Encountering Microbiomes in the Garden

Your garden soil contains millions to billions of individual microorganisms, including bacteria, fungi, viruses, and archaea, representing tens of thousands of different microbial species. Humans evolved for millenia in the presence of these environmental microbes associated with vegetation, soil, water, and wildlife. Our immune systems are not only adapted to coexist with the majority of these microbes, but may even require that interaction to function properly. Emerging scientific evidence suggests that exposure to soil microbes trains the immune system, reduces inflammation, and improves mental health (Rook, 2013). For example, the common soil bacterium Mycobacterium vaccae has been found to have positive impacts on stress tolerance and mental health (Matthews and Jenks, 2013), while other research has shown that children exposed to greater microbial diversity, such as that encountered in farming environments, tend to have lower prevalence of autoimmune disorders, including allergies and asthma, than their urban counterparts (Hanski et al., 2012).

The primary goal of the Garden(er) Microbiome Project was to understand how much microbial transfer from soil to skin occurs during gardening activities, what types of microorganisms are transferred, and how long they can persist on the skin. We are also interested in exploring how soil microbial communities vary with different management practices (e.g., organic vs. conventional) and geographic locations, as we know that microbes play critical roles in soil nutrient cycling, carbon sequestration, pollutant degradation, and, of course, crop health.

To accomplish this study, we recruited 40 gardeners to collect microbial samples from their garden soil and from the surface of their skin (hands). All samples were collected in July–September, 2020, and were equally distributed between the Willamette Valley and High Desert regions, as well as between self-reported organic and non-organic management practices. Each volunteer was asked to collect soil samples from three different garden beds and skin microbiome swabs before, after, ~12 hours after, and 24 hours after gardening (Figure 1). To identify bacterial taxa (different types of bacteria) present in the samples, we used Earth Microbiome Project protocols to sequence the V4 region of the bacterial 16S rRNA gene.

Volunteers collected samples from their garden soil and hand surface microbiome.
Figure 1. Volunteers collected samples from their garden soil and hand surface microbiome.

Preliminary results

In garden soil samples, we observed over 8.5 million individual bacteria, representing about 45,000 different bacterial species. In skin microbiome samples, we observed over 6 million individual bacteria, representing almost 13,000 different bacterial species. Of all these bacterial species, there were just over 7,500 that were shared between garden soils and gardeners’ skin microbiomes over the course of the study (Figure 2).

There were 39,705 bacterial species found only in garden soils, 5,197 species found only in skin microbiome samples, and 7,652 that were found in both.
Figure 2. Unique and shared bacterial taxa found in garden soil and skin surface samples.

Our initial hypothesis was that skin microbiome samples would be more similar to soil samples immediately after gardening, due to microbial transfer from soil to skin during direct contact. We also expected that the skin microbiome would return to baseline (before gardening) after a period of time, depending on individual behaviors, such as washing hands and bathing. It turned out that soil microbial communities were very different than those found on skin. Interestingly, skin microbiome samples tended to be dominated by a small number of taxa, though they were not always the same taxa at different sampling times. For many of the study participants, we did indeed see an increase in shared taxa for the skin samples collected immediately after gardening (Figure 3). However, soil microbes were generally transient on the skin and were no longer present after 12 hours. We note that the COVID-19 pandemic may have influenced hand-washing behaviors and use of hand sanitizers, which could have had additional unexpected impacts on the skin microbiome.

Number of bacterial taxa shared between garden soil and skin microbiome samples increases after gardening, particularly for individuals who spend more than 1 hour gardening, but returns to baseline within 12 hours.
Figure 3. Bacterial transfer and persistence on skin after gardening.

Though it was beyond the scope of the project to describe life history details about every type of bacteria that was found, we did investigate a handful of taxa that were highly abundant in many samples. In garden soil, many of the most abundant bacteria belonged to the genus Pseudomonas. In a recent paper, Sah and Singh (2016) state, “The genus Pseudomonas encompasses arguably one of the most complex, diverse, and ecologically significant group of bacteria on the planet. Members of the genus are found in large numbers in all the major natural environments (terrestrial, freshwater, and marine) and also form intimate associations with plants and animals.” Importantly for gardens, several species of Pseudomonas are able to promote plant growth, while others are well-known plant pathogens. Members of the genus Sphingomonas were also common soil inhabitants found in this study. Sphingomonads are broadly distributed in the environment, including soil, water, air, and plant leaves. Only one species of Sphingomonas is known to cause disease in humans, typically in hospital-acquired infections (Balkwill et al., 2006). A third genus of interest from garden soils was Streptomyces. This is a large genus with over 500 members that are ubiquitous in soils. They are known to form symbiotic relationships with plants and animals, and they are responsible for the production of over 2/3 of all known antibiotics (Antoraz et al., 2015). Streptomyces also produce the chemical compound geosmin, which gives soil its earthy smell (Seipke et al., 2012).

The composition of skin microbiome samples in this study varied wildly from individual to individual, and sometimes even for the same individual at different time points. Among the most abundant taxa we found were members of the genera Pantoea, Acinetobacter, Bacillus, and Klebsiella, as well as Pseudomonas, which was described above. Generally speaking, these are very diverse genera and are widespread in many environments, including soil and human skin. Some Pantoea species produce antimicrobial compounds that can help control fire blight in fruit trees (Walterson and Stavrinides, 2015). The genus Acinetobacter contains two species of interest for health reasons—A. baumannii is typically found in wet environments and is a notable opportunistic pathogen associated with hospital-acquired infections (Howard et al., 2012), whereas exposure to environmental sources of A. lwoffii is thought to protect against development of allergies, although it can also cause infection in immunocompromised individuals (Debarry et al., 2007). Members of the genus Bacillus have been explored for potential probiotics (Elshaghabee et al., 2017), and the genus Klebsiella is somewhat notorious for its human pathogenic members. However, Klebsiella, Pantoea, and several other members of the Enterobacteriaceae family have highly similar DNA sequences in the region that we targeted, so these composition results should be interpreted cautiously.

Conclusion

This study represents one of the very first investigations of garden soil microbiomes and, to our knowledge, the only one that explores the ability of soil microbes to transfer and persist on human skin after typical gardening activities. Overall, we found that garden soils tend to have far greater bacterial diversity than skin microbiome samples. Bacterial community composition was largely similar across different garden beds, whereas skin microbiome composition varied dramatically. Some soil microbes appeared to transfer onto skin during direct contact with soil, but they were generally gone within 12 hours, suggesting a low ability to permanently colonize skin. However, a daily gardening routine with repeated and extended contact with soil likely reinoculates the skin such that soil microbes are like a regular visitor during the growing season.

The specific ecological role of most microbes, both in soil and on skin, is a relatively new area of investigation garnering intense interest. However, few, if any, concrete recommendations are currently available to guide actions towards improving plant and human health. A primary goal of this study is to gather baseline data for future studies, which are needed to further explore the impact of daily soil contact over longer time periods (e.g. entire growing season), how changes in gardeners’ skin microbiomes compare with non-gardeners, and whether consumption of fresh garden produce affects the gut microbiome.

Garden Ecology Lab Research Update

COVID-19 has impacted our research in many different ways, including making it more difficult to find time to provide research updates on a regular basis. Despite the long silence, we have many projects up and running this summer! In fact, we’re launching four new projects, finishing up three long-term projects, and writing up another two projects.

In this blog post, I give a brief overview of the four new Garden Ecology Lab projects that launched this summer.

Microbiome of Garden Soils and Gardeners: Dr. Gwynne Mhuireach’s project has been spotlighted in a recent blog post and webinar. She has selected the 40 gardeners that will be included in her study: 20 high desert and 20 Willamette Valley gardeners, half of whom are organic and half of whom are conventional gardeners. Soon, these gardeners will be sending in their soil and skin swab samples. And then, the long process of analysis will begin.

She’s studying the microbe community in garden soils, and how those might differ according to garden region (Willamette Valley or high desert) and gardening practices (organic versus conventional soil managmeent). She’s also studying whether garden soil microbes transfer to gardeners’ skin during the act of gardening, and if so, how long those microbes persist on the skin.

Pollinators on Native Plants and Native Cultivars: Jen Hayes is well into the data collection phase of her first field season. She is working with undrgraduates Jay Stiller, Tyler Spofford, and Isabella Messer to: track flowering phenology, measure floral traits, observe pollinator visits to study plots, and collect pollinators so that they can later be curated and identified to species. Jen has written about her research project, in a past blog post. I’ve also set up a Flickr album to host photos from her study.

Native plant and nativar study site, at the Oak Creek Center for Urban Horticulture. A yarrow cultivar, ‘Salmon Beauty’, can be seen in the foreground. Nemophila, Clarkia, and Escholzia cultivars can be seen in the background.

Jen’s field site is located at the Oak Creek Center for Urban Horticulture at OSU, which makes it so much easier for undergraduate student researchers to participate in this project. She samples pollinators on Tuesdays and Fridays. She takes 5-minute observations of pollinator visits on Mondays and Thursdays. In between, lots of time is spent weeding and watering plots, counting flowers, and measuring floral traits.

Cost / Benefit Analysis of Growing Edible Plants in Containers: Tyler Spofford is a new lab member, who is completing his undergraduate degree in the BioResource Research program at OSU. He is working to develop a ‘budget’ for growing food in low-cost containers. I’ve summarized this ‘budget’ data for growing food in standard vegetable gardens, but no data yet exists (that I can find) for containerized vegetable gardens. Tyler is growing 40 tomato plants across two sizes of containers (3 gallons and 5 gallons), as single plants and in combination with basil. He’s keeping track of all of the costs (both money and time spent to grow food). When he harvests food, he’ll weigh his harvest, and track the economic benefit of his efforts, and how container size and planting configuration (one or two crops per container) influences harvest. I’ve set up a Flickr album for his study, to host project photos.

Tyler’s project grew out of my concern that, even though 18,000+ people enrolled in a free, online vegetable gardening course (over 40,000, at last count) ~ that the people who might be most at risk for food insecurity may not be benefitting from Extension Master Gardener resources and information. Tyler’s project is one component of a larger effort to develop more support for renters who might want to grow their own food.

Bucket gardens, on the day that the tomatoes were planted into 5-gallon BiMart buckets. We tried to keep all materials and plants low cost and easily accessible. Photo Credit: Tyler Spofford.

Below is an excerpt from a concept paper I’m writing on the topic:

We know that the COVID-19 pandemic is exerting stress on multiple pressure points related to the economic and food security of U.S. households: more people are in need of food aid and more people are concerned about food access. The U.S. has a long history of gardening in times of national emergency (e.g. Victory Garden of WW I and WWI II, ‘recession gardens’ of 2008). The benefits of gardening as a tool of economic security and resilience are well-established. However, research suggests that these benefits are largely restricted to homeowners. Currently, most state and local laws afford no legal right to renters who want to grow their own food. Community gardens might offer renters opportunities to grow their own food, except that these gardens are often associated with gentrification. To promote public health in the face of economic and health risks of COVID-19 and future pandemics, it is critical to support the food gardening efforts of the most vulnerable. Those in rental housing have been found to be most vulnerable to food insecurity, as well as the food and economic insecurity associated with natural disasters.

Pollinators on Buddleja Cultivars: Cara Still is studying how breeding butterfly bush (Buddleja davidii cultivars) for sterilty impacts the pollinator community that visits Buddleja blossoms. Buddleja davidii and some fertile varieties of this plant are considered noxious weeds in Oregon, and many other places. Normally, noxious weed status would make it illegal to sell or trade butterfly bush in Oregon. However, the Oregon Department of Agriculture allows exceptions for non-sterile cultivars and interspecific hybrids.

Buddleja ‘Buzz Velvet’ (I suspect that plant breeders have a lot of fun, naming new cultivars)

Cara is studying whether or not the plants that are allowed for sale, under the exceptions, still pose a risk of invasion. Our group is working with Cara to document the abundance and diversity of pollinators that visit eight fertile Buddleja cultivars with 16 cultivars that have been bred for sterility.

When I was initially approached to participate in this project, I thought that it should be obvious that sterile cultivars would not attract pollinators. Afterall, sterile cultivars don’t produce pollen, or produce very little pollen. Without pollen, I doubted that bees would visit the plants. But, it is possible that sterile plants would still produce nectar. And, many pollinators ~ such as butterflies and moths ~ visit plants to consume nectar, rather than pollen.

The more I looked into the literature, I realized that no one has yet studied how breeding for sterility might affect a plant’s attractiveness to pollinators. Would sterile forms of butterfly bush no longer attract butterflies? Would sterile varieties attract syrphid flies that visit blossoms for nectar, and not pollen? We’ll let you know what we find, in about a two years. In the meantime, you may want to visit the Flickr album of photos I set up for Cara’s study.

Link to ‘Garden(er) Microbiome’ Webinar Recording

Thanks to all who signed up for the ‘Citizen Science in the Garden!: Studying the Garden(er) Microbiome’ webinar. The webinar recording can be found below, or via THIS LINK.

If you are interested in participating in this project, please leave your information in this short survey. We will work to get back to everyone who responds, within the next month. Depending upon the volume of interest that we receive, it may take a bit longer.

Thanks to all wanting to learn more about the microbiome of garden soils and gardeners!

Welcome Gwynne Mhuireach and the Garden(er) Microbiome Project

This post a from Gwynne Mhuireach, who will be studying the microbiome of garden soils . . . and gardeners!!

***********

A little about me…

Gwynne Mhuireach will be studying the microbiome of garden soils and gardeners!

I am a researcher, farmer, and mom to twin teenagers. My formal education is broadly cross-disciplinary, including degrees in biology, architecture, and landscape architecture. While I was working on my Masters, I began studying microbes inside buildings as a member of the Biology and Built Environment Center at the University of Oregon, where we discovered that our exposure to microorganisms indoors depends a great deal on what microorganisms are present in the immediate outdoors. This line of inquiry was so fascinating that I entered the PhD program in Landscape Architecture to investigate how urban green space might influence the airborne microbial communities that people are exposed to in their daily lives. Ultimately with my research, I aim to gain a deeper understanding of how human health and environmental health are connected through the microbes we share. 

In addition to my academic research, I also own and operate a small livestock farm with my two teenagers, Lyric and Cadence, and my partner, Tom. A native Oregonian, I was born and raised on a small farm near Klamath Falls, Oregon, where my family produced (and continues to produce) hay and cattle. Now I choose to continue the agricultural lifestyle that has been my family’s way of life for three generations. Producing food through hard work and stewarding a small piece of land to pass on to my children is very important to me. I believe that having a strong connection to the land is also part of what drives me to study microbes in the context of the outdoors, particularly how we interact intimately with them by getting our hands dirty in the soil.

The Garden(er) Microbiome Project

In partnership with Gail Langellotto, I am launching a new citizen science project called, “Microbes under your fingernails? An exploration of the garden microbiome and potential transferability to human skin.” While soil science is well-developed in terms of nutrients and organic matter needed to keep plants healthy, less is known about the diversity and composition of microbes present in agricultural soils, particularly in small-scale farms and gardens. Astonishingly, despite the likelihood of substantial exposure to soil microbes while gardening, yet we lack even the most basic understanding of how much microbial transfer from soil to skin occurs, what types of microorganisms are transferred, or how long they persist. Through this project, we seek to answer these questions with the help of volunteers—you!

Gardeners who volunteer to participate in this project will be asked to collect soil samples from several different beds in their gardens and from the surface of their hands and/or forearms. There will also be questionnaires that ask for information about garden management practices and daily skin care (use of anti-bacterial soap or lotion, etc.) during the sampling period, which will last 2 days. Volunteers will receive detailed results, including a comprehensive soil health assessment and skin/soil microbiome reports. We will also share our findings with other researchers, farmers/gardeners, and the broader public online and through the Master Gardener network. We anticipate that this citizen science project will not only answer our original research questions, but also shed light on how different management practices can impact garden soil health in different climate zones of Oregon.

If you are interested in participating in this project, I am hosting an informational webinar on Friday, June 5th (2020) at 10am. Registration is required to attend. The webinar will be recorded and posted.

If you are unable to attend, but are still interested in participating, please let us know a bit more about you and your garden by taking this short survey. Please note that for this particular project, we are specifically seeking gardens located in Oregon’s Willamette Valley or High Desert regions.

Urban Garden Soils Study Update

It has been a busy summer in the Garden Ecology Lab!

  • Mykl Nelson successfully defended his thesis on urban garden soils, and graduated with a M.S. in Horticulture this past June.
  • Gail, Aaron, and Mykl all shared their research results with Master Gardeners, at the recent Growing Gardeners conference.
  • Aaron continues his fieldwork, documenting the attractiveness of several Willamette Valley native plants to pollinators. You can find his full list of plants here.
  • Aaron launched the survey part of his research, to document the attractiveness of these same plants to gardeners. If you would like to participate, you can find our recruitment letter, here.
  • Gail and Isabella continue to sample insects on a monthly basis, from 24 Portland area gardens. Our July sample has been pushed to the week of July 30th, because Gail was invited to serve as a panelist on a USDA grant panel. Sampling takes four long days ~ made all the more difficult by Portland’s heat wave. But, sampling during the heat wave will be interesting. Do garden habitats become even more important to bees, when the heat dries up forage in natural and wild habitats? We shall see.
  • Bees from our 2017 sampling effort have been pinned, labelled, and sent to the American Museum of Natural History for expert identification. Thank you to the Oregon Master Gardener Association for a $500 grant to help pay for the expert bee identification.

Today, I’m packing field supplies and clothes for the July 30-August 2nd garden bee sampling effort. It seemed like a good time to provide an update on our garden soils work. I wrote this article for the Hardy Plant Society of Oregon quarterly magazine. I thought that others who are interested in garden ecology might be interested in seeing an update on this work. We are currently working on a manuscript of Mykl’s research, for submission to the journal Urban Ecosystems. In the meantime, some of the highlights can be found below.

**********************

Despite the popularity of urban agriculture, we know virtually nothing about urban agricultural soils, including residential vegetable gardens. We thus studied urban garden soils to get a sense of the characteristics of residential-scale, urban agricultural soils in western Oregon. Last year, we took soil samples from 27 vegetable gardens in Corvallis and Portland, and tested for differences between garden sites based upon bed-type (e.g. raised beds versus in-ground beds). All gardens were managed by certified Extension Master Gardeners.

If you have taken a Master Gardener soils class, perhaps you have heard the soil management mantra ‘just add organic matter!’. This mantra comes from the idea that adding more organic matter (OM) can improve soil tilth and nutrition. However, this mantra was derived from research in large-scale farming systems, where farmers often struggle to raise their soil OM by even 1%, across tens or hundreds of acres of crop production.

We found that nearly every garden that we sampled had an excess of OM (Table 1). Soil management guidelines suggest that farmers should aim for 3-6% soil OM. Across all of our garden study sites, vegetable garden soils were on average 13% OM, by volume. Raised beds were significantly over-enriched in organic matter (15% OM, on average), compared to in-ground beds (10% OM, on average). To put it another way, Master Gardener-tended vegetable gardens were over-enriched in OM by 2-5 times the recommended level!

This excess in organic matter likely contributed to excessive levels of other soil parameters. For example, most garden study sites were above recommended levels for electrical conductivity (a measure of soil ‘salts’). All gardens were above recommended levels for sulfur (S), phosphorus (P), calcium (Ca), and magnesium (Mg) (Table 1). Only nitrogen (N), potassium (K), and boron (B) were generally within recommended levels (Table 1).

Table 1. Percent of garden study sites that were within, above, and below recommended ranges for various soil parameters. OM: organic matter. EC: electrical conductivity. N: nitrogen. S: sulfur. P: phosphorus. K: potassium. Ca: calcium. Mg: magnesium. B: boron.

Soil Parameter Percent of Garden Study Sites
Within Recommended Range Above Recommended range Below Recommended Range
OM 6% 94% 0%
EC 18% 82% 0%
N 70% 30% 0%
S 0% 100% 0%
P 0% 100% 0%
K 73% 24% 3%
Ca 0% 100% 0%
Mg 0% 100% 0%
B 42% 3% 55%

The excessive organic matter in residential-scale garden soils makes sense, when considered in the context of garden size. In small garden plots, gardeners can easily over-apply products which have been recommended for successful, large-scale, agricultural production. It is easy to imagine that the over-abundance of organic matter in soils results from large amounts of compost added to a relatively small area.

Our results point to the importance of conducting periodic soil tests in garden soils. Instead of ‘just adding organic matter’, gardeners need to understand where they are starting from, before adding amendments and fertilizers to their soil. Apply focused applications of specific nutrients (such as boron or nitrogen) to correct nutrient deficiencies, as needed, while avoiding additions of nutrients that are at relatively high levels. For example, nitrogen is extremely mobile in soils, while phosphorus tends to build up over time. Adding focused applications of synthetic (15-0-0) or organic nitrogen (in the form of feather meal) can help meet crop needs without providing excessive amounts of phosphorus, over time. Gardeners who annually apply organic matter to their soils, without the benefit of a soil test, may be unintentionally adding too much phosphorus to their soils. Soils with excessive micronutrients may hinder plant growth. Soils with excessive phosphorus might contribute to water quality issues in their watershed. Excessive phosphorus also harms or kill beneficial mycorrhizal fungi.

Urban Soils Update, May 2018

garden ecology lab

Urban agriculture has received a lot of attention over the past decade, as more folks are looking to localize their food supply, reduce food miles, and/or exert greater control over their food. Urban agriculture, however, brings a distinct set of challenges from farm systems in more rural regions. For example, urban farms tend to be relatively small and diverse (which can make it challenging to rotate crops), and are often close to neighborhoods and housing developments (which may make urban farms more prone to nuisance complaints). Urban farmers tend to be younger and to have less experience in agriculture, compared to rural farmers, and in need to high levels of technical assistance from Extension and other providers (Oberholtzer et al. 2014). However, many of the resources that Extension has to offer are focused on traditional growers, rather than new urban farmers.

Our lab group wanted to examine an issue that is specific to urban growers, and for which we could find very little information: urban agricultural soils. Soil scientists have prioritized research on urban agricultural soils as a key priority for the 21st century (Adewopo et al. 2014). Yet for his thesis work, Mykl Nelson could only find 17 academic papers that looked at urban agricultural soils in the United States. Most of these studies focused on

residential-scale or community-scale urban agriculture (in home or community gardens). Only one paper looked at soils on an urban farm.

Still, residential- and community-scale gardening is an important type of urban agriculture. In Portland, a conservative count of 3,000 home gardens collectively covers more than 20 acres of land (McClintock et al. 2013). In Chicago, residential food gardens cover 29 acres of land, and represent 89% of all urban agriculture (Taylor and Lovell 2012). In Madison, WI, more than 45,000 food gardens cover more than 121 acres of land (Smith et al. 2013).

For Mykl’s thesis, he looked at urban soils from 27 Master Gardener-tended gardens, in Portland and Corvallis, OR. Even though all gardens were tended by OSU Extension trained Master Gardeners, they were incredibly diverse: 74 different annual crops, and 58 different perennial crops were grown across these gardens. Unique crops included kalettes, papalo, thistle, savory, paw paw, quince, sea berry, and service berry, among others.

In terms of the soils, Mykl found that soils were within the recommended range for physical parameters, such as bulk density, wet aggregate stability, and soil compaction. However, home garden soils tended to be over-enriched in soil organic matter. Growers generally aim to foster soils that are between 3-6% organic matter. However, Mykl’s tested soils were on average 13% organic matter! Raised beds were on average 15% organic matter. In ground beds were a bit better: 10% organic matter, on average. So to put this another way, Master Gardener vegetable garden soils had 2-5X the recommended level of organic matter for productive agricultural soils. We suspect that Master Gardeners were annually adding organic matter to their soils, without necessarily knowing the baseline levels in their soils. Adding more organic matter, without knowing where you’re starting from, encourages over-applications.

Does that matter? Afterall, for years, we have been preaching that if you have sub-par soils, ‘just add organic matter’. Biological activity in these soils was great! But, the excess in organic matter promoted excess in several soil nutrients. Garden soils were over-enriched in phosphorus (mean phosphorus across all gardens was 2-3X recommended levels. Potassium in some gardens was 5X recommended levels! Gardens were over-enriched in magnesium and manganese, too. Nutrient excess was worse in raised beds, compared to in-ground gardens.

Unexpectedly, Mylk found the highest lead levels in raised beds. Often, we tell gardeners to grow their food in raised beds, to avoid heavy metal contaminants. Why would there be high lead in raised beds, if we weren’t finding elevated lead levels in nearby in-ground beds? We suspect that the lead might be coming in from compost waste that can be purchased on the retail market. If a compost product makes no nutritional claim, then it is exempt from analysis and contamination limits.

We can’t wait to finalize this work for publication. In the meantime, I wanted to share a brief update on this work.

Mykl will be defending his thesis on May 31st. We’re trying to arrange an online broadcast of the public portion of his thesis defense (1pm-2pm, May 31st). I will update this post, if we are able to get an online link for his presentation.

Garden Ecology Lab News, January 2018

It’s been a busy month in the Garden Ecology Lab.

  • Gail’s manuscript on bees in home and community gardens has been published in Acta Hort. Briefly, the results of this literature review are that: 213 species of bee have been collected from a garden habitat; gardens have fewer spring-flying and fewer ground-nesting bees, compared to non-garden sites; I suspect that over-mulching might be cutting out habitat for ground-nesting bees in gardens.
  • Aaron presented his first Extension talk to the Marion County Master Gardeners. This 90-minute talk was an overview of using native plants in home gardens.
  • The entire lab is getting ready to present their research results at the 2018 Urban Ecology Research Consortium annual conference, to be held in Portland on February 5th. A few highlights of our presentations, can be found below.

Gail’s Poster on Urban Bees: we sampled bees from 24 gardens in the Portland Metro area (co-authored with Isabella and Lucas)

  • Langellotto and Messer UERC 2018 Poster: click to see preliminary results
  • Most of the bees that we collected await identification. We did find a moderate relationship between lot size and bee abundance: larger yards hosted more bees. But, we also found evidence that suggests that intentional design can influence bee abundance: one of our smallest gardens (site 56 = 0.1 acre), located in the Portland urban core (surrounded by lots of urban development) had the second largest number of bees (42), of the 24 gardens sampled. This garden was focused, first and foremost, on gardening for pollinators. The plant list for this garden (photos, below) includes: borage, big-leaf maple, anise hyssop, globe thistle, California poppy, nodding onion, yarrow, fescue, goldenrod, Phacelia, Douglas aster, lupine, mallow, columbine, meadow foam, yellow-eyed grass, blue-eyed grass, coreopsis, snowberry, Oregon grape, trillium, mock orange, pearly-everlasting, serviceberry, coneflower, blue elderberry, currant, milkweed, dogwood, shore pine, crabapple, cinquefoil.

 

 

 

 

 

 

 

 

Mykl’s Poster on Urban Soils: we sampled soils from 33 vegetable beds across Corvallis and in Portland (co-authored with Gail)

  • All gardens were tended by OSU Extension Master Gardeners.
  • Gardens were over-enriched in several soil nutrients. For example, the recommended range for Phosphorus (ppm in soil) is 20-100 ppm. Garden soils averaged 227 ppm. The recommended range for Calcium is 1,000-2,000 ppm, but the mean value for sampled beds was 4,344 ppm.
  • Recommended ranges gleaned from OSU Extension Publication EC1478.
  • There was a tendency for soils in raised beds to be over-enriched, compared to vegetables grown on in-ground beds.
  • Data suggests that gardeners are annually adding additional soil amendments or compost, and that there has a build up of certain elements in the soil.

Aaron’s Talk on Native Plants: measured bee visitation to 23 species of native and 4 species of non-native garden plants (co-authored with Lucas)

  • Field plots established at the North Willamette Research and Extension Center
  • In the first year of establishment, of the 27 flowering plants that were the focus of this study, seven natives (lotus, milkweed, camas, strawberry, iris, sedum, blue-eyed grass) one non-native (Lavender) did not bloom, or else did not establish
  • Several natives attracted more bees than even the most attractive non-native (Nepeta cataria, or catmint). These include:
    • Gilia capitata: Globe Gilia
    • Madia elegans: Common Madia
    • Aster subspicatus: Douglas’ Aster
    • Solidago candensis: Goldenrod

Studying Urban Garden Soils

 

A soil pit is used to understand the nature of subsoil strata.

The Benton County Master Gardener demonstration garden was one of our soil test sites. This site had vegetables growing in raised beds, and in in-ground beds.

The Benton County Master Gardener demonstration garden used intercropping techniques to suppress weed growth in their beds.

This post is modified from a submission from Michael Nelson. It details lessons learned from his survey of garden soils, across Corvallis, Oregon, and the Portland Metropolitan area.  In September 2017, Michael sampled soils from about 25 gardens. These gardens used raised beds and/or in ground gardens to grow a variety of vegetables, herbs, and fruits. We wanted to study urban garden soils ~ and soils in raised beds versus in ground beds ~ for a few reasons. Specifically, we wanted to look at a few different questions:

  1. Do raised bed gardens offer greater protection from soil contaminants than in-ground gardens? In the Master Gardener Program, we recommend raised beds as a way to work around soils that may have heavy metal contaminants. However, heavy metals can become airborne, and deposited on soils from industrial emissions, traffic, and re-suspension of road dust. If this is the case, then gardening in raised beds might offer a false sense of comfort. We thus chose to sample gardens that are close to, versus further from, major roadways and traffic.
  2. Are garden soils deficient in some nutrients (such as nitrogen), but over-enriched in others (such as phosphorus)? With enthusiasm surrounding organic gardening and composting, we are wondering if repeated applications of compost might be contributing to nitrogen deficiencies, phosphorus leaching, or other soil nutrient issues.
  3. What is the general state of urban garden soils in Oregon? If we had to ‘grade’ soil health, by looking at soil structure, tilth, nutrients, and other biological, chemical, and physical characteristics of soils ~ what would that grade look like?

I asked Michael to write up a short report on his summer work. What did he observe in the gardens? What did he hear from gardeners? Are there initial findings or impressions he could share?  His report is below.

*************

We began this project to examine differences between raised and in-ground garden beds in urban areas. We conducted a short survey of each site, where we noted weed pressure, garden area (in meters squared), and crops grown. We also noted any concerns voiced by the gardeners, about their vegetable production site. We sampled garden beds and kept samples separate depending on the type of bed (in ground versus raised-bed). We are now processing the soil samples in the Central Analytical Laboratory of OSU, so that we can determine the chemical, physical, and biological characteristics of our garden soil samples.

A few initial observations:

  • The most common complaint we heard from gardeners was a lack of space to properly rotate their crops. For example, nearly every site had tomatoes, but many did not have the space to avoid planting in the same ground as the previous season.
  • In the lab, our initial findings are that garden soils do not fit well with traditional soil testing methods. The very high content of organic matter and low incidence of rocks brings immediate problems to the lab testing process. The first step taken when a lab receives a soil sample is to pass the sample media through a sieve. The larger pieces are lightly ground and sieved again. The aim is to isolate the soil from non-soil matter in order to restrict laboratory tests to just the soil content itself. The organic matter is often shredded by this process, which can alter the results of the laboratory tests. The primary problem here is that the organic material in our sampled garden soils is mostly forest by-products: timber waste. This material is generally inert in the garden setting and not accessible to plants. When this organic matter is included in a soils analysis, the organic matter compounds are incorporated into the test results and  skew the report away from the actual state of the garden’s soil.

The next steps in understanding garden soils are in research and application. In research, soil testing should be reconsidered with gardens in mind. There may be alternative processing techniques to reduce variability between test results and garden soil content. Theoretical models may be able to produce a metric which could be used to adjust the results of a standard soil test to reflect garden conditions more accurately.

In application, greater precision of terminology would allow for a more refined view and management of garden systems. In particular, bed-types should be grouped by their method of establishment (i.e. was soil transported to the garden, or not), rather than the presence or lack of a garden border. Additionally, organic mulches and compost should be considered in finer detail. The source of the product is important to determine what chemical content is being applied to the soil top. The physical structure of the product is important to relay the extent to which the mulch content will likely be incorporated into the soil, itself.

We’re still actively working to process and test samples. We look forward to sharing more results, in the near future.