#AGU2023 through graduate eyes

Twenty-two graduate students represented CEOAS at the American Geophysical Union Conference in December 2023. From first timers to seasoned attendees, here are some of their experiences.

Bareera Mirza, PhD Student, presenting “Evaluating Diverse Data Streams for Snow Depth Estimation in Data Assimilation Systems”

Attending AGU in 2023 was my first foray into the world of academic conferences. The event served as an unparalleled platform for both intellectual growth and networking. AGU not only broadened my understanding of cutting-edge scientific endeavors but also provided a glimpse into the diverse and fascinating research being conducted around the world. The conference left an indelible impression on me, emphasizing the global importance and collaborative spirit within the scientific community. – Bareera Mirza, PhD Student in Geography

“Meeting current and future collaborators from around the world. Running into old friends in the massive poster hall and enjoying San Francisco. Celebrating research and collaborative science.” – Kelsey Lane, PhD Student in OEB

PhD Student, Suhail Alhejji presenting “The Origin of Younger Volcanism in Western Saudi Arabia”

AGU 2023 was important to me since I did my first in-person oral presentation at a large international conference like AGU. The valuable feedback I received after the presentation was truly beneficial for my current research. – Suhail Alhejji, PhD Student in Geology

I had a great experience back at AGU in San Francisco! As chaotic as it is, AGU is one of the best places to feel at home in a sea of strangers. When you scurry from room to room or poster to poster, you’ll always have something interesting to overhear or see along the way. AGU has also started to really emphasize scientific engagement with the population and local communities, and you could tell at AGU 2023 that accessibility, outreach, broader impacts of science communication, and K-12 engagement were priorities of the organization, in addition to the important science that advances our understanding of the earth. – Layla Ghazi, PhD Student in Geology

I had researchers I admire ask me for my opinion on new concepts

Deepa Dwyer

Attending AGU as a late-state PhD student feels like a totally different ball game. I got so much more out of the networking and I felt like I could really engage with all the presentations I attended. All in all, it was a great time! – Olivia Williams, PhD Student in Geology

Ashraful Islam, M.S. Student in Geography, presenting “How speckle filtering approaches and kernel sizes affect land cover classification: Sentinel-1 pre-processing parameter selection insights”

AGU 2023 was a great opportunity to share the progress I’ve made on my dissertation research. It was also wonderful to catch up with old friends, and to help undergraduate students I have been mentoring prepare for their first conference! – Sami Cargill, PhD Student in Geology

Attending my very first AGU was phenomenal. It’s a tsunami of scientists and research: overwhelming and electrifying in the magnitude of people you interact with and ideas you absorb and generate. It’s also one giant hype-fest for nerds (some are old friends, some are new) and reminded me why I love what I do. – Jonas Donnenfield, PhD Student in Marine Geology & Geophysics

AGU is one of the best places to feel at home in a sea of strangers

Layla Ghazi, PhD Student, pictured above.

This was by far the best AGU experience I had so far. I co-chaired 2 sessions, and gave 2 talks; one pertaining to my PhD work and another on IODP Expedition 395 that I sailed on during summer of 2023. What made it really amazing for me is feeling that I not only had a lot to learn (as before), but I also had a lot to contribute to conversations. I was able to build and foster collaborations for future projects. Most amazingly, I had researchers I admire ask me for my opinion on new concepts. The combination of this made me truly feel part of the community. – Deepa Dwyer, PhD Student in Marine Geology & Geophysics

At AGU 2023, I picked up some cool stuff! I learned about using Earth Engine Vertex AI and how to manage data better with tools like SHAP and COCALC. Meeting people from Google Earth Engine and learning about job opportunities at Berkley Lab was awesome. Additionally, the discussions on innovative projects like the mangrove study and advancements in image processing using Generative Adversarial Networks for super-resolution were particularly captivating. Understanding hypergraphs in mathematics as a complex extension of traditional graphs added another layer to my learning experience. – Ashraful Islam, MS Student in Geography

Lucy Wanzer (left) and Meghan Sharp (right), PhD Students in Geophysics, presenting posters side by side.

I felt somewhat starstruck at AGU, especially wandering around the exhibit hall and meeting representatives from amazing companies and organizations- as big as NASA and as small as new environmental NGO start ups! As far as my research, the conversations I had between sessions and at my poster gave me a new context for the larger questions and how my research fits into that. It was almost the opposite of imposter syndrome. On top of all of that, this was my first AGU and first time networking with so many people. I realized that networking was similar to making new friends and rekindling old friendships, but it is exhausting and scheduling in some time to refresh yourself socially is extremely worthwhile! – Meghan Sharp, PhD Student in Geophysics

PhD Student Sarah Beethe (center), getting goofy with OSU Alumni, Josh Love (third from right), and collaborators from GEOMAR, Lamont-Doherty Earth Observatory, and University of Hamburg.

AGU2023 – both an exhausting whirlwind and invigorating experience. From meeting long-time inspirations, to connecting with global collaborators, what initially felt like an impossibly large conference center began to feel like a network of the greatest scientists I’ve had the pleasure of meeting. Presenting new methods and findings from a new study area than my past research breached my comfort zone allowing me to grow not just as a scientist, but as a human. – Sarah Beethe, PhD Student in Geology

Featured Presentation Titles (alphabetical by first name)

  • Ashraful Islam: “How speckle filtering approaches and kernel sizes affect land cover classification: Sentinel-1 pre-processing parameter selection insights”
  • Bareera Mirza: “Evaluating the relative value of MODIS snow cover and Sentinel-1 Observations for Snow Water Equivalent Estimation within a Data Assimilation System”
  • Deepa Dwyer: “Glacial fans as archives of the paleo-geomagnetic field: A case study from IODP Exp 341 in the Gulf of Alaska for the 14-50 kyr interval. Presentation # 2: New Records of Geomagnetic Instabilities During the Brunhes Chron From IODP Expeditions 384, 395C and 395 in North Atlantic Ocean”
  • Jonas Donnenfield: “Disentangling mechanisms of persistent benthic hypoxia in the NE Pacific from the late Pleistocene to late Holocene”
  • Kelsey Lane: “Combining molecular, morphometric, and trace element geochemical analysis for a single foraminifera shell: a promising workflow for species with cryptic diversity”
  • Layla Ghazi: “Understanding the phase associations and weathering behavior of rhenium to assess the use of Re as a tracer of georespiration”
  • Meghan Sharp: “Drivers and Mechanisms of Rift Propagation: Initial Observations on Thwaites Eastern Ice Shelf, West Antarctica”
  • Olivia Williams: “Development of a new noble gas extraction method in ice cores”
  • Sami Cargill: “A Multi-Proxy Approach to Develop a Chronological Framework on the Cascadia Margin Using Radiocarbon and Paleomagnetic Secular Variation Constrained by Chemical, Magnetic, and Physical Properties”
  • Sarah Beethe: “After the Minoan: New Radiocarbon Ages of Recently Uncovered Eruptions in the Santorini Caldera”
  • Suhail Alhejji: “The Origin of Younger Volcanism in Western Saudi Arabia”

Dreaming of Summer Field Season from Corvallis Winter

Icy Corvallis winter makes the tales of summer field season that much sweeter. Follow four graduate students during their summer field experiences across the globe, from Yaquina Bay to the Arctic Circle.

Bird-eye view of the R/V Tarajoq in transit across an icy sea from Iceland to Greenland. See Haley Carlton’s post below to learn more! Photo credit: Alex Rivest

BAFFIN BAY || JONAS DONNENFIELD || PhD Student in MG&G

The first ice sighting had the night-shift scientists shouting and scrambling to the ship railings. The small, white form glided towards us on the glassy-smooth surface of the water. Incredulous exclamations sputtered from our lips, intermixed with moments of silence that left the air thrumming with palpable excitement and awe. Sailing north along the west coast of Greenland in Baffin Bay, this first glimpse of sea ice and still ocean was a precursor to the breathtaking environment that awaited us on the rest of our 33-day voyage.

Jonas Donnenfield watching the sunrise during night shift aboard the R/V Armstrong.

Our mission: unravel the history of the substance we were so captivated by, ice, over 20,000 years ago during the last greatest extent of Earth’s ice sheets. Our question: what atmospheric or oceanographic mechanism led to the retreat of the Greenland Ice Sheet? Our method: marine sediment cores, lovingly called mud, which we miraculously retrieve from the sea floor using pipes and wires, ingenuity and improvisation, and a whole lot of teamwork. When we finally docked in Nuuk, Greenland, we had almost 50 gravity or piston sediment cores aboard from across Greenland’s western continental slope. They now reside in the Oregon State University Marine Geology Repository, waiting patiently to reveal secrets of ice long melted.

YAQUINA BAY || MARLENA PENN || Master’s Student in MRM

Yaquina Bay estuary at high-tide.

Last summer I spent one day a week visiting study sites in Yaquina Bay, Oregon. I have been monitoring the growth of native Olympia oysters at five locations since July 2022. In May, we decided to increase our sampling frequency from monthly to bi-weekly and add a second cohort of Olympia oysters. Every visit to Yaquina includes extensive cleaning of aquaculture cages and instruments, weighing every individual oyster (>750 oysters!), taking pictures of every oyster to later analyze for shell dimensions, and water samples from every site. This is a very meticulous process, and it would not have been feasible without the support from several dedicated undergraduate students (Alaina Houser, Drew Moreland and Tyler Wildman).

You’d never guess, but this is the same estuary pictured above at low tide!

One of my favorite parts of field days is seeing the ebb and flow of the estuary. If you were to visit some of these sites at low tide and return at high tide, they would be unrecognizable due to the change in water level. Being able to watch these cycles is such a great reminder of how nature continues on, regardless of our own busy lives.

BAFFIN BAY || KATIE STELLING || PhD Student in MG&G

Katie Stelling (center), and a group of shipboard scientists holding up their “Order” for crossing the Arctic Circle.

This past summer I spent 5 weeks at sea aboard the R/V Neil Armstrong as part of the Baffin Bay Deglacial Experiment (BADEX). Our primary objectives were to create maps and retrieve sediment cores from multiple trough mouth fan systems along the continental slope of the west Greenland Margin, with the larger goal of understanding the oceanographic conditions surrounding the retreat of the Greenland Ice Sheet following the Last Glacial Maximum. Some of my favorite memories are of our Blue Nose ceremony after crossing the Arctic Circle (pictured), the surreal feeling of sailing into a pack of sea ice for the first time, and gathering on the bridge with nearly everyone on the ship to see a sleeping polar bear.

THE ARCTIC||HALEY CARLTON||PhD Student in OEB

Haley Carlton holding a larval fish aboard the R/V Tarajoq. Photo Credit: Alex Rivest

I spent a month in the Arctic last summer with a large, interdisciplinary team studying glacial-fjord ecosystem dynamics! We sailed on the Greenland Institute of Natural Resources’ (GINR) new ship, the R/V Tarajoq, from Iceland to Sermilik fjord in southeast Greenland. We spent two weeks at sea deploying bongo nets and trawls in search of larval fish and zooplankton, cast CTDs to collect water samples and define water masses, and deploy and recover several moorings throughout the fjord. We even spent a few days with a local schoolteacher who came aboard to learn about the science we were doing in their community and visited his village Tiilerilaaq. After two weeks at sea, we returned to Iceland for a few days before I flew to Nuuk to sort and identify some of the zooplankton we collected with collaborators at GINR. 

Krill Intentions: Bringing Lessons Home from a Winter of Fieldwork

RACHEL KAPLAN, PHD STUDENT IN ATMOSPHERIC SCIENCES

Over the last six months, I’ve existed in a kind of parallel universe to that of my normal life in Oregon. I spent May until October at Palmer Station, Antarctica as part of a team studying Antarctic krill (Euphausia superba) – a big change from the Oregon krill species I typically study, and one that taught me so much.

My work is part of a project titled “The Omnivore’s Dilemma: The effect of autumn diet on winter physiology and condition of juvenile Antarctic krill”. Through at-sea fieldwork and experiments in the lab, we spent the field season investigating how climate-driven changes in diet impact juvenile and adult krill health during the long polar night. Winter is a crucial time for krill survival and recruitment, and an understudied season in this remote corner of the world.

Recently collected Antarctic krill (Euphausia superba) await identification and measuring.

During the field season, we were part of two great research cruises along the Western Antarctic Peninsula (check out this great blog post by CEOAS undergraduate Abby Tomita!), and spent the rest of the time at Palmer Station, running long-term experiments to learn how diet influences krill winter growth and development.

There were so many wonderful parts to our time in Antarctica. While at sea, I was constantly aware that each new bay and fjord we sampled was one of the most beautiful places I would ever have the privilege to visit. I was also surprised and thrilled by the number of whales we saw – I recorded over one hundred sightings, including humpbacks, minke, and killer whales. As consumed as I was by looking for whales during the few hours of daylight, it was also rewarding to broaden my marine mammal focus and learn about another krill predator, the crabeater seal, from a great team researching their ecology and physiology.

In between our other work, I processed active acoustic (echosounder) data collected during a winter 2022 cruise that visited many of the same regions of the Western Antarctica Peninsula. Antarctic krill have been much more thoroughly studied than the main krill species that occur off the coast of Oregon, Euphausia pacifica and Thysanoessa spinifera, and it has been amazing to draw upon this large body of literature.

The active acoustic data I’m working with from the Western Antarctic Peninsula, pictured here, was collected along a wiggly cruise track in 2022, giving me the opportunity to learn how to process this type of survey data and appreciate the ways in which a ship’s movements translate to data analysis.

Working with a new flavor of echosounder data has presented me with puzzles that are teaching me to navigate different modes of data collection and their analytical implications, such as for the cruise track data above. I’ll never take data collected along a standardized grid for granted again!

I’ve also learned new techniques that I am excited to apply to my research in the Northern California Current (NCC) region. For example, there are two primary different ways of detecting krill swarms in echosounder data: by comparing the results of two different acoustic frequencies, and by training a computer algorithm to recognize swarms based on their dimensions and other characteristics. After trying a few different approaches with the Antarctic data this season, I developed a way to combine these techniques. In the resulting dataset, two different methods have confirmed that a given area represents krill, which gives me a lot of confidence in it. I’m looking forward to applying this technique to my NCC data, and using it to assess some of my next research questions.

A combination of krill detection techniques identified these long krill aggregations off the coast of the Western Antarctic Peninsula.

Throughout it all, the highlight of the field season was being part of an amazing field team. I worked alongside CEOAS professor Kim Bernard and undergraduate Abby Tomita, who actually started her senior year at OSU remotely from Palmer. From nights full of net tows to busy days in the lab, we became a well-oiled machine, and laughed a lot along the way. Working with the two of them always made me confident that we’d be able to best any difficulties that come up.

After a long, busy, and productive field season, our final challenge was to wrap up our last lab work, pack up equipment and samples, and say goodbye to this beautiful place. Leaving Antarctica is always heartbreaking – you never really know if you’ll be back. But, it’s been amazing to come home to Oregon: I have loved hugging my friends, eating salad, and beginning to apply what I learned in Antarctica to the rest of my graduate school journey.

Anticipating Antarctica

Julia Marks Peterson, 4th year OEAS PhD student (MG&G)

I sent in my United States Antarctic Program deployment packet this week, and suddenly returning to the field for another season feels right around the corner. Memories from last year sporadically surfaced as I answered the prompts asked in the packet.

“What dates will you need a hotel in Christchurch, NZ?” I filled out the same hopeful answer as before: The first two days of November, while reminiscing about the two weeks we were unexpectedly stuck there as McMurdo Station tried to reign in a COVID outbreak. “What size parka would you like?” brought me back to seeing my Big Red for the first time, with my name on the pocket and the reality sinking in that we were going to a very, very cold place.

I am heading back to Antarctica as a member of the COLDEX project. COLDEX (the Center for OLDest ice EXploration) is a National Science Foundation Science and Technology Center with the driving research goal of finding the oldest ice in Antarctica. Currently, this quest is a two-pronged effort, being carried out by an exploration team and an ice core drilling team. The exploration team is composed of geophysicists who will fly over a section of the ice sheet in a plane outfitted with airborne radar to collect high-resolution imagery of the ice sheet interior. The goal is to use these images to select a site to drill a deep ice core that extends back 1.5 million years.

Simultaneously, the ice core drilling team will continue to drill shallow cores from a place called the Allan Hills Blue Ice Area, where the oldest ice ever dated has been collected. The Allan Hills are in East Antarctica, just on the other side of the Transantarctic Mountains from McMurdo Station. Unlike the parts of an ice sheet where winter snowfall is preserved (like high points such as domes), the Allan Hills Blue Ice Area loses surface mass over the year due to high winds and sublimation, the process whereby ice turns directly to gas without passing through a liquid water state. This net loss is balanced by ice flow from an accumulation area upstream, causing uplift of ice that was formerly in the ice sheet interior. Scientists have had a hunch that the ice in this area was old for a long time because meteorites collected nearby were determined to have terrestrial ages of up to ~400,000 years.  And they were right! For the past decade, research teams have drilled ice cores at the Allan Hills BIA and progressively extended the ice core record further back in time. Though the flow and uplift of old ice causes the layers in the ice to be distorted, leading to a discontinuous record, ice as old as 4 million years has been found.

As a member of the ice drilling team, I will return to the Allan Hills BIA where we hope to collect even older ice. Like last year, we will fly to Christchurch, New Zealand where the U.S. Antarctic Program transports people to and from the largest base on the continent: McMurdo Station. Once at McMurdo, we will go through required trainings, including how to safely live away from station in the “deep field.” After about 10 days, we will be flown to the Allan Hills in a small aircraft that flies so low that you feel like you’re weaving through the mountains. We will then set up camp and live at the Allan Hills, drilling ice for eight weeks before returning to McMurdo and then back home via Christchurch.

Antarctic fieldwork is a funny thing; every memory is an initial flood of positive emotions followed by a slightly uncomfortable aftertaste. It’s easy to remember all the fun camp games, the ridiculous jokes upon jokes, the stunning landscape, the products of our hard work, and the beautiful friendships built. However, married to all these memories are the strenuous parts of life in the field. How gross your hair can get after weeks of living in a desert without a shower. How a task you could accomplish in one minute in your normal life would take you 20 (e.g., if you suddenly realize you really have to pee it’s already too late). How cold it would feel to open your sleeping bag in the morning and put on clothes that have equilibrated with Antarctic temperatures. How it would feel when the propane tank fueling the heater depleted and your only path back to warmth was the long and onerous task of replacing the tank. Oh, and the constant wind! So much wind.

As I write this, remembering the negative parts of Antarctica while sitting in peak Corvallis summer temperatures, it becomes hard to imagine returning to that way of life. But these memories are never the first that come to mind. It actually takes work to remind myself of these tough details because the fond parts so easily eclipse them. I think that is what might be most remarkable about Antarctic fieldwork, that it is this incredible showcasing of how adaptable we can be. And it’s this realization that makes me so excited to return for another season.

Science is Timeless

Chuck Lewis, Geology PhD Student

Scientists in the Field

Driving up the Altiplano-Puna makes you feel, well, tiny. As the tops of the massive volcanoes built on ~60-70 km of crust come into reach the air also gets thin, and frankly, you’re far enough away from anywhere that you wonder if mapping these volcanic deposits matters at all. Then you run into a goat herder along a quebrada that hosts destroyed native villages destroyed during an eruption from Lascar.

Our group in the field on the international highway between Chile and Argentina in 2019. The air is thinner than it looks!

My trip to the Andes as an undergrad in 2019 was the first time I left the USA for scientific motivations. My advisor, two other undergrads I’m proud to call friends, new colleagues (hi Nancy!), and I spent a few weeks in the field around the San Pedro de Atacama region. Unbeknownst to me, this trip would be the first time I put eyes on one of the volcanoes that would later encapsulate years of my life as PhD student.

In fact, there were a lot of firsts on this trip. It was the first time I put lines on a map in a ‘real’ scenario and the first time I would make colleagues outside of my Alma Mater. Importantly, it was the first time my advisor referred to me as a colleague—to a Chilean farmer along the Rio Salado just North of Valle del Arcoiris. In part due to the farmer’s respect and enthusiasm for our work, I realized in that moment that there’s a little more to constraining the timing of volcanic eruptions in foreign countries than there is at the surface. It reminded me of days past where my contribution to humanitarian work was a small brick in a much larger fortification that is built on collective efforts of others.

A Radioactive Chain

A zircon crystal with spot analyses and ages annotated. The core is inherited from very old crust and grown over during subsequent magmatic intrusion.

Most of my work over the last year has been focused on dating tiny crystals called zircon to understand the volcanic and magmatic history of the extinct Cerro Chaxas near San Pedro. Dating these crystals allows us to constrain the eruption age by the most recently formed crystal and to reconstruct the history of magma flux into the upper crust prior to eruption. In an attempt to achieve this, I’ve reformulated the method on how to best conduct uranium-lead analyses using Laser-Ablation-Inductively-Coupled-Plasma-Quadrupole-Mass-Spectrometry (LA-ICP-Q-MS). Said in another way, I will be the first person to describe a very specific data analysis and reduction scheme. By characterizing the data differently and using a bit of statistical thinking, we’ve managed to turn a method that is usually regarded as imprecise (relative to far more complicated instruments) into something more precise, with a slight increase in accuracy to boot!  Not bad for a long-haired undereducated punk kid from southwest Florida if I do say so myself!

To my knowledge, the first written report regarding Chaxas was done by John Guest, a PhD committee member of my own advisor. Guest described Chaxas as a series of domes hosting an ‘explosion crater’. Chaxas eruptions wouldn’t be dated until the 1980s by my advisor, who described Chaxas more simply as a series of extrusive lava domes that later collapsed by gravity or subsequent eruption. At the time, the ages suggested Chaxas was active from eight to two million years ago. As it turns out, my work shows Chaxas was only active from two to five million years ago, and my current field observations suggest that the Chaxas domes were indeed partially collapsed by subsequent eruptions.

You probably notice a trend here: critique and refinement of old hypotheses as knowledge and techniques get updated. Indeed, it is likely that someone will come along and prove me wrong on half of what I put out there too. That’s how science works!

The Scientist’s Place in Society

The domes of Chaxas, in Chile (low hills in the front), with Licancabur in the background. The apparent layers near the base of the domes are old eruptive products and mass flows that have been tilted by later volcanic activity.

My success as a scientist hinges on the complementary relationship between my work ethic and the ability of my advisors and mentors to steer me in the right direction. I can tell you I’m in good hands. As pointed out above, my primary advisor has a network that transcends national boundaries and indeed, has a direct influence on the success of students from underrepresented countries and communities. His students frequently go on to do service-oriented jobs (education) or work in the US geological survey for the volcano science center and thus directly impact the safety and livelihood of populations near active volcanoes. It sounds ridiculous, but during their PhDs they too simply described field relationships and dated some crystals and became someone who could do something good for society.

My other mentors can say the same, and I think they all would agree that the most impactful part of their job is bolstering society by helping people be better members of our world. If you want an example, you can stop by the Keck Lab, the Microprobe Lab, or any other lab this week and find a mentor going out of their way to facilitate someone’s growth and, hopefully, eventual prosperity.

But this isn’t a new phenomenon. Guest probably had a good mentor, and he mentored my advisor, who contributes largely to my growth as a scientist. If done correctly, the impact of the scientist to society is far more timeless than their latest age data or, for that matter, anything else that the next generation will prove wrong. A scientists most important impact is what they do for the next generation.

A colleague in front of a block and ash flow erupted from Chaxas. The large blocks in the ashy matrix (up to the size of a human torso) are clearly destructive.

NASA SnowEX: Science Below Zero Degree C

Bareera Mirza (A first-year Geography Ph.D. student)

To Learn More About NASA SnowEx, visit https://snow.nasa.gov/

I am Bareera Mirza, a Pakistani Muslim woman who lived all her life near the coast, far from the mountains. Despite that, I developed my love for snow/glaciers when I first visited Skardu (a city in the Himalayas of Pakistan) in April 2018; and that was my first time seeing snow and glaciers. After the initial exposure, I revisited the Himalayas multiple times to gain a deeper understanding of the lifestyles of the local populace. It was a life-changing experience to talk to local people, learning about their struggles living near the mountains and their dependency on changing nature and climate. It was the combination of these visits, the exposure gained in classes, and the lessons learned from my professors that inspired me to pursue my current trajectory. 

Pre-Field Trip:

In October 2022, I participated in the National Aeronautics and Space Administration (NASA) SnowEx 2023 Tundra and Boreal Forest campaign in Fairbanks, Alaska, a multi-year field campaign to observe snow and come up with the best remote sensing technologies to accurately predict snow throughout the season in various environments. SnowEx is part of an effort of NASA’s upcoming special snow satellite, which can help predict the amount of water available in snowpack for better water management use.

NASA SnowEx was nothing less than a dream come true. However, I could feel the nervousness among my family and loved ones (out of safety concerns) because it is unusual for Pakistani women to do such kind of fieldwork in the extreme weather of Fairbanks, Alaska. Not to mention an unfamiliar territory (I didn’t even know the types of gear I would need – like what on earth is gaiter?). I am incredibly thankful to my advisor Dr. Mark Raleigh and the team at NASA Goddard, who helped me with field trip preparation and made the process manageable and easy to navigate.

Science Talk:

My collaborative team, consisting of 40 scientists from NASA and different institutions, reached Fairbanks, Alaska, to observe five different test sites. I was assigned a Boreal Forest test site, Bonanza Creek – one of the largest forested biomes on Earth, covering 17 million km2 of the Northern Hemisphere and accounting for approximately one-third of Earth’s total forest area. 

Photo: Team of Bonanza Creek
Photo Credit: Carrie Vuyovich

I spent a couple of days at Farmer’s Loop site, a site in the town which can be a good analog testbed to compare snow measurements in wetlands, ponds, and swamp forest environments. We processed different measurements (Snow Water Equivalent (SWE), snow depth, temperature, stratigraphy, and soil samples) by digging snow pits in a 5x5m plot. 

Along with the ground samples, the team of NASA was doing airborne LiDAR (Light Detection and Ranging) surveys as an eventual goal of the ground surveys to validate data of airborne surveys. The campaign was 12 days long, with 7 days in the field and 5 days of training  (including travel). 

Let’s not forget the fun moments!

The trip was mostly for snow science, but science is fun, isn’t it? Firstly, it was breathtakingly beautiful, deep in the forest, as a 5’2” tall individual, surrounded by tussocks 10 inches tall. Walking in unknown terrain is an adventurous experience; our group was unaware of what was beneath us because it was all snow-covered. It can be a lake, pond, or a tall tussock (literally every 10m or less). Branches of trees are hitting our faces as we migrate through a dense forest, wearing snow gear and holding our measurement tools.

But none of it felt overwhelming because snow is beautiful to gaze upon, and whenever I felt tired, I just looked around me to admire the peaceful visage. Among some of the more exciting experiences, I saw moose for the first time and ate my cold salad sandwich in the forest. Not to brag, but being a newbie, a team that included me, Kelly Elder, and Wyatt Reis, we ended up doing 7 snow pits in a day (our usual was 3 to 4). Working with experienced people who had been doing this for years, learning from them, and testing my thresholds was one of the most memorable experiences. Moreover, on the last day, we went to see the Permafrost tunnel. I would equate it to time traveling as some of the features were 40,000 years old. Most importantly, trying some local foods especially waffles with Carrie Vuyovich, Megan Mason, and Joachim Meyer were so much fun. Finally, talking to people about the Himalayas and my experience as the first Pakistani woman to work in SnowEx campaigns was spectacular.

Overall, I loved this 12-day trip where I worked as a snow scientist. I made many connections, learned a lot, and experienced a whole different life. I plan to continue pursuing snow science and exploring new frontiers. The snow community is very new, and there are few women of color who are aware of the efforts, so with my experience and knowledge, I would love to inspire more women to be part of this community.

Team of NASA SnowEX Field Campaign October 2022
Bareera’s Research Lab at Oregon State University

twitter handle https://twitter.com/BareerahMirza 

research lab page: https://markraleigh.com 

github:https://github.com/mbareera

An Analytical and Symbolic Test Drive

Ben Riddell-Young, 5th Year OEAS PhD (OEB)
Me next to a pretty good looking glacier. I love ice if you couldn’t already tell. This glacier is called Grenzgletscher and is near Zermatt, Switzerland. I went here as part of an excursion for an international Ice Core conference that happens once every 4 years. It was an incredible experience!

With the light at the end of the long PhD tunnel beginning to show itself, the uncertainty and anticipation of my next steps are also coming into view. Much of my apprehension stems from worries that I’m not prepared for the unknown, that I’ve grown too comfortable and dependent on my OSU network, that I’ll be overwhelmed by the independence of what lies beyond. Recently, I got a taste of what life might be like “on the other side.”

It began with a long and uncomfortably snowy drive down to the Desert Research Institute (DRI) in Reno, NV. Here, I tested a new analytical system with the ice core team at the DRI. This spring, we’re planning to take this system and a similar one operated by the DRI folks to Summit Station, Greenland to analyze ice cores as soon as they are drilled. This will test if the way that cores are handled on their way back to the US might impact analyses–specifically the analysis of methane and carbon monoxide, which is what my system measures.

In addition to being an important test drive for my analytical system, the trip also began to feel like a test drive for my career as a truly independent scientist. The solitary drive down to Reno gave me plenty of unsolicited thinking time to let the responsibility I was about to take on set in. I was to be the only expert in ice core trace gas analysis in Reno, and the only one for thousands of miles when deployed on the Greenland ice sheet. A lot was riding on my back, and for the first time, I didn’t have my advisor just a couple of doors down. The fact that I was alone and had all my hard work in the trunk of my own car added to the symbolism of it all. For me, the new responsibilities and independence associated with this trip represented the start of the next, more independent step in my life and career.

Me with my main analytical system back at OSU. This system is designed to measure the stable isotopes of methane in ice cores. Although these measurements are incredibly exciting, it can be very solitary and patient work. The trip to the DRI and the work ahead in the field will be a refreshing change.

Symbolism aside, with the exception of a couple of hiccups, the testing went really well. It was great to see all of my hard work come to fruition and eased some of my worries about using the system in the field when the stakes will be much higher. The system we were working with enables what is called Continuous Flow Analysis (CFA), where we melt sticks of ice cores at a continuous rate, and the meltwater and gas is routed to various instruments that measure chemical and physical properties in real time. Given that I’m used to measuring samples where you don’t get to see the data until it is retroactively processed, it was very exciting to see the data in real time. Further, my lab work back at OSU is typically very solitary, whereas sample measurement for CFA often involves several scientists working together. Excited preliminary interpretations and chatter were common as the data were quite literally “flowing” in. Knowing that the system works outside the comfort of OSU, my nerves began to turn into excitement for the upcoming Greenland field season.

The drive back, which was also uncomfortably snowy (La Niña, amirite?), this time provided welcome time to reflect–and to get symbolic again. This trip allowed me to peer into the murky abyss of post-graduate life. This glimpse gave me a taste of what might be to come and taught me some valuable lessons. It taught me that there will always be new relationships and communities to be build and new and old faces to support me along the way. Perhaps more importantly, it taught me that I’m ready for the next steps and that I really do have the capability to function as an independent scientist. The whole experience was very empowering. As the departure date for field deployment steadily approaches, I’m feeling more ready than ever for the unknowns, challenges, and adventures to come.

A Day in the life of a Shipboard Scientist

Saray Sanchez, 3rd year OEAS PhD (MG&G)

From October 2022 to December 2022, I was onboard the iconic International Ocean Discovery Program (IODP) JOIDES Resolution. We were drilling into the ocean floor just off the coast of Portugal. Our goal was to recover sediment from 4 sites that held promising evidence for records of large-scale climate change. To reach our goals, the ship worked 24/7 for 8 weeks, with most people being assigned to day (noon to midnight) or night (midnight to noon) shifts. I was assigned to the night shift. Here’s what most of my days looked like.

Exp 397 Locations . Figure provided by the International Ocean Discovery Program (IODP)

“Morning” (10pm-12am)

My mornings began just two hours shy of midnight. I would wake up and take a short three-minute commute to the gym on board. The gym was surprisingly fully equipped with many cardio machines, free weights, and even a rock climbing finger board. Typically, the gym was rather empty at this time and I could connect my phone to the Bluetooth speaker and blast Beyonce’s Renaissance album while I strut on the treadmill.

After my workout, I would head back to my room and begin getting ready for the day. A few steps in my routine I would never miss were (1) taking my vitamin D pills to make up for the lack of sun I saw, (2) putting on my gold hoops that reminded me of my family and my culture, and (3) putting out my laundry so it was done by the time my shift was over.

Finally, with about 20 minutes left I would rush upstairs to the galley (cafeteria) and quickly eat cereal before reporting to the lab.

During Shift (12am – 12pm)

I sailed as a scientist and was assigned to be a physical properties specialist. I had many duties on board including running cores through multiple instruments, writing reports, and taking samples of the cores. However, before I could even start with any of my duties we would begin every shift with a crossover meeting with folks from the last shift. We would update each other on how many cores we had drilled, any issues that came up, and any resolutions found during the shift. After the crossover meeting, I would pick up where the day shift left off. During the majority of my shift I would be lifting core sections that were 1.5 meters long and about 15- 20 lbs and moving them on and off the rack to different instruments. Truthfully, during the first week I felt so sore that my arms would pulse in pain while trying to sleep. Towards the end of the expedition though, I was strong and lifting cores felt like second nature to me.

During shift we were always well fed. We had snack breaks every three hours which featured an array of drinks and freshly baked goods. At the six-hour mark we would have lunch and the menu was different every day. A few of my favorite dishes served included peanut butter chicken with rice, lentil dahl, and pulled pork burgers. The best part of every week was Sunday lava cakes. It reminded us that another week has passed on the ship. The lava cake was adored by all on the ship so much that there was a dedicated countdown clock for the lava cake. I really miss the lava cakes.

My favorite part of the shift had to be the short 10 minutes when many scientists would gather outside to watch the sunrise together. I saw some of the most beautiful sunrises in my life on this expedition. It was breathtaking being able to see the sunrise in the open ocean with no trees, buildings, or mountains obscuring my view. So many shades of purple, pink, blue, fiery red, and orange danced across wispy and fluffy clouds. One time I even saw the infamous “green flash” which is an optical phenomenon in which the sun changes color to green for just one moment at sunrise or sunset.

After sunrise I knew the end of my shift was close, and I would begin to write down in my daily report what happened during shift for the next crossover meeting.

After shift (12pm- 2am)

Immediately after shift I would eat dinner with the rest of the scientists and technicians from my shift. I would try to have a light dinner as I would often be trying to sleep within the next two hours, and it’s a little hard to sleep with a full stomach on a rolling ship. Sometimes a group of scientists would gather in the movie room and watch a film. The movies we would watch depended on the shift. If the shift was slow because we were waiting to drill due to weather, then we would watch a high-energy action movie. If the shift was full of constant movement and a little more tiring than usual, then we would watch a comedy or something more light-hearted.

I would often have time after my shift to call home. Luckily, all scientists were given internet access on one personal device. I chose to have my phone as my device so I could text and call my loved ones throughout the day easily.

After our shifts was when we would celebrate holidays, birthdays, and expedition milestones. We were able to celebrate both Halloween and Thanksgiving onboard with themed meals. We sang karaoke and had dance parties. I would give haircuts and paint people’s nails. We would try our hand at photography with cool 360° cameras. It was a great time to get closer to the other scientists on board and really humanized scientists for me.

Last thoughts

Overall, I really enjoyed my experience on Expedition 397. It provided a unique environment for me to interact and live with people from around the world. The scientific team was lovely, and the staff onboard were knowledgeable and inclusive. I would highly recommend any graduate student interested in deep sea drilling to apply to an IODP cruise!

Follow more of Saray’s science on Twitter at @paleosanchez and of the IODP Expedition 397 cruise under the hashtag #Exp397.

Changing Light in the Arctic

Anna Simpson, 6th year POA PhD Candidate

www.annaesimpson.com

Imagine a time when you’ve watched the sun sink just below the horizon and the sky and clouds reflect spectacular shades of oranges, yellows, pinks and lavenders. Now imagine this scene playing out for hours because the sun is moving in a wide, low arc just above or below the horizon. This is what the sky looks like at latitudes above the Arctic Circle around late fall/early winter when the sun sets for a few months. I experienced this multi-hour sunrise/sunset for the first time in the Beaufort Sea in November 2022, while participating in fieldwork onboard the R/V Sikuliaq. 

As I was preparing for the cruise, I knew it was going to be dark for much of the time due to the proximity to winter, but I thought the transition would be distinct, taking place  over a short period of time. While most of the time was dark, we experienced exquisite twilight with slow sunrises transitioning into slow sunset for a few hours a day. This time was magical, watching the shifting light and clouds across the ice, sea and mountain scapes. Most of the science crew had a daily routine of going outside to brave the bitter, cold winds to observe this magic.

Photo Credit Amanda Kowalski
Photo Credit Lloyd Pikok

The science crew was composed of many different research groups, all collecting data to understand various parts of the Arctic ocean system. My primary responsibilities involved monitoring and downloading data from instruments called chipods that measure temperature changes really quickly (100x/second). We use this data and some theory to compute turbulent dissipation rates. Higher dissipation rates indicate places where there is greater turbulent mixing. For example, if we have a cup of coffee and pour cream into it, it will eventually mix and combine together. If we take a spoon and stir the liquid in that cup, this causes higher amounts of turbulence which will combine the coffee and cream more quickly. Our spoon is the “event” that causes greater amounts of turbulence. Measuring turbulent dissipation rates helps us to understand the distribution and transport of heat, nutrients, and contaminants in the ocean.

I also spent a bit of time observing and capturing the shifting light, the reflections across the land-sea-sky-scape through watercolor painting. In my “normal,” land-based life, I pay attention to the way in which the light shifts in the spaces I occupy throughout the days and seasons. This careful attention has helped me develop a strong seasonal sense of the light and shadows in my own home and neighborhood. I am particularly drawn to the light at the edges of the day – sunrises and sunsets. In the mid-latitudes, the sunrise and sunset are fleeting, with the golden glow lasting for a short period of time. In the Arctic, this time is prolonged, providing me an opportunity to explore and practice capturing this special light through watercolor painting. 

Painting and other creative pursuits have been an integral part of my identity from my childhood. Only recently, I have realized the extent to which my identities as a scientist and artist are deeply intertwined. I enjoy using painting as a tool to explore my surroundings, record my observations, capture details, and describe my overall big picture feelings or moments. This creative practice fuels my curiosity and perception, both integral parts of being a scientist.

A new field, new country, and new data

Abby Hudak (She/her), 1st Year OEAS PhD Student
Seeing the Fagradalsfjall eruption in Iceland on my way to Denmark!

I have found that change, risks, and being outside your comfort zone is where the magic happens in life. As Alan Watts said, “The only way to make sense out of change is to plunge into it, move with it, and join the dance.” After leaving my comfortable and steady job as a data analyst this past summer, I dove into a series of changes as I started my journey as a Ph.D. student.

Embarking on my new adventure of starting a Ph.D. program, fortunately, began with an exciting opportunity to travel internationally, help colleagues with their research, and get my first hands-on experience with paleoclimate research. Both my master’s and bachelor’s degrees were in biology, but after learning about paleoclimate several years ago, I decided to change gears (and dive head first) into a new field of research for my Ph.D. Beginning my doctoral experience with hands-on lab work in a country I had never been to was really exciting.

Ice core science is commonly an international effort due to the challenging logistics of retrieving and storing polar ice cores and the variety of skills required to analyze them. The OSU Ice Core & Quaternary Geochemistry Lab has close colleagues at the University of Copenhagen at the Niels Bohr Institute Physics of Ice Climate and Earth. I had the opportunity to help those folks with an extensive gas measurement “campaign” (i.e., an extended period of time collecting measurements) and also learn a lot about the lab techniques I will use in my own research.

The ice used in the campaign was from Northeast Greenland in an area of fast-moving ice called an ice stream. Collecting ice from this region allows researchers to uncover how the ice stream may contribute to sea level rise and reveal past climate. The gas extracted from the ice core is derived from small bubbles locked in the ice, revealing past atmospheric conditions. (For more information on the project, check out the EastGRIP website). During the campaign, we had a team of 5-8 scientists running a continuous analysis of the dust and gas content of the core and also collected meltwater from the ice to examine the water chemistry at a later date.

An ice core melting on a hot plate continuously. Meltwater is collected through a series of tubing and instruments which can then extract the gas, count dust particles, and collect meltwater.

The campaign needed lots of hands on deck to take measurements continuously throughout the day. This approach allows for precise and high-resolution measurements. Ice was prepared and continuously melted on a heated platform. The meltwater then flowed through a series of systems that measured dust and gas and exported the meltwater to be analyzed later. Our time was spent diagnosing issues with a complicated and specialized system, cutting and preparing ice in a -15°C freezer, monitoring the measurements, and collecting discrete meltwater samples.

Serendipitously, while I was there doing ice core science, the University of Copenhagen celebrated the 100th birthday of Willi Daansgard, a Danish pioneer in ice core science. The university held a three-day symposium hosting ice core science talks and celebrating Daansgard’s achievements in ice core science. I was really excited and thankful to learn about the rich history of this field I have just joined.

Aside from the research, Copenhagen taught me the joy of commuting by bike, and I immediately bought a bike first thing when I got back to the U.S. Exploring castles and palaces, and biking around exploring the city was a fun way to spend the evenings. This trip was a great adventure experiencing a new country and learning about the new field I am so excited to now be a part of.

Find Abby on Twitter @AbigailHudak