Pollinator of the week: Bombus fervidus

This entry is from Angelee Calder, and undergraduate Agricultural Science student at Oregon State University. It highlights a bumblebee that can be found in Oregon gardens, but that is currently listed as ‘Vulnerable’ to endangered species status, due to documented population declines (Hatfield et al. 2015).

**********************************************************************

Dorsal view, Bombus fervidus. This bumblebee was collected from a Portland area garden in August 2018. Photo Credit: Angelee Calder and Isabella Messer

Anterior view, Bombus fervidus. This bumblebee was collected from a Portland area garden in August 2018. Photo Credit: Angelee Calder and Isabella Messer

********************************************************************************

When we think of bees, we usually conjure up the image of a cute fuzzy black and yellow puff of an insect. Bombus fervidus, which is also known as the Golden Northern Bumble Bee, looks just like that cute bee stereotype. This bumble bee has a black face, yellow body, and single black band across its body near its wings (Discover Life 2019). Although Bombus fervidus can be found across most of the whole United States, studies have shown that their population numbers are declining (Colla and Packer 2008). This bee is attracted to clover, which is one reason to tolerate (or even embrace) clovers in residential lawns.

We spent 120 hours hand collecting bees from 24 Portland area gardens in 2017 and 2018. In addition, across these two years we set out water pan traps to collect bees for an additional 3,450 hours of passive collection. In all this time, we only collected two Bombus fervidus. Both were collected from the same yard in August 2018. This yard is our largest garden, and it sits adjacent to Forest Park. It could be that this species, known to be in decline, does best with larger patches of habitat, that are close to a natural area.

The Northern Golden Bumble Bee is in the running for cutest bee, so make sure to take a look while he is out foraging. The peak viewing times to catch a glimpse of these cuties May to October (BugGuide.Net 2019).

References

Colla and Packer. 2008. Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with a special focus on Bombus affinis Cresson. Biodiversity and Conservation 17: 1379. https://doi.org/10.1007/s10531-008-9340-5.

BugGuide.Net. 2019 “Species Bombus fervidus – Golden Northern Bumble Bee”, https://bugguide.net/node/view/23135. Accessed February 27, 2019.

Discover Life. 2019. “Bombus fervidus“, https://www.discoverlife.org/mp/20q. Accessed February 27, 2019.

Hatfield, R., Jepsen, S., Thorp, R., Richardson, L., Colla, S. & Foltz Jordan, S.2015. Bombus fervidusThe IUCN Red List of Threatened Species 2015: e.T21215132A21215225.http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T21215132A21215225.en. Accessed  February 27, 2019.

Garden Ecology Lab News, January 2018

It’s been a busy month in the Garden Ecology Lab.

  • Gail’s manuscript on bees in home and community gardens has been published in Acta Hort. Briefly, the results of this literature review are that: 213 species of bee have been collected from a garden habitat; gardens have fewer spring-flying and fewer ground-nesting bees, compared to non-garden sites; I suspect that over-mulching might be cutting out habitat for ground-nesting bees in gardens.
  • Aaron presented his first Extension talk to the Marion County Master Gardeners. This 90-minute talk was an overview of using native plants in home gardens.
  • The entire lab is getting ready to present their research results at the 2018 Urban Ecology Research Consortium annual conference, to be held in Portland on February 5th. A few highlights of our presentations, can be found below.

Gail’s Poster on Urban Bees: we sampled bees from 24 gardens in the Portland Metro area (co-authored with Isabella and Lucas)

  • Langellotto and Messer UERC 2018 Poster: click to see preliminary results
  • Most of the bees that we collected await identification. We did find a moderate relationship between lot size and bee abundance: larger yards hosted more bees. But, we also found evidence that suggests that intentional design can influence bee abundance: one of our smallest gardens (site 56 = 0.1 acre), located in the Portland urban core (surrounded by lots of urban development) had the second largest number of bees (42), of the 24 gardens sampled. This garden was focused, first and foremost, on gardening for pollinators. The plant list for this garden (photos, below) includes: borage, big-leaf maple, anise hyssop, globe thistle, California poppy, nodding onion, yarrow, fescue, goldenrod, Phacelia, Douglas aster, lupine, mallow, columbine, meadow foam, yellow-eyed grass, blue-eyed grass, coreopsis, snowberry, Oregon grape, trillium, mock orange, pearly-everlasting, serviceberry, coneflower, blue elderberry, currant, milkweed, dogwood, shore pine, crabapple, cinquefoil.

 

 

 

 

 

 

 

 

Mykl’s Poster on Urban Soils: we sampled soils from 33 vegetable beds across Corvallis and in Portland (co-authored with Gail)

  • All gardens were tended by OSU Extension Master Gardeners.
  • Gardens were over-enriched in several soil nutrients. For example, the recommended range for Phosphorus (ppm in soil) is 20-100 ppm. Garden soils averaged 227 ppm. The recommended range for Calcium is 1,000-2,000 ppm, but the mean value for sampled beds was 4,344 ppm.
  • Recommended ranges gleaned from OSU Extension Publication EC1478.
  • There was a tendency for soils in raised beds to be over-enriched, compared to vegetables grown on in-ground beds.
  • Data suggests that gardeners are annually adding additional soil amendments or compost, and that there has a build up of certain elements in the soil.

Aaron’s Talk on Native Plants: measured bee visitation to 23 species of native and 4 species of non-native garden plants (co-authored with Lucas)

  • Field plots established at the North Willamette Research and Extension Center
  • In the first year of establishment, of the 27 flowering plants that were the focus of this study, seven natives (lotus, milkweed, camas, strawberry, iris, sedum, blue-eyed grass) one non-native (Lavender) did not bloom, or else did not establish
  • Several natives attracted more bees than even the most attractive non-native (Nepeta cataria, or catmint). These include:
    • Gilia capitata: Globe Gilia
    • Madia elegans: Common Madia
    • Aster subspicatus: Douglas’ Aster
    • Solidago candensis: Goldenrod

Garden Bees, 2017

All bees have been pinned, labelled, and data-based. Now we’re (and when I say ‘we’re’, I’m mostly referring to Lucas and Isabella) are going through the painstaking process of photographing all specimens: head on, from the top, and from each side. We’ll then start sorting them by morphotype (how they look), and working to identify them. Some of the bees are very common, and fairly easy to identify (like Anthidum manicatum, Bombus vosnesenskii, Apis meliifera). Others will take a bit more time and expertise to get to species.

You can take a look at the entire album, representing about 150 of the nearly 700 collected bees. We’ll be adding the rest of the bees, as we can.

We collect and pin the bees, because most are difficult to identify, without getting them under a microscope, and without the help of a museum-level bee specialist. For those bees that are easy to identify by site (such as the ones listed above), we only collect one per garden (so that we have a record of its presence). We don’t collect multiple specimens of the same species, if we can identify it in the field. And, we don’t collect obvious queens (larger, reproductive bees).

We collect using a combination of water pan traps and hand collection. For hand collection, we use a pooter (an insect aspirator) for the smaller bees and baby food jars for the larger bees.

Water pan traps. We buy plastic bowls from the dollar store, prime them, and paint them with UV paint that is optimized for the wavelengths that bees see.

Here, I’m holding an insect aspirator, otherwise known as a pooter. You can suck insects off of flower heads without damaging blossoms, by carefully placing the metal part of the pooter, over the bee. It is then sucked into a small plastic vial, which I’m holding in my right hand.

This is such an exciting part of the research for me. I find myself obsessing over the photos, trying to organize them in my mind, and to at least get them to genus. Grouping them by genus makes it easier for an expert to sort through and identify them. And, I’m so grateful for their assistance, that I want to make it as easy as possible for them!

We’ve collected bees from gardens near Forest Park, in Portland’s city center, and in outlying suburbs. We’ll analyze the data to see if there are any patterns associated with garden location (forest, city, suburbs), or to see if there are specific bees that are only found in forest gardens, for example.

Pollinator of the Week: Gray Hairstreak

This post was written by Isabella Messer, an undergraduate working in the Garden Ecology Lab.

The Gray Hairstreak (Strymon melinus(Hübner, 1818)) is a common butterfly in the US. Its habitat spans most of the country with the exception of some states in the midwest (1). The Gray Hairstreak is most common in the southeast but can also be found along the west coast, including Oregon and possibly some of your gardens (1). These butterflies can be identified by their ash-gray color of their wings, their noticeable white-bordered black median line, and a two orange patches on the outer angle of their hindwing (2). Due to their coloring, Gray Hairstreaks can be mistaken for an Eastern Tailed-Blue butterfly which also have orange spots on their hindwing s(3). However, the Eastern Tailed-Blue does not live in Oregon (4). If you want to attract more Gray Hairstreaks to your garden, it would be beneficial to plant  goldenrod, mint, milkweed and winter cress (5). Keep an eye out on a sunny day for these sweet little beauties!

Gray Hairstreak in a Portland garden, August 2017

References

  1. “Species Strymon Melinus – Gray Hairstreak – Hodges#4336.” Species Strymon Melinus – Gray Hairstreak – Hodges#4336 – BugGuide.Net, Metalmark Web & Data, 2017, bugguide.net/node/view/579.
  2. Rodriguez, Lauren. “Gray Hairstreak – Strymon Melinus – Details.” Encyclopedia of Life, Encyclopedia of Life, 27 Apr. 2013, eol.org/pages/262409/details.
  3. Cook, Will. “Gray Hairstreak (Strymon Melinus).” Gray Hairstreak (Strymon Melinus), Carolina Nature, 7 Nov. 2015, www.carolinanature.com/butterflies/grayhairstreak.html.
  4. “Eastern Tailed-Blue Cupido Comyntas (Godart, [1824]).” Butterflies and Moths of North America, Metalmark Web & Data, 18 Aug. 2017, www.butterfliesandmoths.org/species/Cupido-comyntas.
  5. Bartlet, Troy. “Species Strymon Melinus – Gray Hairstreak – Hodges#4336.” Bug Guide, Iowa State University Department of Entomology, 18 Apr. 2017, bugguide.net/node/view/579.