Human Impacts on the Global Carbon Cycle: Signs of Madness and Signs of Hope

David P. Turner / December 19, 2021

Earth System Science has come to a remarkably good understanding of the global carbon cycle in recent decades.  The various pools (stocks) of carbon have been quantified (e.g. vegetation, soil, and atmosphere), along with the annual fluxes from one pool to another.  A key revelation has been that the quantity of carbon dioxide (CO2) in the atmosphere is increasing and that the increase is driven by anthropogenic factors (fossil fuel combustion and deforestation). 

Since the rising CO2 concentration is associated with a trajectory towards dangerous climate change, humanity has slowly moved towards commitments to reduce CO2 emissions.  Some types of emissions are more glaring than others, and this blog highlights four of the most egregious examples (signs of madness). 

Likewise, there are many technical and policy options for reducing CO2 emissions or speeding CO2 uptake, and this blog highlights four of the most promising (signs of hope).

Signs of Madness

1.  Oil from Tar Sands. Given the goal of reducing anthropogenic CO2 emissions as quickly as possible, an obvious candidate for termination is extraction of oil from tar sands (Figure 1).  The whole process of extracting hydrocarbons from the Earth and refining them has an energy cost, with related CO2 emission.  Unlike conventional oil, which comes out of the ground ready for the refinery, tar sands hydrocarbons must be mechanically extracted in a bulk form that includes many contaminants.  This material is then heated to isolate the oil component, a treatment requiring substantial energy usually provided by combustion of natural gas.  The net effect is a 15% higher overall emissions of CO2 per gallon of gasoline coming from tar sands compared to conventional oil. 

Human Impacts on the Global Carbon Cycle.  Open pit mine in the tar sands oil fields of Alberta, Canada
Figure 1. Aerial photograph of open pit mine in the tar sands oil fields of Alberta, Canada.  Image Credit: Dru Ojo Jay, Dominion

2.  Tropical Zone Deforestation.  About 10% of anthropogenic CO2 emissions comes from tropical zone deforestation.  The driving factors are primarily conversion to cattle ranching, industrial and subsistence agriculture, and tree plantations (Figure 2).  In 2021, the rate of deforestation in Brazil rose 22% and Indonesia cancelled a billion-dollar agreement with Norway to reduce deforestation.  Besides direct CO2 emissions from burning and decomposition of residues, the destruction of intact forests means removal of an on-going carbon sink since most forestland is now gaining carbon as part of normal growth or accelerated growth from CO2 fertilization

Human Impacts on the Global Carbon Cycle.  Deforestation.
Figure 2.  Deforestation in the area of the Caguan River, Brazil.  Image Credit: NASA

3.  Supersonic Passenger Jets.  United Air Lines has announced plans to operationalize a fleet of supersonic passenger jets around 2029.  Their virtue would be cutting flight times across oceans by about half (they generally aren’t used over land because of sonic booms).  Their downside is a factor of 2.5 to 7 increase in carbon emissions per passenger mile.  In theory, their engines could burn sustainable aviation fuel but there are many issues with scaling up production of this fuel if demand increased substantially.

4.  Bitcoin’s “proof-of-work” Mining Protocol.  Bitcoin is a cryptocurrency that has a particularly energy intensive mode of operation, and much of the energy is from fossil fuels.  New digital coins are mined (created) by a competitive process in which multiple computer processors race to solve a computationally intense problem.  Only one computer wins, meaning that 99.9% of energy use and associated carbon emissions are wasted.  Current Bitcoin electricity consumption is on the order of consumption by a small country.  Alternative “proof-of-stake” approaches used by other cryptocurrencies are much less energy intensive.

Signs of Hope

1.  Natural Climate Solutions (NCS).  The land surface is currently a net sink for carbon dioxide, even after accounting for effects of deforestation.  Most of that carbon accumulation is showing up in live wood (Figure 3), thus it is tracked by global forest inventories.  However, a significant amount may also be accumulating in global soils (in part because of CO2 fertilization of plant growth).  The aim of the NCS strategy is to maintain all existing land carbon sinks and foster new carbon sequestration by way of altered land management.  Besides stopping deforestation, and reforesting large tracts of previously deforested land, NCS (more broadly Nature-based Solutions) will operate in the agricultural sector, wetlands, and grasslands.  Scientists estimate that NCS could provide up to 30% of the reduction in CO2 emission needed to hit net zero emissions at the global scale by 2050.

Human Impacts on the Global Carbon Cycle.  Carbon accumulation.
Figure 3.  Old-growth forest at the H.J. Andrews Experimental Forest near Blue River. Image Credit: Oregon State University.

2.  Product Certification.  World leaders made a commitment at COP26 to reduce deforestation and end it by 2030.  A major player in that effort will be nongovernmental organizations that certify forest products as being produced sustainably, notably not in association with deforestation.  Products driving deforestation – and covered to a greater or lesser degree by certification – include wood, beef, leather, soybeans, and palm oil.  The science of sourcing forest products is receiving a big boost from research in remote sensing (e.g. radar detection of land cover change) and genetic analyses.  Individuals as well as buyers for corporate supply chains are increasingly attentive to sourcing issues and now have better leverage to identify products associated with recent deforestation.

3.  Carbon taxes.  Economists have long argued that the fastest and more practical strategy for driving down anthropogenic carbon emissions is to establish taxes on fossil fuel carbon emissions.  That approach of course tends to arouse political opposition, but several case studies prove carbon taxation is possible and effective.  The province of British Columbia in Canada imposed a moderate tax on fossil fuel emission in 2008, which has reduced fuel emissions on the order of 5-15%.  Sweden has one of the oldest and highest taxes on fossil fuel emissions.  Again, follow-up studies suggest emissions have declined, while maintaining solid GPD growth.  Various strategies have been employed to insulate the most vulnerable energy consumers from price increases.

4.  Satellite-based Monitoring of Methane Leakage.  Methane is a strong greenhouse gas in its own right and is eventually oxidized in the atmosphere to CO2.  Unfortunately, methane emissions are on the rise in recent years, with leakage from expanding coal and natural gas mining and infrastructure a significant factor.  Because methane has a relatively short atmospheric lifetime (about 8 years) compared to carbon dioxide, a decrease in methane emissions would have an especially large influence on global warming in the next few decades.  Earth system scientists use satellite borne sensors to track atmospheric methane concentrations and infer regional patterns in methane emissions.  But a new generation of sensors, including one run by the Environmental Defense Fund, is transforming the attribution of leakage sources by increasing the spatial and temporal resolution of the coverage.  These sensors will contribute to monitoring the effectiveness of the Global Methane Pledge recently signed at COP26.

The world is at, or fast approaching, the year of peak carbon dioxide emissions.  The signs of madness identified here serve to push that year farther into the future.  The signs of hope will hasten its arrival and help sustain a multidecadal trajectory towards net zero emissions.

Peak Carbon Dioxide Emissions and Peak Carbon Dioxide Concentration

David P. Turner / January 11, 2024 (update)

Figure 1.  Projections of CO2 emissions and concentration.  Image Credit NOAA

In 2020, a remarkable speculation circulated in the cybersphere to the effect that global emissions of carbon dioxide (CO2) from fossil fuel combustion may have peaked in 2019.  Considering that recent formal projections generally indicated increasing emissions through 2030 or longer, this assertion was striking.  It matters because CO2 emissions determine the growth in the atmospheric CO2 concentration, which in turn influences the magnitude of global warming.

The atmospheric CO2 concentration is currently around 420 ppm (up from a preindustrial value of around 280 ppm) and is rising at a rate of 2-3 ppm per year.  The consensus among climate scientists is that rapid greenhouse-gas-driven climate change will be harmful to the human enterprise on Earth.  It would be good news indeed if CO2 emissions were on the way down.

Estimates for annual global CO2 emissions are produced by assembling data on consumption of coal, oil, and natural gas, as well as data on production of cement and effects of land use.  The sum of fossil fuel and cement emissions is termed Fossil Fuel & Industry emissions (FF&I).  Land use, land use change, and forestry (LULUCF) is mostly the net effect of carbon emissions from deforestation and carbon sequestration from afforestation/reforestation.  Total anthropogenic emissions are the net of FF&I and LULUCF.  Two independent estimates of CO2 sources and sinks (GCP and IEA) differ slightly.

The suggestion that peak fossil fuel emissions occurred in 2019 held true in 2020 and again in 2021 and 2022, but 2023 saw a 1.1% increase over 2019

Intriguingly, a decline in LULUCF compensated for the increase in fossil emissions such that total anthropogenic emissions remained the same in 2023 as 2022 (11.1 GtC yr-1).  That result may hold in 2024 as well if President Lula of Brazil continues to succeed in reducing deforestation, and global fossil fuel emissions grow only modestly (if at all).

Several specific observations points towards lower emissions in the near-term future.

1.  Global coal emissions declined from 2012 to 2019 but have risen above 2012 in recent years, primarily due to increases in India and China.  However, coal emissions declined 18.3% in the USA and  18.8% in the EU in 2023.  Aging coal powered electricity plants in the U.S. are being replaced with plants powered by natural gas (more efficient that coal) or renewable energy.  Some coal plants have been prematurely retired.  A gradual phase out in global coal consumption is being driven by the price advantage of renewable energy, impacts of coal emissions on human health, and the reluctance of insurance companies to cover new coal power plant construction.  China has agreed to stop financing the construction of coal power plants in developing nations and India has pledged to stop approving new domestic coal plants.

2.  Peak oil use may have occurred in 2019.  Global demand in 2020 fell 7.6% because of Covid-19. It partially recovered in 2021 and 2022 and 2023 but remains below the level in 2019.  Structural changes such as reduced commuting and business-related flying mean that some of the demand reductions associated with Covid-19 have persisted.  Vehicles powered by electricity and hydrogen rather than gasoline are on the ascendancy, sparked in part by governmental mandates to phase in zero emissions vehicles.

3.  Even a near-term peak in natural gas consumption is being discussed.  The GCP budget for 2022 showed a 0.2% decline in gas emissions and for 2023 a 0.5% increase.  Again, the price advantage of renewable sources will increasingly weigh against fossil-fuel-based power plants.  The growing importance of energy security at the national level also argues against dependence on imported fossil fuels.  Ramped up production of renewable natural gas could substitute for fossil natural gas in some applications.

It is likely that the approaching peak in total fossil fuel use will be driven by diminishment of demand rather than lack of supply.

Currently about half of FF&Iemissions remain in the atmosphere, with the remainder sequestered on the land (e.g. in vegetation and soil) and in the ocean.  The land sink is increasing in response to 1) high CO2 enhancement of photosynthesis and plant water use efficiency, and 2) policy driven impacts on land management (e.g. more reforestation and afforestation).

Once fossil fuel emissions begin decreasing and fall by half − and assuming the net effect of increasing CO2 and climate warming is still substantial carbon uptake by the land and ocean − the atmospheric CO2 concentration will peak and begin to decrease.  The year of peak CO2 concentration could be as early as 2040 (see carbon cycle projection tool below).

On the other hand, there is plenty that might go wrong with this optimistic scenario.  As climate change intensifies, the net effect on land and ocean sequestration could be a decline in carbon uptake.  On land, carbon sources such as permafrost melting and forest fires will be stimulated by climate warming.  In the ocean, warming will intensify stratification, thereby reducing carbon removal to the ocean interior.  The steady increase in the ocean carbon sink since around 2000 has stalled in recent years, for poorly understood reasons.  If fossil fuel emissions are not significantly abated in the coming decades, the CO2 concentration could still be rising in 2100 (Figure 1).

Recommended:  Interactive CO2 Emissions and Concentration Projection Tool.