Meet Mykl Nelson; Urban Agriculture Instructor at OSU

My name is Mykl Nelson, a world citizen intent on feeding the globe.

 

 

 

 

 

 

 

 

 

The first distinct connection to food I remember was in the late 90s while living in İzmir, Turkey. We had a large mulberry tree in our yard which bore delicious fruit. I also remember the bazaar in the Buca province. Cart after cart of people selling mounds of all manner of produce. After leaving Turkey, and for maybe half of my childhood summers, I lived on the farm of my paternal grandparents’ in Worland, Wyoming. I saw many aspects of high, dry farming of row crops: sugar beets, alfalfa, barley, and dent corn. I could only catch fleeting glimpses into the life of my grandfather, a commodity farmer. But in my recent years I’ve been openly told that these American farmers vehemently hoped their children were “too smart to get into farming.” Their wish came true. Of four children and nine grandchildren, I’m the only one in agriculture.

I turned on to agriculture when a friend and I built a 400 square-foot poly-tunnel in our backyard in Colorado. We didn’t know anything more than that we wanted to grow our own food. I remember feeling so incredibly accomplished, fulfilled, and validated picking personal salads straight into dinner bowls. I took that inspiration to fuel my travel to the Pacific Northwest, a place I knew I could immerse myself in the world of tending plants. I pushed every aspect of my network to get more involved in farming and to gain space to garden. I’ve worked on three organic urban farms since moving to Oregon. I went back to school and retrained from political science to agricultural science. I continued my education with a graduate project which firmly oriented my interests to the world of urban agriculture.


I am now an instructor of urban agriculture here at Oregon State University. My current duties are to develop new online courses to train and empower new urban growers to produce food within the confines of their modern environment. This work is challenging, as urban agriculture suffers from a distinct lack of focused research. One of the most relevant discoveries from my graduate research project is that nearly all advice extended to urban growers is simply copied from traditional agriculture. Even if suggestions are altered with respect to the scale and local environment of urban growers, the research supporting these suggestions is still wholly based upon traditional agricultural methods of food production. I am developing my courses with this mismatch in mind. I have changed my approach from seeking to broadly support food production and instead specifically analyze and adapt traditional recommendations to work in an urban environment.

I use scientific research to inform my course development on many levels. At the macro-level, articles like one by Oberholtzer, Dimitri, and Pressman (2014) have reported that most farmers, and new farmers especially, struggle with complications in managing the farm’s business much more than the challenge of growing their crops. I used these findings to inform the outline of a new course that I am developing: Introduction to Urban Agriculture. Rather than spending time covering the how or why of plant growth in much detail, I’ve instead focused on how urban growers can adapt agricultural principles to their unique environment. I strive to keep students aware of how these factors should influence their management activities and always keep the concept of ‘value’ in their mind. On a more micro-level, I have built the lectures regarding soil and plant growth with adaptations of my own previous graduate research.

My method of teaching is heavily influenced by a new wave of teaching research which is well represented by James Lang’s book: Small Teaching. Broadly, this approach suggests frequent review of material as well as a more piecemeal and cyclical approach to teaching topics rather than large chunks of lecture punctuated by intermittent exams. Further, I refuse to accept that an online classroom is limiting. Modern students are demanding more than just lectures laid over powerpoint slides. I am exploring numerous avenues to increase engagement and foster social connection, all facilitated by digital platforms. I expect my courses to provide foundational pillars of knowledge for new urban growers as they pursue OSU’s new and entirely online certificate in urban agriculture. I hope to see every student embark on their own path to grow food within their urban environments. I look forward to reports of former pupils starting and operating successful urban farming businesses.

Isabella Featured on Pollination Podcast

Isabella Messer has been a member of the Garden Ecology Lab for more than two years, where she primarily assists with the garden pollinators study, but will is also developing her own research project. Her independent research project will look at bee visitation to some of the plants we are studying in controlled research trials, when these same plants are in a mixed garden setting. Controlled research trials are important, because they let us document the attractiveness of plants to bees, in a setting where study plants are not competing with other plants for pollinators. Controlled research trials are also valuable, because they let  researchers have better control over environmental conditions, such as irrigation. Isabella is going to see whether and how bee visits on plants in a garden context is different than what Aaron is documenting in his controlled research trials. This will be one of the first, if not the first time, that we will have direct and contemporaneous measures of bee visits on focal plants in each situation: in a research field, and in a garden.

In addition to her work in the lab, Isabella is also a member of the ‘Research Retinue’: a group of Oregon State University undergraduates, who review and discuss papers on the PolliNation Podcast.

In this episode, the retinue discusses two papers that look at the impact of a common herbicide (glyphosate) on bees, via indirect impacts of glyphosate on the microbiome (bacterial community) that can be found in honey bee guts.

The paper that they discuss is linked, below:

 

Plant of the Week: Douglas Aster (Revisited)

Image from: http://www.nwplants.com/

This entry is from Lucas Costner, an undergraduate horticulture major at Oregon State University.  It highlights one of the plants that Aaron Anderson is using in his research.

Original “Plant of the Week: Douglas Aster” post available here: http://blogs.oregonstate.edu/gardenecologylab/2017/11/07/plant-week-doulgas-aster/ 

 

Last November I took a look at a Pacific Northwest favorite, the Douglas aster (Symphyotrichum subspicatum (1)). What I didn’t know then was just how popular this species would be with the bees we had been sampling in the field. It turns out that while surveyed gardeners ranked Douglas aster 14 out of 27 in terms of attractiveness, based on the 2017 data it boasted the third highest number of bees (2). This means that it is the most attractive native perennial species for bees that we sampled, and the 2018 data shows this as well (3). Based on the gardeners’ ranking, however, which placed it in the bottom 50% of all the species we sampled, it also looks as though the Douglas aster is in need of some public relations help. 

It is my personal belief that it isn’t just the showiness of the blooms or the potential benefits to X, Y and Z that brings plants into our gardens, but rather the stories we tell about them. Familiarity after all is more than just recognition; it is also marked by appreciation and understanding. One of the stories we can tell through our work in the Garden Ecology Lab about Douglas aster is of its relationship with our native bees. As gardeners we are uniquely positioned to both benefit from and to be of service to these insects. 

Here are some of their “faces”: 

Long-horned Bees

Melissodes sp. 

The most common genus of bees collected from Douglas aster in the field, Melissodes are true summer and fall flyers, easily recognizable by their long antennae. These bees are solitary ground nesters, although they have been observed forming nesting aggregations in the soil (4). While we collected potentially five species of Melissodes in total, one species in particular, Melissodes microsticta, was especially common. Many Melissodes species are generalists, but can usually be found visiting members of the Asteraceae family (such as sunflowers and our Doulgas aster) because of their late season blooms.

 

Image from: https://odabeeguide.weebly.com/melissodes.html

Yellow-faced Bumblebee

Bombus vosnesenskii

The second most commonly collected visitor of Douglas aster, the yellow-faced bumblebee is really a remarkable native pollinator. While many native bees are considered solitary, bumble bees are social insects, with a queen and workers (4). Like non-native honeybees, they have been investigated for their potential as commercial pollinators, being used in greenhouse production (5). Isabella Messer wrote a post for the “Pollinator of the Week” series highlighting these ubiquitous bees that can be found here: http://blogs.oregonstate.edu/gardenecologylab/2017/08/29/pollinator-week-yellow-faced-bumble-bee/ 

 

Image from: https://odabeeguide.weebly.com/bombus-sp.html

Ligated Furrow Bee

Halictus ligatus

The third most commonly collected visitor of Douglas aster is the ligated furrow bee. Found throughout North America, Halictus ligatus is special amongst native pollinators (like the yellow-faced bumblebee) for its social nature (4). Sociality is rare amongst native bees, as it is in nature in general, but amongst the Halictus the situation is even more unique. This is because, unlike other social species, Halictus have been seen to switch back and forth between solitary and social behaviors over time as environmental conditions differ (4). Isabella wrote a post about these bees a while back for the “Pollinator of the Week” series that can be read here: http://blogs.oregonstate.edu/gardenecologylab/2018/04/30/pollinator-week-mining-bee/ 

 

Image from: https://odabeeguide.weebly.com/halictus.html

Virescent Green Metallic Bee

Agapostemon virescens

The fourth most commonly collected visitor of the Douglas aster is none other than my personal favorite, the virescent green metallic bee. These stunning bees are communal soil nesters and are members of the Halictidae family, cousins of the ligated furrow bee introduced above (4). I wrote a post about them for the “Pollinator of the Week” series last November that can be found here: http://blogs.oregonstate.edu/gardenecologylab/2017/11/13/pollinator-week-virescent-green-metallic-bee/ 

 

Image from: https://odabeeguide.weebly.com/agapostemon.html

In addition to these bees, we also collected striped-sweat bees (Agapostemon texanus/angelicus), brown-winged furrow bees (Halictus farinosus), metallic sweat bees (Lasioglossum sp.), and common little leaf-cutter bees (Megachile brevis). We also collected with a number of long-horned bees (Melissodes) that have yet to be identified to species. 

Walking the streets of Portland and seeing Douglas aster’s purple flowers still in bloom this late in October brings a smile to my face because it tells me that people are indeed planting this species. If only for its benefit to wildlife and pollinators in particular, that is still good news. As you may be able to tell from the information given above, we are still learning about these bee species while we are simultaneously working to save them — not just for future generations but for ourselves as well. Hopefully, by putting a “face” to the bees that visit and depend on these plants and our gardens, the bond that links us to them can be strengthened and our preference for them in our landscape enhanced. 

 

Sources: 

  1. Geraldine A. Allen 2012, Symphyotrichum subspicatum, in Jepson Flora Project (eds.) Jepson eFlora, http://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=88843, accessed on October 30, 2018.
  2. Langellotto, G. (2018, September 12). Do Gardeners Like the Same Flowers as Bees? [Blog post]. Retrieved from http://blogs.oregonstate.edu/gardenecologylab/2018/09/12/do-gardeners-like-the-same-flowers-as-bees/ 
  3. Anderson, A. (n.d.). First Look: Research Into Native Plants in the PNW Garden. Webinar. Retrieved from http://blogs.oregonstate.edu/gardenecologylab/2018/10/23/webinar-on-willamette-valley-native-plants-and-pollinators/ 
  4. Wilson, J. S., & Messinger Carril, O. (2016). The Bees In Your Backyard. Princeton, NJ: Princeton University Press.
  5. Dogterom, M. H., Matteoni, J. A., & Plowright, R. C. (1998). Pollination of Greenhouse Tomatoes by the North American Bombus vosnesenskii. Journal of Economic Entomology, 91(1), 71-75. doi:https://doi.org/10.1093/jee/91.1.71
  6. Oregon Department of Agriculture: Bee Pollinators of Oregon. (2016). Retrieved October 30, 2018, from https://odabeeguide.weebly.com 

Pollinator Survey

Lauren Bennett, a Master’s student at OSU, is doing her capstone project on pollinators She has a short survey (10-15 minutes) on pollinators and pollinator plants.

If you could spare a few moments of your time, we would appreciate your participation in this study. More information this study can be accessed, by following the link, below.

http://oregonstate.qualtrics.com/jfe/form/SV_bw2OqokCObh83rv

FYI ~ this study was deemed ‘quality improvement / assessment’ and not ‘scholarly and journalistic’ by the OSU IRB. Thus, we do not need or have IRB oversight for this study.