How attractive are native wildflowers to gardeners?

For my dissertation research, I am studying which native Willamette Valley wildflowers are most visited by pollinators and natural enemies for use in home gardens and urban landscaping. I’ve previously shared preliminary results from my field study on our blog, namely pollinator abundance and richness. For a refresher, here are summaries from 2017, 2018, and 2019.

Initial survey

Determining which of these flowers are most attractive to insects is only half of the equation — I also want flowers that are attractive to gardeners. To investigate this I developed two surveys — thanks to anyone reading who took them!  The first simply asked gardeners to rank the aesthetic appeal of my study plants, as well as how likely they would be to utilize them in their home gardens. This allowed me to get a baseline understanding of how appealing these flowers are for use in home gardens and landscaping.

As you can see in the figure below, many of the plants most visited by bees (highlighted in orange) were the least attractive to gardeners (Fig. 1), while plants gardeners liked the most (e.g. Iris, Columbine) were hardly visited by bees. However, its notable that many of these native wildflowers ranked around a four on a 1-5 scale, showing that these flowers do have a high potential appeal for use in landscaping! 

Figure 1: Gardener ranked aesthetic appeal of study flowers on a scale of 1-5. Orange bars note plants that were consistently highly visited pollinator plants. N=587

Follow-up survey

The follow-up survey consisted of a subset of ten flowers most visited by bees, and again asked respondents to rank the aesthetic appeal and likelihood of planting for each of these flower species. Then, they were shown facts about and images of bees that visit each flower species, and asked whether they viewed each plant species more favorably, less favorably, or the same. Finally, they were asked to re-rank how attractive they found the flower species and how likely they would be to use the species in their garden, both on a scale of 1-5.

Gardener acceptance

This second survey showed a remarkable increase in gardener acceptance of pollinator friendly native plants after being educated on plant-pollinator associations. Over 80% of respondents stated that they viewed Clarkia amoena as more attractive after gain, and over 60% of respondents viewed Phacelia heterophylla, Madia elegans, and Gilia capitata as more attractive (Fig. 2). 

Figure 2: Percent of respondents viewing flower species as more attractive after learning about pollinator associations. N=184.

Likelihood of planting

After learning about the benefits these flowers provide to pollinators, gardeners were also more likely to plant all ten flower species (Fig. 3). Notably, they were 40% more likely to plant Phacelia heterophylla, (a species that ranked as the least aesthetically appealing overall in the first survey). As a whole, they were also over 20% more likely to plant Solidago canadensis, Clarkia amoena. Similar increases were also observed in likelihood of planting Oreganum vulgare and Nepeta cataria. Many of the plants that showed a smaller percent change are species that started out with a higher aesthetic appeal (e.g. Gillia capitata, Lavendula intermedia, Aster subspicatus), meaning gardeners were already very likely to include these plants in their home garden before learning about the ecological benefits they provide. 

Figure 3:  Percent change in respondent’s likelihood of planting each top pollinator flower after learning about the pollinators associated with each. N=184

Ecological beauty

What does this all mean? This suggests that although native plants are frequently denounced as being less attractive than showy garden species, many home gardeners are still willing to use native flowers in their landscaping. Additionally, this lends credence to the concept of “ecological beauty” – that many gardeners are willing to utilize plants that will increase the habitat value and wildlife diversity in their yards. 

Flies as Pollinators

This post comes from Cliff Brock, who is a graduate student in the Contreras (plant breeding), Langellotto (pollinators), and Lambrinos (invasive plants) lab groups. Cliff is studying the impact that plant breeding has on invasiveness and pollinator visits in butterfly bush (Buddleja davidii) and its cultivars. Having three co-advisors can be extremely challenging. However, Cliff has been a true joy to work with, and seems to have navigating the complexities of three labs, quite well.

Cliff decided to write about flies as pollinators. When I asked him why he wanted to write about flies, he mentioned that they usually pollinate flowers that have foul smells, or that may not be as attractive as other flowering plants. He said that he has a special place in his heart for these ‘botanical underdogs’ ~ a sentiment that I thought was sincerely sweet.

***************************************

While bees deservedly get most of the attention regarding their pollination services, many of our most important crops and wildflowers are primarily pollinated by flies.  Generally speaking, fly-pollinated flowers are dark maroons to reds and emit earthy, fermented, or putrid aromas.   The coevolution of plants and flies has resulted in some of the most amazing and unusual flowers.  The largest flowers in the word, Amorphophallus and Rafflesia, are almost exclusively pollinated by flies and beetles.And even our beloved chocolate requires a small midge fly for its sole pollinator. 

Rafflesia is a genus of parasitic plants from SE Asia.  Some have blooms 39″ in diameter.
Photo Source: https://en.wikipedia.org› wiki › Rafflesia

Here in the US, many of our most beloved spring ephemerals have coevolved with flies.  While many Trillium are bee pollinated (e.g. the abundant white Trillium ovatum), species with red and brown flowers are primarily pollinated by fungus gnats.  The iconic American pawpaw (Asimina triloba), which has seen a resurgence in popularity, smells of rotting flesh and is irresistible to a whole host of fly species.

Here we see Trillium erectum (or stinking Benjamin) absolutely covered with fungus gnats.  Photo from Brooklyn Botanic Garden

Asarum, or wild ginger, is a generally diminutive herbaceous plant often grown as a groundcover.  The odd flowers are born close to the ground and are usually hidden from human view.   Yet I find them particular beautiful, and every year I look forward to rediscovering them beneath the mottled foliage.  Asarum takes fungal mimicry to a new level.  Panda ginger, one of the Asian species, is especially funky.  The flowers mimic the colors, textures, and smells of toadstools.

Asarum maximum (as seen on the left)might have evolved to mimic a woodland fungus somewhat like the black morel, below.  Wild ginger photo from Plant Delights Nursery. Morel photo from Ohio mushroom society.

Cited Sources:

What’s next in urban agriculture?

What’s next in urban agriculture is going to take place in the cityscape we’ve all heard described before: two-thirds of the world’s 10 billion people will be living in urban areas—mostly across 40 or more mega-cities around the globe—by the year 2050. You’re probably bracing yourselves, waiting for either a list of depressing facts or some ‘hail Mary, technology can save us all’ kind of talk.

Not today. Today we think of green pastures amid concrete jungles.

Urban agriculture is the production, processing, and marketing of produce based on living systems from the land or water located throughout urban and peri-urban areas. Anyone cropping food, flowers, fiber, feed, or herbs from their corner of their city is engaging in a small-lot, local agriculture with an utterly minimized transport chain from grower to eater. These green, vegetative, productive spaces within city landscapes can provide valuable ecosystem services: floral habitat for pollinators, stormwater management, and even mediating the temperature extremes of urban heat islands. People often find urban gardens foster cross-cultural and multi-generational spaces for social interaction. These disparate green spaces, however small each might be, aggregate to large areas across metropolitan regions. A conservative 20 acres of urban gardens in Portland, Oregon, fifty-one acres in Chicago, Illinois, and a whopping 120 acres in Madison, Wisconsin!

More good news: these growing plots don’t stop at the hobby level. Across the United States, counties with significant urban encroachment also produce the lion’s share of fruits, nuts, berries, and vegetables, as well as accounting for most of the farm-gate value of these goods.

But now we come to a bit of bad news, unfortunately. Because while these urban-adjacent farmlands produce the most food in the most high-value agricultural markets, their days are numbered. While not as romantic as the Amazonian forests, some of the most fertile land across this country is being consumed and paved over by sprawling cityscapes. This plight is common due to a mismatch between those who own deeds to land and those who seek the land’s productive agricultural use. Countless urban spaces have seen their productive days ended when the land became valuable enough for someone to decide to sell it off for development.

This is relevant to us today because growing food within the cities themselves is one of the easiest ways to increase our resilience against disruptions to our modern, industrialized food supply chain. Just as victory gardens stabilized many citizens through global wars, we too can use our land and our labor to renovate vacant land in shrinking cities like Baltimore, Cincinnati, Philadelphia, Detroit, and the others which are sure to follow the implosion of the last economic boom.

New American farmers—entrepreneurs all—are literally working overtime to access the new niche markets which are springing up across modern urban centers. They’ve surveyed the future and invested in becoming extremely specialized producers of fine agricultural goods. To me, that sounds like taking quite chance: betting it all on a small market with few, discerning clients.

But we might gain some of their confidence if we examine some of their assumptions. Barring extreme, world-altering scenarios like an extinction-event asteroid impact, human population in 2050 is pretty well guaranteed at this point. It’s only thirty years away and average birthrate is not quickly changing. This also means we can be pretty secure in the assumption of continued urbanization. The current population density alone is enough to birth enough humans to further compound the growth of urban centers. This makes the relevance of things like tele-commuting more a question of degree of urban density and sprawl growth. Lastly, many farmers are seeing their emotional investment in the quality of food finally reflected in public policy.

A proposed “new food equation” predicts the end of ‘cheap food’ as global calorie production has been secured. The focus is now changing to include quality, or the nutritional content of foodstuffs. Nations recognize that food production remains a matter of national security in a number of ways. First as a matter of imports and exports. Self-sufficiency means not relying upon another nation to feed your populace. Excessive production enables exports which not only enrich a nation but can operate as the same leverage which is being avoided in the previous example. Lastly, public officials and private people are beginning to attribute more health complications and costs to dietary factors like obesity or malnutrition.

New urban farmers are exploring many novel approaches to urban agricultural production. Controlled Environment Agriculture (CEA) is taking protected cultural growing techniques and implementing them using modern technology. Managers can adjust a whole palette of environment controls: light, temperature, precipitation, atmospheric composition, hormonal regulation, and genetic alteration.

This is made possible largely due to advances in microelectronic technology. Light-emitting diodes (LEDs) have drastically slashed the cost AND increased the efficiency of artificial lighting. Cost-effective LEDs have revolutionized indoor production like plastic sheeting did for field production. And with the decreased cost of indoor production comes increased innovation as more minds are able to devise feasible plans to grow something worthwhile in artificial conditions. Some of these ideas look to the world’s growing demand for protein and consider growing plant-protein for lab-burgers whiles others simply aim to minimize their livestock and grow insect-protein.

How can someone possibly stay abreast of all these developments? I feel like I’ve listed too many, and yet for each example in this text there are a dozen which could not be included. Well, the first way is to get directly involved! Find and become a part of something in urban agriculture. If you’re in relevant circumstances you’ll need to expend less energy trying to stay informed as this will simply become a common topic of your conversations. You could also set up some phrases to trigger a news-aggregator to your inbox. Look for topics relevant to new urban farming. I reiterate my point about protein production: it’s going to be big at some point and the innovation is going to be discovered by a small operation facing unconventional challenges. While it’s cliché and tastes like papier-mâché to say: apps! Seriously, be on the lookout for apps which facilitate the work of small farmers. If there’s ever going to be a mass mobilization of people into agriculture, then we need to simplify and systematize as much as we can. Trust me, most of them will feel fine if they’re no longer forced to wear so many hats.

If you’re still interested, you might benefit from investigation into various topics which have been extensively researched and greatly overlap with many facets of urban agriculture. Cuba’s organopónicos system demonstrates the practical success of urban food production when actively pursued by many people and policies. The Netherlands  have led global greenhouse production for years, and they continue to innovate and push the boundaries of protected and synthetic production environments.

Space! The final frontier. It’s exciting, isn’t it? I’m excited even just to say the word. I really did shout it out just then. I’m dreaming of going to space one day, how about you? Anyway, astronauts are experimenting with plant growth and crop production in space. It’s all quite enthralling, but too much for this post. If you’d like to know more, keep an eye out for my next post in a couple months!

Further research options:

An article from National Geographic about how The Netherlands ‘feed the world.’ Especially interesting is the third picture showing vertical production of chickens.

An all-encompassing chapter regarding urban soils, from my most favored author on the subject: Pouyat et al., 2010.

A podcast episode about urban growers in early New England who are called “The Diggers.” I suggest starting at either 40 seconds in or at 3:20, then listening through to at least 12:15.

Megachile Bees from Portland-Area Gardens

Every June – August, from 2017-2019, we collected bees from 25 Portland area gardens. As I start to build out a Bee Guide for Portland Gardens, I wanted to highlight some of the notable bees that we collected. We are still waiting for our 2019 bees to be identified. The details, below, are for bees that were collected in 2017 and 2018 and identified by Sarah Kornbluth (2017) or Gabe Foote (2018).

We collected five species of bee in the genus Megachile:

  • Megachile rotundata (2 females and 1 male)
  • Megachile angelarum (8 females and 5 males)
  • Megachile perihirta (1 female)
  • Megachile fidelis (3 females)
  • Megachile centuncularis (1 female)

Worldwide, Megachile bees are extremely diverse: an estimated 1,400 species of Megachile bees can be found, globally and an estimated 140 species of Megachile can be found in the United States. These bees are in the Family Megachilidae, which includes the leafcutting (e.g. Megachile species), mason (e.g .Osmia species), and wool carder bees (e.g. Anthidium species). In the family Megachilidae, females carry pollen on their abdomen.

In this post, I wanted to cover Megachile fidelis, Megachile perihirta, and Megachile angelarum.

Bee Species Origin Diet Sociality Nesting
Megachile angelarum Native Generalist (Prefers Lavandula, Perovskia, Vitex) Solitary Cavity
Megachile perihirta Native Generalist Solitary Soil
Megachile fidelis Native Generalist (Prefers Asters) Solitary Cavity

Megachile angelarum was the most common bee in this genus that we collected from Portland area gardens.

Megachile angelarum female.

Diet: Although this species has been collected from a broad array of floral hosts (see list from Discover Life), Frankie et al. (2014) note that this species prefers lavenders (Lavendula), Russian sage (Perovskia), and chaste tree (Vitex).

Sociality: This species is solitary, which means that each individual female builds her own nest, collects nectar and pollen to provision her young, and lays her own eggs. In bees with advanced social structures, such as honey bees, the workers collect nectar and pollen to feed the young, and the queen lays the eggs. Solitary bees die soon after they build their nest, load nest cells with pollen and nectar, lay their eggs, and seal the nest cell shut. Many solitary bees may nest in close proximity to each other. Thus, solitary bee doesn’t mean loner bee; it means that the female does all of the work on her own, without cooperation or collaboration from other bees in her species.

Nesting: Megachile angelarum nests in cavities. Rather than cutting leaves, females collect resins and gums to partition nest cells. Since this bee does not cut leaves, it lacks teeth on its mandibles, unlike other bees in the genus. The bee has been found in drilled pine wood (10cm deep holes, 0.5 cm in diameter; Dicks et al. 2010). Other studies have found this species in nest blocks with a 3/16th hole size (Galasetti 2017).

Appearance: Like many bees in this genus, it is a robust-sized bee, with females typically spanning 10-11 mm in length and males a bit smaller, at 8-9 mm in length. The lack of teeth and cutting edges on the mandibles can be helpful for identification.

Megachile angelarum. The mandibles are a bit hard to see, by they are in the lower portion of the face. Note that there are no teeth, or serrated edges on the mandibles, which is a characteristic of this bee.

Notes: Across 2017-2018, we collected this bee from seven different Portland area gardens, or nearly 1/3 of our sampled gardens. Megachile angelarum is likely parasitized by another bee, Stelis laticincta. Stelis laticincta is a social parasite, or cleptoparasite of other bees. What this means is that Stelis laticincta invades the nest of another bee, and lay their own eggs, just as cuckoo birds do with other birds. Once the Stelis laticincta eggs hatch, the larvae kill the Megachile angelarum larvae, and eat the pollen and nectar provisions that have been provided by the Megachile angelarum mother.

We collected a single Stelis laticincta in 2017-2018, and it came from a garden where we collected four Megachile angelarum specimens. Having a healthy Megachile angelarum population increases your chances of having more bee species, by supporting cleptoparasites, such as Stelis laticincta.

Megachile perihirta is commonly known as the Western leafcutter bee.

Diet: This bee is a generalist, and will collect nectar and pollen from many different types of flowering plants.

Sociality: Solitary (see notes for M. angelarum).

Nesting: Unlike many Megachile bees, this species does not nest in cavities, but instead digs shallow nests in the soil (Frankie et al. 2014, page 102). I had thought that all bees in the genus Megachile were cavity nesters. (Actually, I thought that all bees in the family Megachilidae were cavity nesters). But, Eickworth et al. (1981) report that soil excavation was widespread in the family Megachilidae and in the genus Megachile.

Appearance: This was the largest Megachile species we collected. Females  typically spanning 13-14 mm in length and males span 12-13 mm in length.

Megachile perihirta female.

I am soooooo sad that we didn’t collect a male of this species! The males have enlarged forelegs, covered with hairs (photos of the males can be found here and here), which the MALES USE TO COVER THE FEMALES EYES DURING MATING!!!! Biologists suggest that this helps to keep females calm and receptive, during mating (Frankie et al. 2014, page 103).

Notes:  We only collected a single specimen of this bee. It came from our smallest garden (1,800 square feet in size), in an industrial area of Northeast Portland. And seriously: how cool is it to have a bee species where the mating ritual includes the male covering the females eyes with his super-hairy forearms!!!??

Megachile fidelis

Diet: Frankie et al. (2014) note that this species seems to prefer plants in the Asteraceae, including Aster, Erigeron, Rudbekia, Cosmos, and Helenium). Hurd et al. (1980) note that this species is commonly collected from sunflowers (Helianthus).

Sociality: Solitary (see notes for M. angelarum).

Nesting: This is a cavity nesting bee that tends to occupy larger holes (0.65 to 0.80 cm in diameter (Barthell et al. 1998). Unlike Megachile angelarum, which does not cut leaves or petals to line their nest cells, UC Davis has a great photo of a female Megachile fidelis carrying a piece of Clarkia petal. In his native bee research, Aaron Anderson would regularly find bees cutting neat discs from Clarkia flowers. I wonder, now, if collecting petal discs from Clarkia flowers is characteristic of M. fidelis.

Appearance: This species is another robust-sized bee. Females  typically spanning 11-13 mm in length and males span 10-12 mm in length.

Megachile fidelis female.

Once again, I am beyond bummed that we didn’t collect a male of this species! Males of this species also have enlarged forelegs covered with long hairs, although not as pronounced as in male M. perihirta. Once again, biologists suspect that the males use their hairy forearms to cover the females eyes during mating (Frankie et al. 2014, page 103).

Notes: We collected one specimen from a 0.2 acre, flower-filled garden that is adjacent to a golf course in Canby. The other two specimens were collected from a 0.1 acre, flower-filled garden in Northeast Portland. 

From the Lab to Your Laptop: Getting Research to the Public

The members of the Garden Ecology lab spend much of their time on research into subjects that affect, what else, the ecology of home gardens. Pollinators and their relations with native and non-native plants, bee variety and abundance in gardens, and soil nutrient levels, are among the topics they are delving into.

One of the challenges for the lab members – and for all scientists – is how to get the results of their research into the hands of people who can use it. Scientific papers are the traditional way, but not many people actually read those, and it can take a long time for research to trickle out from papers to the general public. If you read this blog, you’ve discovered one of the ways current research is disseminated quickly, and you’re learning new ideas that you may be able to implement in your own research or gardening.

Science you can use in your garden

Another way research gets to the public is through teaching. Lab members present new data in lectures, interviews, presentations, workshops and classes, including OSU Extension’s Online Master Gardener training, which I teach. Each year the course reaches around 40 Oregon MG trainees, plus another 60 or so horticulturally-minded people who take the course simply to improve their garden knowledge. In addition, our single-subject Short Courses are accessed by several thousand people per year. So any new research I can include in these courses can potentially reach hundreds or thousands (depending on the subject) of gardeners per year, who in turn may influence other gardeners.

With this in mind, I have cited Mykl Nelson’s research on excessive nutrient levels in managed vegetable garden soils to caution students about the perils of over-fertilizing. In 2020, my new module on Gardening with Pacific Northwest Native Plants will be influenced by Aaron’s data on the native flowers most favored by native pollinators. His research, plus other research taking place elsewhere, is showing that just planting a garden of pollinator-attracting plants may not be the best tactic to help native pollinators. A garden full of bees is often, really, a garden full of honey bees. What about all the native bees that are less visible, but at least as important? Aaron Anderson’s research into which plant species attract which bee species is beginning to show that the plants most attractive to honey bees are generally not the same as those most attractive to native bees.

Native bee on a native rose
Honeybees on non-native sunflower

The takeaway? Gardeners who want to support pollinators can take the extra step of searching out and growing native plants that are especially attractive to native bees, in addition to the many flowers that honey bees frequent. This is what I will be teaching my Master Gardener trainees in Oregon, and the rest of my students all over the country; many of them will in turn teach other people. Bit by bit the new information gets out there, and more native bees may find the flowers they need to thrive.

2019 Native Plant Field Season Update

I’m thrilled to announce that this summer I completed the third field season of my study. This is slightly bittersweet – while I’m excited that we are done with hot fieldwork, I will miss chasing bees around the farm and the view of Mt. Hood. I’m incredibly thankful for this third season of data, as it will help account for some of the temporal variation inherent in ecological studies. In fact, pollinator communities in particular tend to be highly variable both within and across field seasons. Having three seasons of data will hopefully allow us to identify more reliable patterns of pollinator visitation between my study plants.

Lots of lab work remains, as I’m tackling the insect samples that we collected with the bee vacuum. With the help of a dissecting scope, I’m attempting to identify the each specimen to at least the taxonomic level of family to get a sense of the broader insect communities associated with each flower species in my study. It will be several months before I can share this species-richness data, but in the meantime I have bee abundance data to share with you!

Aaron and Lucas in the native plant study site, in 2017. You can see the 1m by 1 m plot in the foreground by Aaron, a second one near Lucas, and a few more in the distance.

As a refresher, we performed timed pollinator observations at each plot. This consisted of observing each blooming plot for five minutes and counting all the insects that landed on open flowers. Bees were sorted to “morpho-type” (honey bee, bumblebee, green bee, and other native bee). Though this doesn’t give us species-level information on the floral visitors, it allows us to understand which plants attracted the most pollinators overall, and allows us to detect any patterns of visitation between honey bees, bumblebees, and solitary native bees. Below is a summary of some of the highlights.

2019 overall bee abundance by plant species:

  • Origanum vulgare, Lavendula intermedia, and Eschscolzia californica were top five bee plants in 2019, just as they were in 2018.
  • In 2019, Phacelia heterophylla and Solidago canadensis jump into the top five, while Nepeta cataria and Gilia capitata fall out of the top five. It should be noted that Nepeta was the sixth most attractive plant, with about the same visitation level as Solidago.
  • Again, similar to 2018, it appears that honey bee visitation was driving the high visitation rates of the popular exotic garden species (marked with a red asterisk), while native wildflowers were being visited more frequently by native bees.
  • I’ve included the 2017 and 2018 overall abundance graphs as well, for comparison. You can see that the overall abundance was higher in 2019 for the two most popular plants, at about ~25 bees per observation period!

2017 overall bee abundance by plant species:

2018 overall bee abundance by plant species:

Since honey bee visitation drove the high abundance of many of the top pollinator plants, I took honey bee visits out of the data set and made a new graph, to compare which plants were most attractive to native bees.

2019 native bee abundance by plant species:

As you can see above, honey bees are excluded from the analysis, the top five most popular plant species completely reshuffles.

I’ve included that 2017 and 2018 native bee abundance data below for comparison.

2017 native bee abundance by plant species:

2018 native bee abundance by plant species:

Please stay tuned for more updates on the bee species richness we collected in 2019, as well as data on the other insects (pests and natural enemies) that we collected!

Unpopular Opinion: Saving Honey Bees Does Very Little to Save the Bees

Although I have been studying garden bees for the past three years, I was never focused on honey bees. From a biodiversity point of view, they are not very interesting to me. They are non-native and abundant. In fact, honey bees were the most abundant bee species that we collected in Portland-area gardens (332 individuals collected), even though we took great care not to collect more than one individual per visit, when hand-collecting.

Some of the 300+ individual honey bees that we collected from Portland area gardens, even though we took great care to not hand collect more than a single individual honey bee per garden, per site visit.

Honey bees, which hail from Europe, are only one of 20,000 bee species, worldwide. In North America, there are 4,000 species of bee. In Oregon, we have between 400-500 species of bee. From Portland area gardens, we have documented 86 species of bee (with our 2019 bees still awaiting identification).

Unlike some native bees, honey bees are not at risk of extinction. Compare this to bumblebees. We found 17 species of bumblebee in Portland gardens, two of which (12%) are at risk of endangerment or extinction, due to declining populations: Bombus fervidus and Bombus caliginosus. Across North America, more than 25% of bumblebee species are thought to be at risk of extinction.

By focusing ‘save the bee’ campaigns on honey bees, we may be neglecting the bee species that really need our help. In fact, researchers have started to call out organizations and advertising campaigns that promote feel good stories about honey bee conservation as a form of ‘bee washing’. You can visit www.bee-washing.com to learn more about companies that promote their product or organization as being bee-friendly, in a less than genuine way.

Researchers have documented at least seven different ways that honey bees may harm native bee species (summarized in Cane and Tepedino, 2016):

  1. Honey bees monopolize and deplete nectar and pollen from local plant communities, which can reduce native bee reproduction.
  2. By depleting local plant resources, native bee females have to devote more time and energy to fly and find new resources, which also reduces native bee reproduction.
  3. Unlike honey bees, most bees are solitary, which means that they do not live in colonies and they do not have a queen. Solitary females who have access to fewer floral resources produce fewer daughters and more sons. Since female bees are needed to maintain a population, this skewed sex ratio can slow population growth and recovery in native bees.
  4. When females collect less nectar and pollen, they have less food to feed their young. These bees grow up to be smaller, and are more likely to die over winter, compared to well-fed bees.
  5. The longer a solitary bee mom is away from her nest, the higher risk that parasites and predators will attack her unguarded young.
  6. Honey bees can physically block native, solitary bees from preferred pollen hosts.
  7. Honey bees have many diseases. Some honey bee viruses have been found in native bee communities. Researchers think flowers that are visited by both native bees and honey bees are analogous to an elementary school water fountain: a place where repeat visitors can pick up a pathogen.

Please note that I am not suggesting that you extinguish honey bees from your garden. What I am asking, instead, is that you take the time to learn about and to notice some of the other 80+ species of bee that you might find in your garden. My group is creating a ‘Bees of Portland Gardens’ guide that we hope can help you in this journey. In the meantime, there are some great guides that are currently available. One is Wilson and Carrill’s ‘The Bees in Your Backyard: a guide to North America’s bees’. This book is available at Powell’s City of Books, as well as on Amazon. The second is August Jackson’s ‘The Bees of the Willamette Valley: a comprehensive guide to genera’. This free guide can be found online.

The first step to saving something you love is to be able to recognize it and to call it by name.

References

  • Cane and Tepedino. 2016. Gauging the effect of honey bee pollen collection on native bee communities. Conservation Letters 10: 205-210.
  • Jackson. 2019. The Bees of the Willamette Valley: A Comprehensive Guide to Genera. Self-Published, Online: https://tinyurl.com/y4qfssrl.
  • Wilson and Carrill. 2016. Bees in Your Backyard: A Guide to North America’s Bees. Princeton University Press.

How Alan Alda Helped Me to Become a Better Teacher

A few weeks ago, I tweeted about the difference that the Alda Center for Communicating Science has made in my teaching. To my sincere surprise and delight, Mr. Alda, himself, quoted my tweet, in one of his own. It made my day.

And today, after my last lecture of the term, the lab instructor sent me this note:

“I have students here putting in extra time (!!) on their [insect] collections, and they’re talking about how much they loved your class, and the applause you got at the end of class today. One of them is saying how it’s about time she had a class that was 100% relevant to Ag. I’m so happy for you, Gail, . . . I wish you could hear their conversation 🙂

To fully appreciate how much these comments mean to me, you have to understand how much of a struggle it is for me to teach. I score very high on the introversion scale. I hate the idea of teaching as performance (why do I have to entertain them?). I’m a stickler for academic rigor. My classes have a reputation for being difficult. And, I teach a required course that all majors must take (whether they are interested in entomology, or not), that is scheduled for M/W/F at 8am. All of these things, added together, make me a fairly unpopular teacher.

But this term was different. In January, I spent two days in New York City for the Alda Center for Communicating Science STEM immersion program. This workshop could not have come at a better time in my professional career. I was burnt out, in part because of: (a) the corporatization of higher education, (b) students who increasingly take a customer-centered approach to their education (where the customer is always right), (c) attacks on and rollbacks of scientific progress at Federal Agencies, and (d) public distrust of science. These things have all taken their toll on me and on my love for my profession. I was looking for something to re-ignite my love for science and teaching, and to stave off my growing cynicism.

The Alda immersion program did all of these things, and more. The premise of the workshop is that ‘Connection is the Key’ to effective science communication. The workshop instructors (including Alan Alda) use improv exercises in small groups and with partners to teach storytelling, message design, and how to really listen to, empathize with, and engage with your audience. Key messages were embraced over the recitation of hypotheses and theory. A heavy focus was put on connecting with your audience, so that even if they were not ready to listen to you in that moment of time, you might be able engage them at some point in the future.

There were two turning points to the workshop, at least for me.

The first was when we partnered up with someone to explain our science in 2 minutes, then 1 minute, then 30 seconds. Between each round, our partner gave us feedback on how to refine our message. When we came back together as a group, each person had to explain their partner’s science, rather than their own. In almost all cases, folks did better explaining someone else’s science ~ because we didn’t get bogged down in details. This really helped me to limit how much information I present in my classes. Instead of teaching *everything a person should possibly know* about a topic, I focus on key points, and how those points relate to students’ lives.

The second was when Mr. Alda demonstrated how he would discuss science with someone who believes the earth is flat. There was such a genuine kindness in the ‘conversation’ he had with the flat-earther ~ acknowledging their experience (the earth looks flat to them) while adhering to the science that demonstrates that earth is a sphere. It made me realize that I had become so accustomed to being right and defending my interpretation of science, that I rarely listened to others who disagreed with me. I was too busy formulating my retort, to truly listen to and understand their perspective.

This revelation was coupled with an exercise that was called ‘My Dear Friend’. In this exercise, you spend a few minutes ranting at your partner about something that drives you crazy. I ranted about the state of higher education, today. Your partner then has to share your rant with the group, by saying something like ‘this is my dear friend, Gail, and she cares passionately about the education that her students receive.’ I use this exercise, nearly every week. In fact, when I returned to the office from the workshop, there was an anonymous letter in my mailbox that was signed by ‘a disgruntled Master Gardener’. I reread that letter, and instead of feeling attacked, I could see how much the person loved this program that I help to coordinate, and how they wanted to share their passion for the program.

In terms of my teaching, the Alda workshop helped me to slow down, focus on key messages, and truly care for my students. This term, I am 6 classes behind where I would normally be. But, I think my students learned and retained more than they have in the past.

I stopped worrying about students who missed class, or who might try to cheat. Instead, I designed my class so that students who had to miss class (for whatever reason) had built in buffers that could help them absorb or make up lost points. These included things like dropping your two lowest quizzes, or earning extra credit points for lecture participation. I built an array of assessments into the class, including TopHat clickers from mobile devices, and adding ample short answer and essay sections to my exams. These things both made it more difficult to cheat, but also offered students with different learning styles different chances to do well.

I started bringing in breakfast on Fridays. I did this because Thursday is the traditional ‘party night’ on a university campus. In the past, my 8am Friday classes often had 15 or fewer people in attendance. (There are 50 enrolled in the course). I wanted to bring a small breakfast to say ‘thank you for showing up’. Over the course of the term, more and more students started to show up, and not just on Fridays. They went out of their way to thank me. Some told me that they were hungry, and that the small meal made a big difference to their day. Being a Filipina who loves to feed people, by nature, that’s all I needed.

There were a few other things, as well . . . students who shared some difficulty that they were going through that made it difficult for them to do well in class. Instead of my past approach of ‘not my problem’, I tried to help where I could.

Mostly, when I stopped feeling like I was there to serve as some sort of academic guardian . . . keeping all but the most-worthy students out . . . that’s when everyone (including myself) became invested in learning.

When I said goodbye to my students today, I heard the applause . . . but I was so confused. Was someone watching YouTube videos, in the back? It honestly makes me tear up to think that it might have been because they loved the learning environment that we built, together.

Native Plants and Pollinator Survey

Aaron Anderson is repeating his original survey on native plants and pollinators. This time, he is trying to understand how knowledge of a plant’s ecological function may alter impressions of native plants.

The survey takes about 25-30 minutes to complete. Folks who have taken the survey thus far have commented on how much they learned from taking the time to answer the questions.

If your time and interest allows, we would be extremely grateful if you could take the time to respond to this survey. The direct link to the survey is:

http://oregonstate.qualtrics.com/jfe/form/SV_9Alhv961rZX8Vs9

If you have friends or acquaintances who also might be interested in taking the survey, please feel free to share it with them.

A syrphid fly pays a visit to a California poppy at the North Willamette Research and Extension Center.

A bee visiting one of the Canada goldenrod plots in our Native Plant study.

Gilia capitata

Lotus unifoliolatus

Is the Insect Apocalypse Upon Us?

With all due respect to Beyonce, insects were recognized as ‘The Little Things that Run the World‘ by entomologist E.O. Wilson, decades before Beyonce’s 2011 hit song. As Wilson wrote in his iconic perspective piece:

The truth is that we need invertebrates but they don’t need us. If human beings were to disappear tomorrow, the world would go on with little change.

In fact, Wilson noted, the Earth ‘would set about healing itself‘. But if invertebrates were to disappear, Wilson predicts that ‘I doubt the human species could last more than a few months‘.

 

California Tortoiseshell, taken in a Portland-area garden on August 22, 2017.

Insects, the most abundant and numerous of all invertebrate animals, play a particularly important role in our world and in our life. Not counting the enormous contributions of non-native honey bees, which annually help to bring $235 and $577 billion dollar worth of food to the global market, native insects contribute $71 billion dollars (inflation adjusted to 2019) worth of ecological services to our economy and to our society.

So what are we to make of the recent NY Times article entitled ‘The Insect Apocalypse is Here‘, or the Atlantic article entitled ‘Is the Insect Apocalypse Really Upon Us?’.

These articles covered recent science papers that have caused a lot of concern, and generated a lot of attention. In the ENT 518 class that I am teaching this term (Current Topics in Entomology), our class spent time dissecting and discussing the science papers, as well as popular press coverage of each study.

The first paper, published in 2017 by Hallman and colleagues, documented a 76% decline in insect biomass over a time period spanning nearly three decades. In the peak summer season, the decline was even larger (82%). These researchers had been sampling protected areas in Germany using Malaise traps. This group is working to identify the insects that they collect ~ but, because it takes so much time and specialized expertise to identify most insects to species ~ they also took data on the collective weight of the insects that they collected. This is how they were able to show a 76% decline in insect biomass, between 1989 and 2016.

Mardon Skipper taken in a Portland-area garden on August 22, 2017.

What caused this massive decline in insect biomass? To address this question, They constructed a series of models to try and identify what factors might explain this precipitous drop in insect biomass (which is being used a proxy for insect abundance). They did not find evidence (from their mathematical models) that climate factors (e.g. temperature, precipitation, wind speed), habitat factors (e.g. site conditions, plant species), or habitat factors (e.g. amount of forest, grassland, water) were responsible for insect declines. Because they did not find evidence that climate change, landscape conversions, or habitat changes reduced insect biomass, they concluded that factors which they did not measure were responsible for insect declines. Specifically, they hypothesize that agricultural intensification (pesticide use, year round tillage, increased use of fertilizers) was a plausible cause.

Students taking the ENT 518 class were mostly convinced that the researchers had documented a large and significant decrease in insect biomass over the time period of the study. Students agreed that the loss of biomass reflects a loss in insect abundance, and probably reflects a loss of insect diversity. Students were more reserved in their assessment of the authors’ suggestion that agricultural intensification was the cause of the decline. Although they agreed that it is a plausible explanation, they wanted to see data to address this hypothesis, rather than having the authors arrive at this conclusion because they eliminated other potential causes of insect decline (e.g. climate change, landscape conversion, habitat change).

Western Tiger Swallowtail, taken in a Portland-area garden on July 27, 2017.

The second paper, published in 2019 by Sanchez-Bayo and Wyckhuys, was a review of other papers that studied insect declines. The authors searched science databases for the words ‘insect’ AND ‘decline’ AND ‘survey’, and then reviewed the hundreds of papers (653!) that they found to limit their survey to 73 long-term studies that took place for 10 years of more. The authors then summarize the details of each study, according to major insect groups (e.g. butterflies, bees, beetles, flies). Ultimately, they report that 41% of all insects are in decline, and that across all insect species, the annual rate of decline is 1% per year, and the annual rate of insect extinction is 1% per year. Like the Hallman et al. paper, Sanchez-Bayo and Wyckhuys suggest that agriculture is to blame:

Overall, the systemic, widespread and often superfluous use of pesticides in agricultural and pasture land over the past 60 years has negatively impacted most organisms, from insects to birds to bats . . ‘.

The students in ENT 518 honed in on the fact that the authors searched for the words ‘insect’ AND ‘decline’. Accordingly, there was a level of bias in their search procedures. Students seemed convinced that many insect groups are in decline, but were less willing to agree that the overall level of decline, rate of decline, and rate of extinction reported by the authors were accurate estimates. In addition, although students agree that pesticide use is likely to blame for insect declines, they would have been more convinced, if there were better data tying the two together.

Students then discussed how the science papers were translated into a narrative for the NY Times and Atlantic articles. We talked about the elements of a story, and how as scientists, we don’t worry about setting the scene, developing characters, or of conflict in a plot. But, many of us are also science communicators via our work in Extension or through other outreach efforts. If we can paint a picture that people can relate to ~ if we can get them to notice and to share their experience with noticing fewer insects in their yard or their town ~ will they care more about insect conservation?

One of the major reasons that we do the work that we do in the Garden Ecology Lab is because we believe that how we manage our gardens can truly make a difference to insect conservation. If we can take better notice of those ‘little things that run the world’ and share these experiences with our friends and family . . . will that make a difference? I believe that it will. In fact, it is the reason that I come to work, each and every day, excited to learn more about how we can make this world a better place through gardening.