Technosphere Energy Flow:  Time for a Course Correction

David P. Turner / February 5, 2024

Figure 1. The Earth at night gives an indication of technosphere energy flow. Image Credit.

The combustion of fossil fuels has powered the rise of humans from hunter/gatherers to planet-orbiting astronauts.  Currently, the energy production capacity of Earth’s technosphere (Figure 1) is on the order of 16 TW (see Box 1 or below for background on units).  Like Earth’s biosphere (the sum of all living organisms), the technosphere is a dissipative structure and requires energy to maintain itself and grow.

Two big problems with current technosphere energy flow are: 1) most of the energy is generated by combustion of fossil fuels, which release greenhouse gases that are rapidly altering global climate; and 2) the per capita distribution of global energy is highly uneven, with billions of people at the low end of the distribution receiving little to nothing.

The magnitude of technosphere energy flow is not really an issue.  Sixteen TW is small compared to the flow of energy associated with biosphere net primary production (on land and in the ocean).  The global NPP of around 100 PgC yr-1 is equivalent to about 63 TW of production capacity.  Note that the technosphere appropriates close to 25% of global NPP for food and biomass energy.  The technosphere and biosphere energy flows are both much smaller than the rate of solar energy reaching the Earth, which is about 1700 TW.

Transitioning away from combustion of fossil fuel to more environmentally benign forms of energy production is feasible, but will be extremely challenging and will take decades.  To do so, all sectors of the global economy – notably the transportation sector – must be designed to run on electricity.

A significant constraint to the transformation of the power sector is the slow turnover rate of the fossil fuel infrastructure (e.g. a coal fired power plant will typically last 50 years), which raises the issue of stranded assets if they are retired early.  Large reserves of fossil fuels will likely have to be abandoned, unless carbon capture and storage can be economically implemented (so far, a doubtful proposition).  Transitioning away from fossil fuels also means cessation of investment in the infrastructure supporting fossil fuel consumption, notably oil and gas pipelines, liquid natural gas (LNG) terminals (for liquification and regasification), and LNG shipping vessels.  The neoliberal doctrine about leaving investment decisions to the marketplace does not apply to the renewable energy revolution because fossil fuel users are still externalizing the costs of fossil fuel combustion (i.e. not paying for the impacts of associated climate change).  Hence, various subsidies, taxes, and regulations are necessary.

Despite the challenges, the global renewable energy revolution is underway, with rapid deployment of energy technologies such as solar, wind, and geothermal.  Nuclear energy is not strictly renewable but can contribute to minimizing carbon emissions.  The International Energy Association (IEA) suggests that 2023 was a turning point regarding the magnitude of global investment in renewable energy (spurred on by the Inflation Reduction Act in the U.S.).  Employment of technologies such as hydrogen fuel cells, grid scale rechargeable batteries, smart grids, and supersized wind turbines will speed up the transition process.  Decentralized energy production (e.g. household solar panels and small power plants) offers many benefits to both developing and developed countries.

With respect to the per capita energy use distribution problem, total energy consumption could stay the same while per capita energy use evened out to a level approximating that in Europe today.  However, consumers at the high end of the distribution are resisting reduction in their energy use (such as less air travel).  The more likely path to raising consumption at the low end of the distribution will be to increase total energy production.  The IEA projects global energy use will increase by 33 to 75 per cent by 2050 (to about 25 TW). 

The new energy demand will arise from increased per capita consumption along with an increased  global population (topping out at 9-10 billion this century).  More energy will be needed to substitute for various ecosystem services that are degraded or broken, e.g. energy to power water desalinization plants.  New energy intensive applications like AI are also emerging.

As developing countries build out their local manifestations of the technosphere, it is crucial that the more developed world helps them leapfrog reliance on fossil fuels and go directly to renewable energy sources.  In support of that trend, China has announced it will stop funding construction of coal-fired power plants in developing countries (albeit that it continues to build such facilities domestically).  The World Bank and IMF have introduced similar policies.  Critical political decisions about increased reliance on natural gas in particular are being made now (e.g. in Mexico) and should be strongly informed by the climate change issue.

Getting technosphere energy flow right will require continued technological and political innovation.  Success in this communal project will help actualize humanity’s long-term goal to build a sustainable planetary civilization.

Box 1.  Background on energy units

________________________________________________________________________

A watt is a unit of energy flow at the rate of 1 joule per second.

One joule is the amount of work done when a force of one newton displaces a mass through a distance of one meter in the direction of that force.

TW = Terra Watt = 1012 Watts = 1,000,000,000,000 Watts.

GigaWatt = 109 Watts = approximate capacity of 1 large coal-fired power plant.

PgC yr-1 = Peta grams of carbon per year = 1015 gC yr-1 = global net primary production in terms of carbon.

The energy equivalence of 1 gC (2 g organic matter) = 36 * 103 J

­­­­­­­­­­­_________________________________________________________________________

What Technosphere Response to Covid-19 Says About Earth System Dynamics

David P. Turner / November 8, 2020

In the discipline of Earth System Science, a useful analytic approach to sorting out parts and wholes is by reference to the earthly spheres.  The pre-human Earth system included the geosphere, atmosphere, hydrosphere, and biosphere.  With the biological and cultural evolution of humans came the technosphere.  In a very aggregated way of thinking, these spheres interact.

The biosphere is the sum of all living organisms on Earth; it is mostly powered by solar radiation and it drives the biogeochemical cycling of elements like carbon, nitrogen, and phosphorus.

The technosphere is the sum of the human enterprise on Earth, including all of our physical constructions and institutions; it is mostly powered by fossil fuels and it has a large throughput of energy and materials.

Over the last couple of centuries, the technosphere has expanded massively.  It is altering the biosphere (the sixth mass extinction) and the global biogeochemical cycles (e.g. the CO2 emissions that drive climate change).

The interaction of the technosphere and the biosphere is evident at places like wildlife markets where captured wild animals are sold for human consumption.  Virologists believe that such an environment is favorable to the transfer of viruses from non-human animals to humans.  The SARS-CoV-2 virus likely jumped from another species, possibly wild-caught bats, to humans in a market environment.  Covid-19 (the pandemic) has now spread globally and killed over one million people.

The human part of the technosphere has attempted to stop SARS-CoV-2 transmission by restricting physical interactions among people.  The summed effect of these self-defense policies has been a slowing of technosphere metabolism.  Notably, Covid-19 inspired slowdowns and shutdowns have driven a reduction in CO2 emissions from fossil fuel combustion and a decrease in the demand for oil.  This change is of course quite relevant to another interaction within the Earth system − namely technosphere impacts on the global climate.

The reduction in CO2 emissions in response to Covid-19. Image Credit: Global Carbon Project.

There are important lessons to be learned from technosphere response to Covid-19 about relationships among the Earthly spheres.

One lesson regards the degree to which the technosphere is autonomous.

If we view the technosphere as a natural product of cosmic evolution, then the increase in order that the technosphere brings to the Earth system has a momentum somewhat independent of human volition.  The technosphere thrives on energy throughput, and humans are compelled to maintain or increase energy flow.  It is debatable if we control the technosphere or it controls us.

In an alternative view, tracing back to Russian biogeochemist Vladimir Vernadsky in the 1920s, humanity controls the technosphere and can shape it to manage the Earth system.  This view received a recent update with a vision of Gaia 2.0 in which the human component manages the technosphere to be sustainably integrated with the rest of the Earth system.

The fact that humanity did, in effect, reduce technosphere metabolism in response to Covid-19 supports this alternative view. 

Admittedly, the intention in fighting Covid-19 was not to address the global climate change issue.  And the modest drop in global carbon emissions will have only a small impact on the increasing CO2 concentration, which is what actually controls global warming.  Nevertheless, the result shows that it is possible for human will to affect the whole Earth system relatively quickly.  The Montreal Protocol to protect stratospheric ozone is more directly germane. 

A globally coordinated effort to reduce greenhouse gas emissions is clearly possible.  It could conceivably be accomplished without the painful job losses associated with Covid-19 suppression if done by way of a renewable energy revolution that creates millions of infrastructure jobs.

A second lesson from technosphere reaction to Covid-19 is that a technosphere slowdown was accomplished as the summation of policies and decisions made at the national scale or lower (e.g. slowdowns/shutdowns by states and cities, and voluntary homestay by individuals).  The current approach to addressing global climate change is the Paris Agreement, which similarly functions by way of summation.  Each nation voluntarily defines its own contribution to emissions reduction, and follow-up policies to support those commitments are made at multiple levels of governance.  This bottom-up approach may prove more effective than the top-down approach in the unsuccessful Kyoto Protocol. 

A third lesson from technosphere response to Covid-19 regards the coming immunization campaign to combat it.  Many, if not most, people around the planet will need to get vaccinated to achieve widespread herd immunity.  Success in addressing the climate change issue by controlling greenhouse gas emissions will likewise depend on near universal support at the scale of individuals. Education at all levels and media attention are helping generate support for climate change mitigation.  Increasing numbers of people are personally experiencing extreme weather events and associated disturbances like wildfire and floods, which also opens minds.  The political will to address climate change is in its ascendency. 

The response of the technosphere to biosphere pushback in the form of Covid-19 shows that the technosphere has some capacity to self-regulate (i.e. to be tamed from within).  Optimally, that capability can be applied to ramp up a renewable energy revolution and slow Earth system momentum towards a Hothouse World.

Peak Carbon Dioxide Emissions and Peak Carbon Dioxide Concentration

David P. Turner / January 11, 2024 (update)

Figure 1.  Projections of CO2 emissions and concentration.  Image Credit NOAA

In 2020, a remarkable speculation circulated in the cybersphere to the effect that global emissions of carbon dioxide (CO2) from fossil fuel combustion may have peaked in 2019.  Considering that recent formal projections generally indicated increasing emissions through 2030 or longer, this assertion was striking.  It matters because CO2 emissions determine the growth in the atmospheric CO2 concentration, which in turn influences the magnitude of global warming.

The atmospheric CO2 concentration is currently around 420 ppm (up from a preindustrial value of around 280 ppm) and is rising at a rate of 2-3 ppm per year.  The consensus among climate scientists is that rapid greenhouse-gas-driven climate change will be harmful to the human enterprise on Earth.  It would be good news indeed if CO2 emissions were on the way down.

Estimates for annual global CO2 emissions are produced by assembling data on consumption of coal, oil, and natural gas, as well as data on production of cement and effects of land use.  The sum of fossil fuel and cement emissions is termed Fossil Fuel & Industry emissions (FF&I).  Land use, land use change, and forestry (LULUCF) is mostly the net effect of carbon emissions from deforestation and carbon sequestration from afforestation/reforestation.  Total anthropogenic emissions are the net of FF&I and LULUCF.  Two independent estimates of CO2 sources and sinks (GCP and IEA) differ slightly.

The suggestion that peak fossil fuel emissions occurred in 2019 held true in 2020 and again in 2021 and 2022, but 2023 saw a 1.1% increase over 2019

Intriguingly, a decline in LULUCF compensated for the increase in fossil emissions such that total anthropogenic emissions remained the same in 2023 as 2022 (11.1 GtC yr-1).  That result may hold in 2024 as well if President Lula of Brazil continues to succeed in reducing deforestation, and global fossil fuel emissions grow only modestly (if at all).

Several specific observations points towards lower emissions in the near-term future.

1.  Global coal emissions declined from 2012 to 2019 but have risen above 2012 in recent years, primarily due to increases in India and China.  However, coal emissions declined 18.3% in the USA and  18.8% in the EU in 2023.  Aging coal powered electricity plants in the U.S. are being replaced with plants powered by natural gas (more efficient that coal) or renewable energy.  Some coal plants have been prematurely retired.  A gradual phase out in global coal consumption is being driven by the price advantage of renewable energy, impacts of coal emissions on human health, and the reluctance of insurance companies to cover new coal power plant construction.  China has agreed to stop financing the construction of coal power plants in developing nations and India has pledged to stop approving new domestic coal plants.

2.  Peak oil use may have occurred in 2019.  Global demand in 2020 fell 7.6% because of Covid-19. It partially recovered in 2021 and 2022 and 2023 but remains below the level in 2019.  Structural changes such as reduced commuting and business-related flying mean that some of the demand reductions associated with Covid-19 have persisted.  Vehicles powered by electricity and hydrogen rather than gasoline are on the ascendancy, sparked in part by governmental mandates to phase in zero emissions vehicles.

3.  Even a near-term peak in natural gas consumption is being discussed.  The GCP budget for 2022 showed a 0.2% decline in gas emissions and for 2023 a 0.5% increase.  Again, the price advantage of renewable sources will increasingly weigh against fossil-fuel-based power plants.  The growing importance of energy security at the national level also argues against dependence on imported fossil fuels.  Ramped up production of renewable natural gas could substitute for fossil natural gas in some applications.

It is likely that the approaching peak in total fossil fuel use will be driven by diminishment of demand rather than lack of supply.

Currently about half of FF&Iemissions remain in the atmosphere, with the remainder sequestered on the land (e.g. in vegetation and soil) and in the ocean.  The land sink is increasing in response to 1) high CO2 enhancement of photosynthesis and plant water use efficiency, and 2) policy driven impacts on land management (e.g. more reforestation and afforestation).

Once fossil fuel emissions begin decreasing and fall by half − and assuming the net effect of increasing CO2 and climate warming is still substantial carbon uptake by the land and ocean − the atmospheric CO2 concentration will peak and begin to decrease.  The year of peak CO2 concentration could be as early as 2040 (see carbon cycle projection tool below).

On the other hand, there is plenty that might go wrong with this optimistic scenario.  As climate change intensifies, the net effect on land and ocean sequestration could be a decline in carbon uptake.  On land, carbon sources such as permafrost melting and forest fires will be stimulated by climate warming.  In the ocean, warming will intensify stratification, thereby reducing carbon removal to the ocean interior.  The steady increase in the ocean carbon sink since around 2000 has stalled in recent years, for poorly understood reasons.  If fossil fuel emissions are not significantly abated in the coming decades, the CO2 concentration could still be rising in 2100 (Figure 1).

Recommended:  Interactive CO2 Emissions and Concentration Projection Tool.