Anticipating Antarctica

Julia Marks Peterson, 4th year OEAS PhD student (MG&G)

I sent in my United States Antarctic Program deployment packet this week, and suddenly returning to the field for another season feels right around the corner. Memories from last year sporadically surfaced as I answered the prompts asked in the packet.

“What dates will you need a hotel in Christchurch, NZ?” I filled out the same hopeful answer as before: The first two days of November, while reminiscing about the two weeks we were unexpectedly stuck there as McMurdo Station tried to reign in a COVID outbreak. “What size parka would you like?” brought me back to seeing my Big Red for the first time, with my name on the pocket and the reality sinking in that we were going to a very, very cold place.

I am heading back to Antarctica as a member of the COLDEX project. COLDEX (the Center for OLDest ice EXploration) is a National Science Foundation Science and Technology Center with the driving research goal of finding the oldest ice in Antarctica. Currently, this quest is a two-pronged effort, being carried out by an exploration team and an ice core drilling team. The exploration team is composed of geophysicists who will fly over a section of the ice sheet in a plane outfitted with airborne radar to collect high-resolution imagery of the ice sheet interior. The goal is to use these images to select a site to drill a deep ice core that extends back 1.5 million years.

Simultaneously, the ice core drilling team will continue to drill shallow cores from a place called the Allan Hills Blue Ice Area, where the oldest ice ever dated has been collected. The Allan Hills are in East Antarctica, just on the other side of the Transantarctic Mountains from McMurdo Station. Unlike the parts of an ice sheet where winter snowfall is preserved (like high points such as domes), the Allan Hills Blue Ice Area loses surface mass over the year due to high winds and sublimation, the process whereby ice turns directly to gas without passing through a liquid water state. This net loss is balanced by ice flow from an accumulation area upstream, causing uplift of ice that was formerly in the ice sheet interior. Scientists have had a hunch that the ice in this area was old for a long time because meteorites collected nearby were determined to have terrestrial ages of up to ~400,000 years.  And they were right! For the past decade, research teams have drilled ice cores at the Allan Hills BIA and progressively extended the ice core record further back in time. Though the flow and uplift of old ice causes the layers in the ice to be distorted, leading to a discontinuous record, ice as old as 4 million years has been found.

As a member of the ice drilling team, I will return to the Allan Hills BIA where we hope to collect even older ice. Like last year, we will fly to Christchurch, New Zealand where the U.S. Antarctic Program transports people to and from the largest base on the continent: McMurdo Station. Once at McMurdo, we will go through required trainings, including how to safely live away from station in the “deep field.” After about 10 days, we will be flown to the Allan Hills in a small aircraft that flies so low that you feel like you’re weaving through the mountains. We will then set up camp and live at the Allan Hills, drilling ice for eight weeks before returning to McMurdo and then back home via Christchurch.

Antarctic fieldwork is a funny thing; every memory is an initial flood of positive emotions followed by a slightly uncomfortable aftertaste. It’s easy to remember all the fun camp games, the ridiculous jokes upon jokes, the stunning landscape, the products of our hard work, and the beautiful friendships built. However, married to all these memories are the strenuous parts of life in the field. How gross your hair can get after weeks of living in a desert without a shower. How a task you could accomplish in one minute in your normal life would take you 20 (e.g., if you suddenly realize you really have to pee it’s already too late). How cold it would feel to open your sleeping bag in the morning and put on clothes that have equilibrated with Antarctic temperatures. How it would feel when the propane tank fueling the heater depleted and your only path back to warmth was the long and onerous task of replacing the tank. Oh, and the constant wind! So much wind.

As I write this, remembering the negative parts of Antarctica while sitting in peak Corvallis summer temperatures, it becomes hard to imagine returning to that way of life. But these memories are never the first that come to mind. It actually takes work to remind myself of these tough details because the fond parts so easily eclipse them. I think that is what might be most remarkable about Antarctic fieldwork, that it is this incredible showcasing of how adaptable we can be. And it’s this realization that makes me so excited to return for another season.

NASA SnowEX: Science Below Zero Degree C

Bareera Mirza (A first-year Geography Ph.D. student)

To Learn More About NASA SnowEx, visit https://snow.nasa.gov/

I am Bareera Mirza, a Pakistani Muslim woman who lived all her life near the coast, far from the mountains. Despite that, I developed my love for snow/glaciers when I first visited Skardu (a city in the Himalayas of Pakistan) in April 2018; and that was my first time seeing snow and glaciers. After the initial exposure, I revisited the Himalayas multiple times to gain a deeper understanding of the lifestyles of the local populace. It was a life-changing experience to talk to local people, learning about their struggles living near the mountains and their dependency on changing nature and climate. It was the combination of these visits, the exposure gained in classes, and the lessons learned from my professors that inspired me to pursue my current trajectory. 

Pre-Field Trip:

In October 2022, I participated in the National Aeronautics and Space Administration (NASA) SnowEx 2023 Tundra and Boreal Forest campaign in Fairbanks, Alaska, a multi-year field campaign to observe snow and come up with the best remote sensing technologies to accurately predict snow throughout the season in various environments. SnowEx is part of an effort of NASA’s upcoming special snow satellite, which can help predict the amount of water available in snowpack for better water management use.

NASA SnowEx was nothing less than a dream come true. However, I could feel the nervousness among my family and loved ones (out of safety concerns) because it is unusual for Pakistani women to do such kind of fieldwork in the extreme weather of Fairbanks, Alaska. Not to mention an unfamiliar territory (I didn’t even know the types of gear I would need – like what on earth is gaiter?). I am incredibly thankful to my advisor Dr. Mark Raleigh and the team at NASA Goddard, who helped me with field trip preparation and made the process manageable and easy to navigate.

Science Talk:

My collaborative team, consisting of 40 scientists from NASA and different institutions, reached Fairbanks, Alaska, to observe five different test sites. I was assigned a Boreal Forest test site, Bonanza Creek – one of the largest forested biomes on Earth, covering 17 million km2 of the Northern Hemisphere and accounting for approximately one-third of Earth’s total forest area. 

Photo: Team of Bonanza Creek
Photo Credit: Carrie Vuyovich

I spent a couple of days at Farmer’s Loop site, a site in the town which can be a good analog testbed to compare snow measurements in wetlands, ponds, and swamp forest environments. We processed different measurements (Snow Water Equivalent (SWE), snow depth, temperature, stratigraphy, and soil samples) by digging snow pits in a 5x5m plot. 

Along with the ground samples, the team of NASA was doing airborne LiDAR (Light Detection and Ranging) surveys as an eventual goal of the ground surveys to validate data of airborne surveys. The campaign was 12 days long, with 7 days in the field and 5 days of training  (including travel). 

Let’s not forget the fun moments!

The trip was mostly for snow science, but science is fun, isn’t it? Firstly, it was breathtakingly beautiful, deep in the forest, as a 5’2” tall individual, surrounded by tussocks 10 inches tall. Walking in unknown terrain is an adventurous experience; our group was unaware of what was beneath us because it was all snow-covered. It can be a lake, pond, or a tall tussock (literally every 10m or less). Branches of trees are hitting our faces as we migrate through a dense forest, wearing snow gear and holding our measurement tools.

But none of it felt overwhelming because snow is beautiful to gaze upon, and whenever I felt tired, I just looked around me to admire the peaceful visage. Among some of the more exciting experiences, I saw moose for the first time and ate my cold salad sandwich in the forest. Not to brag, but being a newbie, a team that included me, Kelly Elder, and Wyatt Reis, we ended up doing 7 snow pits in a day (our usual was 3 to 4). Working with experienced people who had been doing this for years, learning from them, and testing my thresholds was one of the most memorable experiences. Moreover, on the last day, we went to see the Permafrost tunnel. I would equate it to time traveling as some of the features were 40,000 years old. Most importantly, trying some local foods especially waffles with Carrie Vuyovich, Megan Mason, and Joachim Meyer were so much fun. Finally, talking to people about the Himalayas and my experience as the first Pakistani woman to work in SnowEx campaigns was spectacular.

Overall, I loved this 12-day trip where I worked as a snow scientist. I made many connections, learned a lot, and experienced a whole different life. I plan to continue pursuing snow science and exploring new frontiers. The snow community is very new, and there are few women of color who are aware of the efforts, so with my experience and knowledge, I would love to inspire more women to be part of this community.

Team of NASA SnowEX Field Campaign October 2022
Bareera’s Research Lab at Oregon State University

twitter handle https://twitter.com/BareerahMirza 

research lab page: https://markraleigh.com 

github:https://github.com/mbareera

An Analytical and Symbolic Test Drive

Ben Riddell-Young, 5th Year OEAS PhD (OEB)
Me next to a pretty good looking glacier. I love ice if you couldn’t already tell. This glacier is called Grenzgletscher and is near Zermatt, Switzerland. I went here as part of an excursion for an international Ice Core conference that happens once every 4 years. It was an incredible experience!

With the light at the end of the long PhD tunnel beginning to show itself, the uncertainty and anticipation of my next steps are also coming into view. Much of my apprehension stems from worries that I’m not prepared for the unknown, that I’ve grown too comfortable and dependent on my OSU network, that I’ll be overwhelmed by the independence of what lies beyond. Recently, I got a taste of what life might be like “on the other side.”

It began with a long and uncomfortably snowy drive down to the Desert Research Institute (DRI) in Reno, NV. Here, I tested a new analytical system with the ice core team at the DRI. This spring, we’re planning to take this system and a similar one operated by the DRI folks to Summit Station, Greenland to analyze ice cores as soon as they are drilled. This will test if the way that cores are handled on their way back to the US might impact analyses–specifically the analysis of methane and carbon monoxide, which is what my system measures.

In addition to being an important test drive for my analytical system, the trip also began to feel like a test drive for my career as a truly independent scientist. The solitary drive down to Reno gave me plenty of unsolicited thinking time to let the responsibility I was about to take on set in. I was to be the only expert in ice core trace gas analysis in Reno, and the only one for thousands of miles when deployed on the Greenland ice sheet. A lot was riding on my back, and for the first time, I didn’t have my advisor just a couple of doors down. The fact that I was alone and had all my hard work in the trunk of my own car added to the symbolism of it all. For me, the new responsibilities and independence associated with this trip represented the start of the next, more independent step in my life and career.

Me with my main analytical system back at OSU. This system is designed to measure the stable isotopes of methane in ice cores. Although these measurements are incredibly exciting, it can be very solitary and patient work. The trip to the DRI and the work ahead in the field will be a refreshing change.

Symbolism aside, with the exception of a couple of hiccups, the testing went really well. It was great to see all of my hard work come to fruition and eased some of my worries about using the system in the field when the stakes will be much higher. The system we were working with enables what is called Continuous Flow Analysis (CFA), where we melt sticks of ice cores at a continuous rate, and the meltwater and gas is routed to various instruments that measure chemical and physical properties in real time. Given that I’m used to measuring samples where you don’t get to see the data until it is retroactively processed, it was very exciting to see the data in real time. Further, my lab work back at OSU is typically very solitary, whereas sample measurement for CFA often involves several scientists working together. Excited preliminary interpretations and chatter were common as the data were quite literally “flowing” in. Knowing that the system works outside the comfort of OSU, my nerves began to turn into excitement for the upcoming Greenland field season.

The drive back, which was also uncomfortably snowy (La Niña, amirite?), this time provided welcome time to reflect–and to get symbolic again. This trip allowed me to peer into the murky abyss of post-graduate life. This glimpse gave me a taste of what might be to come and taught me some valuable lessons. It taught me that there will always be new relationships and communities to be build and new and old faces to support me along the way. Perhaps more importantly, it taught me that I’m ready for the next steps and that I really do have the capability to function as an independent scientist. The whole experience was very empowering. As the departure date for field deployment steadily approaches, I’m feeling more ready than ever for the unknowns, challenges, and adventures to come.

Changing Light in the Arctic

Anna Simpson, 6th year POA PhD Candidate

www.annaesimpson.com

Imagine a time when you’ve watched the sun sink just below the horizon and the sky and clouds reflect spectacular shades of oranges, yellows, pinks and lavenders. Now imagine this scene playing out for hours because the sun is moving in a wide, low arc just above or below the horizon. This is what the sky looks like at latitudes above the Arctic Circle around late fall/early winter when the sun sets for a few months. I experienced this multi-hour sunrise/sunset for the first time in the Beaufort Sea in November 2022, while participating in fieldwork onboard the R/V Sikuliaq. 

As I was preparing for the cruise, I knew it was going to be dark for much of the time due to the proximity to winter, but I thought the transition would be distinct, taking place  over a short period of time. While most of the time was dark, we experienced exquisite twilight with slow sunrises transitioning into slow sunset for a few hours a day. This time was magical, watching the shifting light and clouds across the ice, sea and mountain scapes. Most of the science crew had a daily routine of going outside to brave the bitter, cold winds to observe this magic.

Photo Credit Amanda Kowalski
Photo Credit Lloyd Pikok

The science crew was composed of many different research groups, all collecting data to understand various parts of the Arctic ocean system. My primary responsibilities involved monitoring and downloading data from instruments called chipods that measure temperature changes really quickly (100x/second). We use this data and some theory to compute turbulent dissipation rates. Higher dissipation rates indicate places where there is greater turbulent mixing. For example, if we have a cup of coffee and pour cream into it, it will eventually mix and combine together. If we take a spoon and stir the liquid in that cup, this causes higher amounts of turbulence which will combine the coffee and cream more quickly. Our spoon is the “event” that causes greater amounts of turbulence. Measuring turbulent dissipation rates helps us to understand the distribution and transport of heat, nutrients, and contaminants in the ocean.

I also spent a bit of time observing and capturing the shifting light, the reflections across the land-sea-sky-scape through watercolor painting. In my “normal,” land-based life, I pay attention to the way in which the light shifts in the spaces I occupy throughout the days and seasons. This careful attention has helped me develop a strong seasonal sense of the light and shadows in my own home and neighborhood. I am particularly drawn to the light at the edges of the day – sunrises and sunsets. In the mid-latitudes, the sunrise and sunset are fleeting, with the golden glow lasting for a short period of time. In the Arctic, this time is prolonged, providing me an opportunity to explore and practice capturing this special light through watercolor painting. 

Painting and other creative pursuits have been an integral part of my identity from my childhood. Only recently, I have realized the extent to which my identities as a scientist and artist are deeply intertwined. I enjoy using painting as a tool to explore my surroundings, record my observations, capture details, and describe my overall big picture feelings or moments. This creative practice fuels my curiosity and perception, both integral parts of being a scientist.

A new field, new country, and new data

Abby Hudak (She/her), 1st Year OEAS PhD Student
Seeing the Fagradalsfjall eruption in Iceland on my way to Denmark!

I have found that change, risks, and being outside your comfort zone is where the magic happens in life. As Alan Watts said, “The only way to make sense out of change is to plunge into it, move with it, and join the dance.” After leaving my comfortable and steady job as a data analyst this past summer, I dove into a series of changes as I started my journey as a Ph.D. student.

Embarking on my new adventure of starting a Ph.D. program, fortunately, began with an exciting opportunity to travel internationally, help colleagues with their research, and get my first hands-on experience with paleoclimate research. Both my master’s and bachelor’s degrees were in biology, but after learning about paleoclimate several years ago, I decided to change gears (and dive head first) into a new field of research for my Ph.D. Beginning my doctoral experience with hands-on lab work in a country I had never been to was really exciting.

Ice core science is commonly an international effort due to the challenging logistics of retrieving and storing polar ice cores and the variety of skills required to analyze them. The OSU Ice Core & Quaternary Geochemistry Lab has close colleagues at the University of Copenhagen at the Niels Bohr Institute Physics of Ice Climate and Earth. I had the opportunity to help those folks with an extensive gas measurement “campaign” (i.e., an extended period of time collecting measurements) and also learn a lot about the lab techniques I will use in my own research.

The ice used in the campaign was from Northeast Greenland in an area of fast-moving ice called an ice stream. Collecting ice from this region allows researchers to uncover how the ice stream may contribute to sea level rise and reveal past climate. The gas extracted from the ice core is derived from small bubbles locked in the ice, revealing past atmospheric conditions. (For more information on the project, check out the EastGRIP website). During the campaign, we had a team of 5-8 scientists running a continuous analysis of the dust and gas content of the core and also collected meltwater from the ice to examine the water chemistry at a later date.

An ice core melting on a hot plate continuously. Meltwater is collected through a series of tubing and instruments which can then extract the gas, count dust particles, and collect meltwater.

The campaign needed lots of hands on deck to take measurements continuously throughout the day. This approach allows for precise and high-resolution measurements. Ice was prepared and continuously melted on a heated platform. The meltwater then flowed through a series of systems that measured dust and gas and exported the meltwater to be analyzed later. Our time was spent diagnosing issues with a complicated and specialized system, cutting and preparing ice in a -15°C freezer, monitoring the measurements, and collecting discrete meltwater samples.

Serendipitously, while I was there doing ice core science, the University of Copenhagen celebrated the 100th birthday of Willi Daansgard, a Danish pioneer in ice core science. The university held a three-day symposium hosting ice core science talks and celebrating Daansgard’s achievements in ice core science. I was really excited and thankful to learn about the rich history of this field I have just joined.

Aside from the research, Copenhagen taught me the joy of commuting by bike, and I immediately bought a bike first thing when I got back to the U.S. Exploring castles and palaces, and biking around exploring the city was a fun way to spend the evenings. This trip was a great adventure experiencing a new country and learning about the new field I am so excited to now be a part of.

Find Abby on Twitter @AbigailHudak

From Panama to the North Pole

Maria Cristina Alvarez Rodriguez, OEB M.S. Student

Since I was a child, I have been drawn to science. I always imagined myself working in a chemistry laboratory and participating in research; unfortunately, this is a hard dream to have if you come from Panama, where research opportunities are few or non-existent. But I was lucky enough to receive a national scholarship to study sciences related to water resources internationally, and I used it to study ocean sciences at OSU. It was here that I was introduced to the different aspects of oceanography, and I learned that I could get involved in research.

After my undergraduate degree, I was accepted into the College of Ocean, Earth, and Atmospheric Sciences to get my master’s degree under the supervision of Laurie Juranek, a badass chemical oceanographer. As part of the NSF-funded Synoptic Arctic Survey, an international effort to collect data to detect ongoing and future climate change, I embarked on a two-month-long journey that took me to the North Pole!

Figure 1. Synoptic Arctic Survey scientists on the Healy during ice liberty. Photo credit: Deborah Cordone.

My role in this exploration is to study dissolved oxygen concentrations in the Arctic basin. Aboard the ship Healy, we worked from Monday to Sunday for two months straight, collecting a variety of data. During what we called a “long station,” we conducted CTD (Conductivity, Temperature, and Depth) casts and deployed VPR (video plankton recorders), bongo nets, Van Veen grabs, HAPS Cores, and multicores at deeper stations.

When we did full CTD casts, we sampled from 24 bottles, each containing 12 liters of Arctic water, to be shared by multiple teams. The dissolved oxygen team, all from OSU (Laurie, Genevieve Coblentz-Strong and myself), sampled first in order to limit environmental contamination in our water. Laurie trained us to properly sample from the water, always watching out for bubbles — we don’t want bubbles! The first thing we need to do is to take the draw temperature, which is the temperature of the water when we first open the Niskin bottle. This is an important step for density calculations at the time the sample is taken. I rinse the flask and start filling it up with water, watching out for any bubbles, then I hand my co-worker the flask so she can “pickle” the water with chemicals that will “fix” the oxygen concentrations of the sample – keep it the same for later analysis. She gives the flask a good shake to mix all the chemicals. Once we finish, we fill the neck of the flask with deionized water to prevent any oxygen from entering the sample. After 30 minutes and a second shake of the flasks, we are ready to leave them in the dark so they can come up to room temperature.

Figure 2. Left to right: Emily Shimada (STARC), Maria Cristina Alvarez (OSU), Laurie Juranek (OSU), Genevieve Coblentz-Strong (OSU)

After us, the CO2 people always have their turn, then the methane group, then the biologists. In the end, everyone has taken some water to do their analysis. While the CTD team is sampling there is other science happening on the other side of the ship. Plankton nets are deployed to vertically sample from the water column. The biologists deploy the VPR, which is a camera that takes pictures of the microorganisms in the water column. There are pumps to filter water to collect particulate organic carbon in the water column – the pumps need to be under water for four hours!

Lastly comes the benthic (bottom) sampling, which uses different coring instruments to get samples of sediment from the ocean floor along with the organisms in it. At this point, it is already midnight, and the cores will take hours to process, extending to the early morning of the next day, when the O2 team starts doing Winkler titrations to get discrete oxygen concentrations from our samples. With my data, I hope to find patterns of changes occurring in the Arctic Basin, and since this is an area with scarce data, I will also be contributing to creating a baseline study of the transformation of this ecosystem for comparison with future data.

Figure 3. Maria Cristina performing Winkler titrations. Photo credit: Leonard Sussman

At the top of the world, the Healy crew organized what they call “ice liberty” which was the event in which everyone on the ship gets to go walk in the ice at the North Pole. The ice experts made sure the thickness was safe and they determined a perimeter in which we could hang out for two hours in the snow. We all got dressed up in our mustang suits, multiple layers of clothes below the suit, scarves, face coverings, beanies, and gloves. We made a line and walked down to the ice. It was a magical moment that I never thought I would ever experience. A Panamanian from Central America in one of the coldest places on Earth?

During this trip, we got to experience most of the items on the “bucket list for the Arctic.” On our way back, we saw a beautiful young female polar bear! She looked in great condition and the smell of the ship attracted her to the boat. It was incredible to see this magnificent animal, using the snow to clean herself. We also got to see the northern lights three times! One was incredibly intense, the green flashes of light dancing around the sky like a river flowing through the air. On open waters, we saw many bowhead whales and walruses. During these moments of awe and wonder, I felt an immense gratitude towards everything, and everyone involved in this exploration. Every single person in the Healy did their best to make the science happen. We felt joy during our work, made good friends, and learned from each other about what it means to be a human, a scientist, and a student.

Figure 4. Polar bear sighted during the expedition. Photo credit: Leonard Sussman

Photo credits: All pictures were taken during NSF-funded Synaptic Arctic Survey (SAS), Healy 2202 Research Cruise.

Of Chronologies and Chronic Illness

Olivia Williams, 3rd Year Geology PhD Student
Working in the ice core freezer during a trip to the University of Copenhagen in March 2022

One morning in August 2017 I woke up feeling sick. I was looking forward to the last week of my first-ever research internship in the Boston University Antarctic Research Group, where I was first introduced to paleoclimatology and was anticipating an opportunity for Antarctic fieldwork in a year or two. I was supposed to join a friend in Connecticut that weekend, but I thought I had food poisoning, so I canceled my plans and spent the weekend eating crackers in bed instead.

That “stomach bug” turned into five days of discomfort. Student Health and my doctor back home gave me some quick fixes—reduced stress and caffeine, antibiotics for a potential infection—but nothing helped. The weeks stretched into months and I completed the fall semester sick and miserable.

Holding a jar of Antarctic ash in the Boston University Antarctic research lab in September 2017, about a month after getting sick.

I wouldn’t receive a diagnosis until February: I had gastroparesis, or partial paralysis of the stomach muscles causing severe nausea. I began treating it with medication, which would eventually bring my symptoms down to a manageable level.

Because I got sick at the beginning of my career in geoscience, no part of my research experience can be separated from my chronic illness. I remember very little of my early Earth science classes; I was distracted by hunger when I couldn’t eat and nausea when I could, as well as headaches, dizziness, brain fog, shortness of breath, and fatigue. While my friends in the program were talking about exciting fieldwork opportunities and fun nearby hikes, I was so malnourished my hair was falling out.

My hopes of going to Antarctica—or of participating in any fieldwork at all—were dashed. Before I got sick I had been going to the gym five days a week to better my chances of being picked for the field team; now I could barely walk to class.

I had to turn down an offer to work in another lab at BU because I was still too ill to stand at a lab bench. Later, the medications I took to treat my stomach made me severely anemic, making data analysis a slow and frustrating slog.

While my health has improved dramatically over the past five years, I still deal with symptoms of my illness every day. I might be going about a normal week, eating well and even feeling good enough to hit the gym a few times, then suddenly be unable to leave the house due to nausea and painful stomach cramps. These episodes might last hours, days, or even weeks. I have to eat on a regular schedule and avoid certain foods to minimize my chances of a flare-up. All these things can make classes, lab work, and especially fieldwork challenging.

I was lucky to have the opportunity to complete an undergraduate thesis on biogeochemical cycling in marshes with samples that had already been collected. The lab work and data analysis were within my abilities at the time, so I was able to complete the project without major issue.

Sage Lot marsh, Cape Cod, MA in summer 2019. This marsh was the subject of my senior thesis project. The resulting paper, “Mechanisms and magnitude of dissolved silica release from a New England salt marsh,” has been published in Biogeochemistry.

My PhD project here in CEOAS also works with existing samples—one of the benefits of ice core science. Polar fieldwork may have a high barrier to access, but we have a long and varied archive of well-studied cores from both poles.

Although I still dream of doing fieldwork in Greenland or Antarctica, I have had the opportunity for lots of fun scientific experiences as part of my Ph.D. This spring I got to travel to Denmark to collect ice samples from the archive at the University of Copenhagen. Later in the spring, I helped an undergrad in our lab drill cave ice samples from Lava Beds National Monument.

Helping undergraduate Sebastian Miller (left) and professor Ed Brook (center) drill a cave ice sample at Lava Beds National Monument in May 2022.

This summer, I spent five weeks at the Scripps Institution of Oceanography in La Jolla learning some lab techniques for my project. This fall I attended the International Partnerships in Ice Core Science (IPICS) meeting in Crans Montana, Switzerland, with several members of my lab. While fun and educational, all these trips have presented their own challenges for my health.

The view from our rental house for the IPICS conference in Crans Montana, Switzerland, October 2022.

I’m used to living with my illness. I try not to let it get me down, and in general it doesn’t. I love the work I get to do in the ice core lab and my health rarely gets in the way these days. However, positive thinking can’t get you out of chronic illness. I can’t ignore the realities of my health out of a desire to do the same things as my colleagues.

Someone who has always been healthy and able to rely on their body to complete the tasks they ask of it can have a difficult time understanding the unpredictable rollercoaster of chronic illness. If you can hike three miles carrying field equipment one week, you can probably rely on being able to do it again the next week. A chronically ill person may find that hike easy one week and completely impossible the next due to changes in their health and energy. Both weeks may even look the same to an outside observer.

The next time you plan field work, a conference, or a lab celebration, consider that there may be members of your lab with invisible hurdles to participating in the same activities as you. Creating an environment where students and colleagues feel comfortable voicing their needs without judgment can go a long way. Reading up on things like spoon theory, which chronically ill people (or “spoonies”) use to describe their available energy, can also offer some insight.

As we all strive to improve equity and access in geoscience, it’s impossible to anticipate every possible need that will arise. What we all can do is interrogate our picture of what a geoscientist is and does and make room in the field for people with a wider array of experiences and abilities.

Website: oliviawilliamsgeo.com

Twitter: @olw_geo

A Search for the Planet’s Oldest Ice

Jenna Epifanio, Ph.D. student in Ocean, Earth and Atmospheric Sciences

Jenna in the field. Credit: Ian Van Coller

What would you see if you looked into a time capsule from 1.5 million years ago? If the time capsule contained air before it was sealed up, you would find out a lot about the Earth’s climate. Between October and January of last year, I had the opportunity to join a team of researchers to go find some of that air, trapped in a natural time capsule: An Antarctic ice sheet.

using ice to understand earth’s past

Ice on our planet’s polar ice sheets has been preserving records of climate for hundreds of thousands of years, and in the case of Antarctica, a lot longer than that. Antarctica is thought to have first become covered in ice about 30 million years ago, which means if we sample ice at the correct locations on the continent, we might be able to discover some of that extremely old ice.

Bubbly ice from the Allan Hills, Antarctica

What makes polar ice a great archive for climate science is the direct nature of what it preserves. Not only do the water chemistry and particles trapped in the ice tell us about the past climate, but ice also collects tiny air bubbles that preserve an undisturbed record of the Earth’s atmosphere. Because ice is formed by layers and layers of snow that become packed down over thousands of years, all of the bubbles that are trapped in the ice sheet are preserved in chronological order – the deeper down in the ice sheet, the older the ice and the air trapped in it. Climate scientists can drill a long ice core and analyze it to determine the chemistry of the ice as well as the composition of atmospheric air in the ice bubbles.

Even though Antarctica glaciated over 30 million years ago, we probably won’t ever find ice that old on the continent. Because ice moves quickly (geologically speaking) and is subject to stress, melting and flow, most of the extremely old ice in Antarctica has already been destroyed. Currently, the oldest record of past climate contained in an ice core goes back 800,000 years. Recently, however, there has been a push to identify ice older than this because of an interesting question about the climate system that we want to answer.

Between 1.2 million and about 900,000 years ago, the Earth went through a dramatic shift in ice age cycles. During what’s known as the Mid Pleistocene Transition (MPT), the Earth changed from having ice ages every 40,000 years to having much colder and longer ice ages every 100,000 years. We know this from ocean sediment records of climate that contain indirect clues – proxies – describing climate conditions. However, an ice core record that covers that period would be invaluable: Instead of using proxy records of climate recorded in the ocean sediments, we would have a sample of the atmosphere itself to measure and answer questions about the climate from that period.

A visible layer of volcanic ash trapped in the ice sheet, near the Allan Hills, Antarctica.

Recently, scientists collected ice that was dated to be 1.5 million to about 2.7 million years old at a location in Antarctica called the Allan Hills. Situated about 140 miles from the U.S Antarctic base, McMurdo station, the Allan Hills is known as a “blue ice area,” and when you see it for the first time, there is no question as to why it bears the name. Blue ice areas (BIAs) are created when winds scour the ice sheet, removing the top layer of uncompressed snow and exposing the blue ice. At the Allan Hills, this process is combined with other physical factors that allow very old ice to be found near the surface. That extremely old ice near the surface is what I, and a few wonderful people from around the country, were there to sample.

The primary goal of the field season was to re-drill an ice core at a location that had been identified to have ice that is 2.7 million years old. The original ice core, collected a few years ago, was fairly small, and has mostly been consumed as samples were chipped off of it in the process of understanding its age. One secondary goal of the expedition was to drill some reconnaissance samples in locations that were good candidates for old ice. Over the seven weeks, we successfully drilled three 150-m ice cores, one of which will very likely contain ice that is 2.7 million years old.

Field work at the bottom of the world

Just arriving in Antarctica is an ordeal. A commercial flight to Christchurch, New Zealand takes about 18 hours. I was the only representative from Oregon State University on the team, so meeting some new and also some familiar faces was the first order of business when I arrived. Along with the other researchers, I met our camp manager, Anna, an impressive and ferocious mountaineering woman on her tenth season in Antarctica. I also met Elizabeth (‘E’) and Tanner, both professional ice core drillers (yep, that’s a real job!), who have a ridiculous amount of experience between the two of them. These tough-as-nails people would teach me how to drill ice cores in one of the most extreme places on the planet. To get from New Zealand to the icy continent, the team and dozens of other researchers and personnel boarded a US Air Force C-17, a gigantic military plane. The trip took five loud, and quite cramped hours, until we landed on the airfield located on the ice near McMurdo station.

Drilling 2.7 million-year-old ice with the Blue Ice Drill.

We spent ten days at McMurdo Station collecting camp gear, planning meals and food needs, and training in snow survival skills, and then we flew to our remote field site. Multiple Twin Otter flights from McMurdo Station to the Allan Hills were needed to deliver nine people, two ice core drilling rigs, and all of our camping gear. Two other researchers and I were on the last flight, which was delayed due to high winds and poor visibility at the Allan Hills.

The first order of business was to finish setting up camp, and begin setting up our drilling equipment. The next few days were grueling work, lugging gear to different drill sites, drilling anchors in the ice to secure our tents and equipment, and testing the electrical generators that would power the blue ice drill, a 9.5-inch diameter ice core drill that we would use to extract literal TONS of ice over the next seven weeks. The exhaustion that set in at the end of each very long day made sleeping in a tent during 24 hours of daylight some of the easiest sleeping I’d ever done.

Scott tents and living quarters on a beautiful day at the Allan Hills, Antarctica.

It is amazing how quickly you can adapt to harsh conditions. Our team was in the field for seven weeks. That’s seven weeks of waking up in a tent every morning to freezing temperatures, getting dressed, grabbing some warm tea and a quick breakfast, then heading out to our drill sites to continue the drilling from the day before. Drinking water was made by melting ice that we chipped out of the ice sheet at a special “sterile” location. There were no showers, and all my baby-wipes were frozen into a solid block of ice before I got to my tent that first night in the field. The sun never set, and if the wind would stop howling in the middle of the night, I would wake up, disturbed by the sudden change. Those nights were special, though, because you could hear the ice sheet cracking. Loud pops echoed across the ice sheet and reminded you of how incredible it was that you were there.

Science during a pandemic

I should be in Antarctica right now, sleeping in a Scott tent, enjoying the company of some amazing scientists and ice core drillers. The Allan Hills ice core drilling project was funded for two field seasons. Because of the COVID-19 pandemic, the field work has been delayed, and I’m sitting in Corvallis, Oregon, remembering that dramatic place. I don’t feel sorry for myself for missing out on a second season; being there once was the experience of a lifetime, and I’m grateful to have had it. Living through this pandemic does highlight how dramatically nature can change our lives, giving a little bit of perspective as to why understanding climate change is important. Understanding what is natural, normal, and possible for the Earth’s climate system is key to understanding how it will change in the future. Understanding the nature of that change can prepare us for what comes next.

Most of the team at the Allan Hills ice core drilling project.

Follow Jenna on Twitter @sciencejenna

A Kriller Antarctic Winter

By Kirsten Steinke, Ph.D. student in Ocean Ecology and Biogeochemistry

Kirsten Steinke

I wake up and rub my eyes as my 5:45 alarm goes off in the morning.  Still pitch black out my window, I quickly throw on my workout clothes, grab my yoga mat and head to the lounge for 6 am group yoga. After spending thirty minutes waking up my muscles, I head to the gym for my morning workout routine with my buddy Ken: a three-mile run on the treadmill while watching an episode of Rick and Morty. Sufficiently sweaty, I head to the girl’s bathroom (which is way nicer than the one I have at home) and take a quick shower. Finally awake, I head back to my room and get my stuff together for the long day of work. I look out my window again and the sun is just starting to rise behind the glacier. I stop what I’m doing and take a minute to just watch. I can hardly believe that this is the view I get to start my day with every morning.

The sunrise at Palmer Station, Antarctica

After the winter solstice on June 22, the sun started returning rapidly to our region of the Western Antarctic Peninsula (wAP). The sunrise is a welcome site as in the dead of winter we were only getting about 3-4 hours of sunlight every day. In total, our OSU research team spent about six months conducting research and living at one of the Antarctic research stations owned by the United States Antarctic Program (USAP): Palmer Station. Palmer is situated on Anvers Island in the northern part of the Western Antarctic Peninsula. The smallest of the three research stations run by USAP, Palmer looks out over the Southern Ocean and the vast mountain ranges that are typical of the Antarctic Peninsula. The setting is spectacular: We watch icebergs float in and out of the surrounding bays and listen to the earth-shattering eruptions of the glacier calving nearby. One iceberg, dubbed Old Faithful, got stuck in the bay and stays with us all season. It is comforting in a way to see it standing faithfully by each day as we begin our field work.

Old Faithful, our most loyal iceberg

“Why on Earth are you going to Antarctica in the middle of winter?” was a common question that I, and the rest of my research team, got asked. Believe it or not, the changes that occur in Antarctic ecosystems during the winter are poorly understood. Our team of krill researchers sought to fill some of these knowledge gaps as we conducted experiments on the overwintering of arguably the most important keystone species in Antarctic ecosystems: Antarctic krill. These tiny crustaceans, about as big as the length of your pinky as adults, support most of the top predators in the Antarctic ecosystem. Whales, penguins, seals, fish and other seabirds rely on krill as their primary food source.

Antarctic krill, Euphausia superba. Photo credit: Australian Antarctic Program

Our research project was designed by my advisor, Dr. Kim Bernard. She’s interested in how the warming at the northern wAP affects the food available to krill throughout the autumn and winter. The northern wAP is warming quicker than most other places on Earth, which has altered the food web dynamics at the northern WAP. Krill feed primarily on diatoms (microscopic algae) and copepods (microscopic zooplankton). The warming temperatures have resulted in declines in diatoms but more copepods at the northern wAP. Winter is a critical life history stage for young krill as food availability decreases in response to lower light levels. We wanted to know how this climate-induced change in food availability, compounded by the overall lower levels of food availability, affects the physiology of young krill. Hence, six months of Antarctic research collecting, observing, and learning from our kriller friends.

Out collecting food for our krill

While these six months may have been the most demanding of my Ph.D. career, they were also some of the best months of my life. We worked long hours in the lab and out in the field six days a week, making sure we had enough resources to support our long-term feeding experiment and to carry out our physiological experiments. Similar to the krill, we learned how to adapt to the extreme winter conditions. We got used to working in complete darkness, learned which path to take to work when winds were blowing over 100 knots and discovered that the quickest way to warm our fingers and toes after a long day of field work was to hold them directly against the small space heater in our office.

The sunset reflecting off the newly formed sea ice
Palmer Station welcoming the evening light

Our long field season at Palmer Station, Antarctica finally came to an end in the middle of October. In addition to the hundreds of samples that we successfully obtained from our research project, we left Palmer with new memories, incredible stories and 17 new friends that we were lucky enough to call our polar family. This experience was truly one of the greatest of my life and I cannot wait until our next field season starts in February 2021. It’s going to be kriller.

The 2019 Antarctic research team. OSU CEOAS graduate Julia Fontana (left), OSU CEOAS Associate Professor Dr. Kim Bernard (Center), OSU CEOAS PhD Student Kirsten Steinke (right)

Webpage: https://steinkki.wixsite.com/kirstensteinke

Twitter: https://twitter.com/Kirsten_Steinke