Returning to my roots: Exploring groundwater resource vulnerability and water scarcity in Quintana Roo, Mexico

Maria Jose Iglesias-Thome, M.S. Student, Water Resources Science

My passion for water started at a very young age. When I look back at my childhood, the things that interested me growing up, and where I stand today, I can’t help but think that this trajectory makes sense. When my thesis advisors gave me the chance to propose a research project, I jumped at the opportunity to study groundwater in my hometown. 

I grew up in Puerto Morelos, Mexico, a small coastal town situated a few yards from the Caribbean ocean, nestled between vine-covered sand dunes and dense marshy mangrove forests and sitting on top of an ancient underground network of “rivers”. For locals, the idea that underneath lies a hyper-connected and inherently sensitive groundwater system, is part of the traditional knowledge passed on through generations. As the region continues to grow and develop, the abstract ideas of how the local aquifer flows, are replaced with an erroneous notion that clean water will always be accessible and will never cease to exist.

The place: Complexity hidden beneath our feet

Figure 1. Map of Quintana Roo. Tony Burton (2010)

The whole Yucatan peninsula sits on a flat limestone platform, built on top of millenia of fossilized calcified skeletons from creatures past. The carbonate rock that was left behind is highly soluble and vulnerable to rainwater dissolution. Throughout the years, heavy rainfall, common in this tropical environment, has carved a series of conduits, revealing a contiguous coastal aquifer and a landscape virtually devoid of rivers and non-groundwater dependent surface water systems. This process is known as karstification and the topography it leaves behind is known as karst. Scattered across the Yucatan peninsula are larger dissolution conduits: caves and sinkholes that have collapsed to form what are locally referred to as cenotes, derived from the Mayan ts’onot, that give us a direct look into the aquifer. Other important hydrogeologic features include major faults systems and regional-scale flow patterns from the center towards the marginal ends of the Peninsula, the coast. Inside these coastal karst aquifers, a thin freshwater lens (5-7 meters deep) lays atop an intruding saltwater layer, known as the “cuña salada”, penetrating 10-15 meters into the subsurface. This shallow layer provides most of the water for an increasingly growing population across the entire peninsula.

The problem: Chaotic population sprawl 

The complexity of this groundwater system results in an inherently vulnerable resource, especially to anthropogenic sources of disturbance. Likewise, it is unclear how patterns of water use may be depleting groundwater quantity and/or degrading groundwater quality and how these changes are affecting water availability to local communities and ecosystems in the region. Extreme urbanization and population growth may be a large driver of water insecurity and scarcity.  In 2017, the state of Quintana Roo hosted over 17 million tourists and sustained an average hotel occupancy of around 83%. The number of tourists visiting Quintana Roo has more than doubled in the last 10 years, with a 120% increase in yearly tourists between 2009 and 2019. Similarly, the population in the area has grown around 40% over the past 10 years. Spatially, development in the region follows an overall gradient from north to south, while the population is currently concentrated in northern communities, southern communities are experiencing higher rates of population growth. In other words, development is quickly spreading south.

As urbanization continues to sprawl across the coastline, concerns about saltwater intrusion, deep-aquifer contamination through wastewater injection, and shallow-aquifer contamination through septic tank leaks and fertilizer application continue to grow.

Understanding the relationships between social and ecological systems through their shared reliance on groundwater resources is important for evaluating water security and subsequent water scarcity issues. It may also prove critical in examining how coastal communities that rely on water for their livelihoods may be disproportionately affected by ongoing changes in water resources in the region.

Figure 2. Situation map for a hypothetical aquifer in Quintana Roo, showcasing transformations (yellow diamonds), flows (arrows) and storages (white boxes).

The methods: Mixed methodology and an evolving plan

Mixed research methods are useful tools in studying complex social-ecological system problems, like those in Quintana Roo. Qualitative interviews are a central component of my research methodology. This summer I had the privilege of conducting semi-structured interviews with large and small water users, water managers and water protectors. Interviewees included hotel representatives, domestic users, NGO and civil society leaders, and local government officials. My interviews covered a variety of topics and were rooted in concepts related to water scarcity, resilience theory and social-ecological systems frameworks. The data collected with these interviews will allow me to understand important exposure to water scarcity and other hazards, social vulnerabilities and sensitivities that affect how individuals and groups respond to water stress and aid in evaluating adaptive capacity from varying degrees of scale. Synthesizing important hydrogeological knowledge as well as the data collected through interviews, will allow for a holistic approach to understanding and measuring  water scarcity through an integrated assessment model-framework (IAMF). The model aims to integrate biophysical aspects of water scarcity, such as seasonality, water source, quantity and quality, with socioeconomic aspects of water scarcity, such as accessibility, reliability and social vulnerability.  It also hopes to include nuances that are often overlooked in water security models and water scarcity assessments. 

It is fascinating to research a place and a problem that are so dynamic and often evolving. One of the reasons why I am so deeply interested in natural resource management and specifically water resource science is because I grew up seeing the landscape around me change. I feel infinitely privileged to be working in a place I love and know, and hope to continue to contribute to what is known about it.

Playing in Nature: Graduate Student Edition

Aleah Hahn, Marine Resource Management Student

Flashback to my childhood: I am maybe 8 years old, wearing some worn out hand-me-down clothes from my brothers. I put on my trusty light blue crocs and callout to my mom, “I’m going to go play in the woods!” Stumbling through the leaf litter and sticks and fallen trees, the cold, wet, yuckiness of a Michigan fall does not phase me. I climb up the hill to my favorite spot. The sun decides to come out and light up my small patch. The birds are excited about the sun, too, so I sit and watch them play. I get distracted by a worm wriggling into the ground and giggle in awe of all the life around me. I am in my own slice of paradise.

I have always found myself connected to the outdoors. Whether swimming in the nearest body of water, going for a hike in the woods, or catching a bluegill in the creek, nature is where I am happiest.

Now, I am 22 years old, and for the past year I have been playing in a river –I mean, working on data collection for my master’s thesis.

My research site is east of Eugene, OR and sits below Cougar Dam. I am looking at a new approach to river restoration and trying to understand how different habitat qualities might impact the spawning and rearing of Chinook salmon. Before treatment, the river was not connected to its floodplain, the nursery habitat for juvenile Chinook. Treatment reconnected the river once again to its floodplain. The model I am using requires me to understand how fast the water moves and how deep it is before and after treatment. A team of five undergraduates and I collected that data, monitoring an untreated section of river upstream of the treatment area and regions in the treated area.

I have traded in my crocs and hand-me-downs for wading boots and thick neoprene waders. The waders were helpful when bushwhacking through stinging nettle, blackberries, salmonberries and virtually everything pokey in the world. If it is pokey, I found it, I probably grabbed it, and I most definitely learned my lesson.

My fieldwork involved walking on large wood placed throughout the river. When I began the work, I was slow and cautious, but by the end of the summer, I had to remind myself to slow down so my undergraduate helpers could keep up.

The weather and field conditions were not always the most pleasant to work in. I don’t recommend trying to get through stinging nettle taller than yourself –their radiating sting is unpleasant. Sticking my arms and face in the chilly water to retrieve sensors and replace them, doing my best, unsuccessfully, to keep the water from pouring into my waders, is, again, not recommended.

But during all the unpleasantness, I was truly living my best life. Some of the most uncomfortable parts of life can be the most enjoyable; it is all about perspective. I would rather have a bad day in the field and breathe in the fresh (well, sometimes smoky) air, see the life booming around me, and connect with nature, than have a mediocre day in the office. My favorite memories are of the times when we simply stopped and let the view in. The treated area was always busy with birds, butterflies, and fish. I would pull a rock out of the river and show my students the different macroinvertebrates crawling around. The ability to find life in all corners and crevices of the site excited my inner child.

Being at my study site reminded me of those days in the woods as a kid. It was MY place, my little slice of paradise. It also showed me that I didn’t have to do research to go out to the woods and frolic. So even though my field season has ended for my master’s project, you will always be able to find me revitalizing my soul out in the woods somewhere.

Of Chronologies and Chronic Illness

Olivia Williams, 3rd Year Geology PhD Student
Working in the ice core freezer during a trip to the University of Copenhagen in March 2022

One morning in August 2017 I woke up feeling sick. I was looking forward to the last week of my first-ever research internship in the Boston University Antarctic Research Group, where I was first introduced to paleoclimatology and was anticipating an opportunity for Antarctic fieldwork in a year or two. I was supposed to join a friend in Connecticut that weekend, but I thought I had food poisoning, so I canceled my plans and spent the weekend eating crackers in bed instead.

That “stomach bug” turned into five days of discomfort. Student Health and my doctor back home gave me some quick fixes—reduced stress and caffeine, antibiotics for a potential infection—but nothing helped. The weeks stretched into months and I completed the fall semester sick and miserable.

Holding a jar of Antarctic ash in the Boston University Antarctic research lab in September 2017, about a month after getting sick.

I wouldn’t receive a diagnosis until February: I had gastroparesis, or partial paralysis of the stomach muscles causing severe nausea. I began treating it with medication, which would eventually bring my symptoms down to a manageable level.

Because I got sick at the beginning of my career in geoscience, no part of my research experience can be separated from my chronic illness. I remember very little of my early Earth science classes; I was distracted by hunger when I couldn’t eat and nausea when I could, as well as headaches, dizziness, brain fog, shortness of breath, and fatigue. While my friends in the program were talking about exciting fieldwork opportunities and fun nearby hikes, I was so malnourished my hair was falling out.

My hopes of going to Antarctica—or of participating in any fieldwork at all—were dashed. Before I got sick I had been going to the gym five days a week to better my chances of being picked for the field team; now I could barely walk to class.

I had to turn down an offer to work in another lab at BU because I was still too ill to stand at a lab bench. Later, the medications I took to treat my stomach made me severely anemic, making data analysis a slow and frustrating slog.

While my health has improved dramatically over the past five years, I still deal with symptoms of my illness every day. I might be going about a normal week, eating well and even feeling good enough to hit the gym a few times, then suddenly be unable to leave the house due to nausea and painful stomach cramps. These episodes might last hours, days, or even weeks. I have to eat on a regular schedule and avoid certain foods to minimize my chances of a flare-up. All these things can make classes, lab work, and especially fieldwork challenging.

I was lucky to have the opportunity to complete an undergraduate thesis on biogeochemical cycling in marshes with samples that had already been collected. The lab work and data analysis were within my abilities at the time, so I was able to complete the project without major issue.

Sage Lot marsh, Cape Cod, MA in summer 2019. This marsh was the subject of my senior thesis project. The resulting paper, “Mechanisms and magnitude of dissolved silica release from a New England salt marsh,” has been published in Biogeochemistry.

My PhD project here in CEOAS also works with existing samples—one of the benefits of ice core science. Polar fieldwork may have a high barrier to access, but we have a long and varied archive of well-studied cores from both poles.

Although I still dream of doing fieldwork in Greenland or Antarctica, I have had the opportunity for lots of fun scientific experiences as part of my Ph.D. This spring I got to travel to Denmark to collect ice samples from the archive at the University of Copenhagen. Later in the spring, I helped an undergrad in our lab drill cave ice samples from Lava Beds National Monument.

Helping undergraduate Sebastian Miller (left) and professor Ed Brook (center) drill a cave ice sample at Lava Beds National Monument in May 2022.

This summer, I spent five weeks at the Scripps Institution of Oceanography in La Jolla learning some lab techniques for my project. This fall I attended the International Partnerships in Ice Core Science (IPICS) meeting in Crans Montana, Switzerland, with several members of my lab. While fun and educational, all these trips have presented their own challenges for my health.

The view from our rental house for the IPICS conference in Crans Montana, Switzerland, October 2022.

I’m used to living with my illness. I try not to let it get me down, and in general it doesn’t. I love the work I get to do in the ice core lab and my health rarely gets in the way these days. However, positive thinking can’t get you out of chronic illness. I can’t ignore the realities of my health out of a desire to do the same things as my colleagues.

Someone who has always been healthy and able to rely on their body to complete the tasks they ask of it can have a difficult time understanding the unpredictable rollercoaster of chronic illness. If you can hike three miles carrying field equipment one week, you can probably rely on being able to do it again the next week. A chronically ill person may find that hike easy one week and completely impossible the next due to changes in their health and energy. Both weeks may even look the same to an outside observer.

The next time you plan field work, a conference, or a lab celebration, consider that there may be members of your lab with invisible hurdles to participating in the same activities as you. Creating an environment where students and colleagues feel comfortable voicing their needs without judgment can go a long way. Reading up on things like spoon theory, which chronically ill people (or “spoonies”) use to describe their available energy, can also offer some insight.

As we all strive to improve equity and access in geoscience, it’s impossible to anticipate every possible need that will arise. What we all can do is interrogate our picture of what a geoscientist is and does and make room in the field for people with a wider array of experiences and abilities.

Website: oliviawilliamsgeo.com

Twitter: @olw_geo

From Owl Pellets to Pacific Fisheries

Laura Vary, M.S. student in Marine Resource Management  

Laura Vary with her father, who introduced her to science at a young age.
Beginnings of a scientist

I first became a scientist when I was four years old. I was crouching beneath a large pine tree in the woods of my backyard with my father standing beside me. We were inspecting an oblong, dark brown conglomeration. My dad explained that this mysterious thing was an owl pellet, likely excreted by one of the screech owls inhabiting our property. He palmed the pellet and we walked back to my house along the wooded path, my mind expanding as he described all that the little pellet could contain. 

Back in our garage, my father showed me how to carefully break apart the pellet using tweezers. He pulled out small rodent bones, teeth, and other unidentifiable fragments tangled in the coarse hair that held the pellet together. We dissected many of these in the months that followed, transforming my backyard into my first field site. My interest in ecology grew as I watched the dynamics of robins, cardinals, foxes, and chipmunks in those woods. They introduced me to basic biology as I found treasures including a complete, bleached possum skeleton and an intact still-born coyote pup. My biochemist father taught me all he knew about our woods during frequent walks in the evenings, stoking my enthusiasm and helping me to learn that the world of science could be mine. 

Though I lived inland near lakes and rivers teeming with small spotted sunfish and bass, I was drawn to the craggy granite shoreline of Maine’s coast. I would rock-hop away from my mother as she read to seek out hidden tide pools that burst with barnacles and mussels and small periwinkles. By sixth grade I was determined to become a marine biologist. 

to another coast, far away

My mission to become a marine biologist led me, surprisingly, to the drought-stricken Central Valley of California where I studied marine and coastal science at the University of California at Davis. I was immediately drawn to the school after learning about UC Davis’ Bodega Marine Laboratory. Strategically located at the site of one of the most productive areas of the California coast, Bodega Marine Lab houses all varieties of innovative University of California undergraduate and graduate marine ecosystem research. With urging from my father to “follow the research” and extensive emotional support from my mother, I moved 3,300 miles away from my family. 

I joined my first undergraduate research project in the spring of my freshman year in the Ecology and Evolution Department with the Wainwright Lab studying the morphological evolution of teleost fishes. I traveled to the Smithsonian Museum’s Collections Facility in Maryland with a small group of my peers, and together we measured preserved specimens of Teleostei fishes. These measurements, and others taken by more undergraduates in following years, produced one of the largest public databases of linear measurements of fishes available today. This work resulted in the presentation of my first research project utilizing a subset of these data at the 28th Annual Undergraduate Research Conference. 

Studying morphological evolution at the Smithsonian

Then, after a year-long digression in terrestrial plant ecology, my first significant experimental failure, and the completion of physically exhaustive biology courses, I finally arrived at Bodega Marine Lab in August of 2018. I studied coastal and biological oceanography and assisted with research in Steve Morgan’s planktonic fisheries ecology lab. I counted fish larvae and eggs and became endlessly fascinated with the expansive world that fit within the view of my microscope. I returned to this lab after graduation in 2019 to become a paid research technician. In this dream role I learned identification of invertebrate larvae, how to distinguish one species of krill from another, and organized a science crew and team of volunteers to evaluate marine protected areas off the Sonoma Coast. The Morgan Lab became my second home; I understood my priorities as a researcher and progressive member of a new wave of scientists and determined what my future after graduation would look like.

Searching for fish larvae and eggs in plankton samples

From marine biologist to marine resource manager

Upon reflection of my undergraduate education, I realized that solving complex matters like sustainable ocean management and climate change requires an interdisciplinary framework. Furthermore, I learned that the waves of change I wanted to make would be more difficult to achieve with my Bachelor’s degree alone. The recognition of these goals led me to Oregon State’s research-focused yet extremely interdisciplinary marine resource management program. In the College of Earth, Ocean, and Atmospheric Sciences I will work with Dr. Lorenzo Ciannelli in his fisheries oceanography lab. Using fish plankton data, I plan to research the ability of fishes like halibut, cod, and pollock to alter the timing (phenology) and location (geography) at which they spawn. I strive to understand the biological flexibility of these species and how it relates to the future of their populations, reliant commercial and Indigenous fisheries, and the larger marine ecosystem. I am driven by the need to understand what confers resilience in fish populations, and how we – as stewards – can learn from traditional native practices, historical environmental dynamics, and robust predictive models to create sustainable ecosystems and restore balance in the ocean.

Researching Marine Protected Areas (and Olive Rockfish) off the California Coast.

My path in science has always been driven by a clear goal to promote sustainability and revitalization within our global ecosystems. I hope that more people find room for research and science in their daily lives as this goal intersects so many fundamental aspects of human life. A common misconception for many is that scientists are highly trained individuals that dedicate their lives to research… we are not. We are inquisitive people that look at our world, make observations, and ask questions, just as I did when I was young. I want more people to understand that their voices and actions are deeply influential in the scientific world, and I will dedicate my future in research to ensuring the inclusivity of academia, management, and conservation. Science needs everyone!

Follow Laura on Twitter @resultscan_Vary