmosphere and the ocean, as well as on the global climate. 

Likewise, the technosphere is a globe-girdling network of artifacts −including all machines, buildings, and electronic devices – that lives on energy, mostly derived from fossil fuels, and has a throughput of mass (food, fiber, minerals).  The technosphere is growing rather irrepressibly, and like the biosphere before it, has begun to alter the global climate.

In a systems-oriented worldview, we try to differentiate parts and wholes, and to understand their relationship.  Generally, a part does not control the whole.  Thus, a critical feature of the technosphere is that humans are only a part of it, and correspondingly humanity cannot fully control it.  The technosphere is said to have agency, its own agenda.  It thrives on ever greater flows of energy and mass, which is not surprising when you realize that capitalism is its operating system.

Now that Earth system science has “discovered” the technosphere, we can study its structure, properties, dynamics, and how it interacts with the rest of the Earth system.  An awareness that we serve the technosphere as much as it serves us may help us redesign and rebuild it in a way that makes a human-occupied Earth system more sustainable.

Recommended Reading

Earth’s ‘technosphere’ now weighs 30 trillion tons

Zalasiewicz, J., et al. 2017. Scale and diversity of the physical technosphere: A geological perspective. Anthropocene Review. 4:9-22.

Will Steffen , Katherine Richardson, Johan Rockström, Hans Joachim Schellnhuber, Opha Pauline Dube, Sébastien Dutreuil, Timothy M. Lenton and Jane Lubchenco. 2020. The emergence and evolution of Earth System Science. Nature Reviews, Earth and Environment, January 2020).

Haff, P. 2014. Humans and technology in the Anthropocene: Six rules. Anthropocene Review. 1:126-136.

Recommended Video

Daily world air traffic

Daily world air traffic

Posted by The EARTH on Friday, May 12, 2017

Recommended Audio/Video

Bruce Cockburn, If a Tree Falls