As an ecologist who studies garden systems, the increasing use of native plants in urban and suburban landscaping is exciting to me (see lab member Signe Danler’s great blog post on “ecological gardening”). Unfortunately, there are still many challenges associated with growing the adoption of native plants by home gardeners, with the largest barrier simply being the lack of availability of these species. I have noticed this barrier when giving talks to the public – many home gardeners are interested in gardening with high-ecological value native plants, but don’t know where to purchase them. These anecdotal observations are backed up by peer-reviewed literature, as several studies that have investigated the use of native plants in urban landscapes identified availability as one of the major barriers to adoption.
So, if you are a gardener in Oregon interested in gardening with native plants, where do you start? The good news is that native plants are available! Most big box stores (like Home Depot) have few to no native plants. One option is to go to a large, diverse nursery, like Portland Nursery or Garland Nursery in Corvallis. Besides perusing the selection of native plants they do stock, you can always ask them if they are able to stock a native plant you are interested in. These nurseries generally have contacts with a variety of growers, and demonstrating demand for native plants may lead to nurseries stocking more of these species on the shelf.
But what if you don’t have a specific native plant in mind, or what if you are new to the native plant world? Your best bet is to go to a specialty native plant nursery. Luckily, in Oregon there are a variety of native plant growers throughout the state. Below is a (non-comprehensive) list of some of the retail options. Keep in mind that some of these nurseries grow/stock a wide variety of species, while others specialize in plants of a certain region of the state or in a certain type of plant (think trees, or shrubs). I did not include nurseries that are primarily wholesale operations.
You can find more information on the Oregon Flora Project’s website, where they have a tool that lists Oregon native plant nurseries, as well as a list of what each grower stocks.
Finally, another great source of native plants are native plant sales! Many Master Gardener chapters and many soil and water conservation districts put on native plant sales in the spring. Here are a few, but check with these organizations in your county and see if they have sales scheduled!
As many of you may know at this point, Aaron Anderson and Jen Hayes are conducting some amazing research regarding Oregon native plants and their pollinator attractiveness. If you haven’t had the chance to read about their research yet, check out Aaron’s here and Jens here. While those two are producing data to determine the ecological benefits derived from some of our wildflowers, I chose to go down a more selfish route and see what our native plants can do for me. . .forget the bees. Below I have compiled a list of ethnobotanical uses for 6 of the 23 Willamette Valley wildflowers included in Aarons research – California Poppy, Camas, Pearly Everlasting, Oregon Iris, Western Red Columbine, and Goldenrod (my favorite).
Before you read any further, be aware that I am not an expert in wildcraft, ethnobotany, or herbalism. Never ingest the parts of any plant without being absolutely sure of its effects on the human body. Think of this more as a jumping-off point for your own research rather than any sort of guide or expert recommendation.
California Poppy –Escholzia californica:
The California Poppy – the ubiquitous orange herald of summer can do significantly more for you than just adding a pop of color to your yard or garden. E. californica can also be used as a medicine or candy! The flower itself is high in carotenoids and slightly sweet, the whole thing can be eaten raw as a candy-like treat. The ground roots and sap of the plant can be made into tinctures or infusions and be taken as a sedative, pain reliever, and muscle relaxer. California Poppy has been used by herbal practitioners as a “safe and gentle sedative for hyperactive children”. Maybe because they had too much poppy candy earlier in the day.
Camas – Camassia leichtlinii:
Camas is perhaps one of the best known plants on this list for its very popular edible bulb. The bulb is the most useful part of the plant and can be prepared in a few different ways. The two most popular are roasting and steaming. The roasted bulb gives off a flavor similar to a potato with a little hint of sweetness. Frying or mashing the bulb after the roasting are also common options to expand the flavor. Steaming camas bulbs is another popular practice which results in a food not unlike an onion. They are gelatinous and rich in complex carbohydrates, a fully browned camas bulb is just as delicious as any caramelized onion.
Pearly Everlasting – Anaphalis margaritacea:
Pearly Everlasting, a sweet little flower that has always reminded me a bit of a brilliant white star with a bright yellow center. These little flowers could also be a star of your ethnobotanical handbook considering how useful they are! The slender green leaves can be eaten as a normal green once they have been cooked a bit, perhaps by way of steaming or sautéing. A. margaritacea also offers a whole pallet of dyes all from one plant, depending on the concentration of each, it can provide shades of yellow, green, and brown. Pearly Everlasting can be employed as treatment for a whole range of ailments. The whole plant is filled with metabolites which can act as an anodyne, antiseptic, and sedative. Internally, it can also be used to treat diarrhea, dysentery, and some pulmonary affiliations. Externally, a poultice of the whole plant can be used to alleviate pain from burns, sores, ulcers, and bruises.
Oregon Iris – Iris tenax:
Oregon Iris is well known and celebrated for its floral beauty, but its grass-like leaves are often overlooked despite their usefulness. The long and immensely durable leaves can be used to make ropes or baskets. The 19th century botanist David Douglas once described Iris tenax’s leaves as “. . .in point of strength it will hold the strongest bullock and is not thicker than the little finger”. Like any craft, basket-weaving requires practice and learning, however the unique texture and color of the leaves are bound to make the product stand out among the rest.
Western Red Columbine – Aquilegia formosa:
The number of uses associated with Aquilegia formosa practically matches the number of bright red petals surrounding its cascading stamens. In terms of edibility, Western Red Columbine boasts edible leaves when boiled and a sweet nectary treat from the flowers themselves, but you have to share with the hummingbirds. Medicinally, treatments can be found from the roots, seeds, and leaves. The mashed roots can be used to relieve aching pains, for diarrhea, to counteract dizziness, and stomachaches. The chewed leaves can be used to alleviate sore throats and calm and upset stomach. Finally, a paste made from mashed seeds can be applied to the scalp to kill lice!
Goldenrod – Solidago canadensis:
Although sometimes considered cumbersome due to its amazing ability to spread, Goldenrod is one of the Pacific Northwest’s most diversely useful plants. It offers medicinal properties from its internal metabolites, edible roots and seeds, and of course Goldenrod’s signature pigmentation can be harnessed for dying. Infusions made from the flowers can offer relief from a variety of ailments, fever, flu, diarrhea, and sore throats are just some. Roots are commonly eaten smoked and seeds can be eaten roasted or raw. Finally, the flowers can bring a beautiful golden hue to any natural fiber that needs dying, just with a simple soak in warm water.
Over the past few months, I have shared data on bees and other insects that we have collected from Portland-area gardens. For every garden insect we study (except for butterflies, which can be identified to species by sight), we use lethal collection methods. This is because most insects can only be identified to species after close examination under the microscope. In fact, some insects require dissection before we can get them to species.
It seems odd that we kill bees in order to help understand how we can build gardens that can help to conserve bees. By collecting and killing bees and other insects, what role were we playing in promoting insect decline? How do projects, such as our own as well as the Oregon Bee Atlas, factor into bee declines?
That’s an excellent question, and one that we often ask ourselves. When we collect bees, we work to make sure that we are not needlessly causing harm. For example, our pan traps are good for collecting small bees, but are not good at collecting larger bees, including reproductive queens. When we hand-collect bees, we avoid taking queen bees. In fact, of the 2,716 bees that we collected in 2017-2019, only three were queens. We limited our sampling frequency to three times per year, and limited our sampling effort to 10 minutes of hand-collecting time and six pan traps, per garden. Even with these precautions, we are still faced with the question: does our research, or the research of others who collect and kill insects, harm the very species we are trying to conserve?
To address this question, I turn to the scientific literature. Gezon and colleagues set up an experiment to see whether lethal sampling for bees using pan traps and netting (the same methods we use in our research) has negative effects on bee abundance or bee diversity. For five years, they sampled nine sites every two weeks during the flowering season. They compared bee abundance and bee diversity in these repeatedly-sampled sites, to metrics from 17 comparable sites that were only sampled once. They found no significant difference in bee capture rate, bee species richness, or bee abundance between sites that were sampled repeatedly versus those that were sampled once. When they partitioned bees according to nesting habit (e.g. cavity, soil, wood, etc.), social structure (e.g. eusocial or not), and body size (e.g. small, medium, and large bees) they also found no significant differences in bee capture rates of single-sample versus repeat-sampled sites. They did catch more pollen specialists in repeated-sample sites than in single sample sites. However, the magnitude of the effect was relatively small, and did not represent a large change in catch rate between single-sample versus repeat-sampled sites. I suspect that the authors caught more pollen specialists at their repeat-sampled sites, because pollen specialists are fairly rare in time and in space. They drastically increased their odds of intercepting a pollen specialist on their repeatedly-sampled sites.
Gezon and colleagues suggest a few hypotheses
that could explain why increased sampling effort had no significant effect on
bee abundance or diversity. First, they suggest that reducing bee populations
by sampling could benefit the bees that remain, by reducing competition for
limited resources. If this is the case, bee populations can compensate for some
losses due to sampling, by increasing reproduction in the bees that remain
behind. Second, they note that if bees were sampled after they have mated and
laid eggs, the overall impact of removing a bee from via sampling will be
fairly small. Finally, they note that most bees are solitary, and that most
solitary bees have short flight seasons. In this case, sampling every two weeks
may not result in bee declines, if researchers are effectively collecting a new
species during each sampling event.
I can breathe a bit easier. The data suggests that our research is not immediately responsible for documented bee declines. Still, I know that I can personally do more to help protect bees in my own garden. Even though our lab group studies native plants, I have not yet planted Aster subspicatus (Douglas’ Aster) in my own garden. This will be my mission for 2020: to find and plant this gorgeous perennial at home. In 2018 and 2019, it bloomed from mid June through mid November at our study plots in Aurora, OR, with peak bloom (75% or more of the plant in bloom) lasting one month! And, from 2017-2019, it was always a top five plant for native bee abundance. I give this Pacific Northwest native plant my highest recommendation for home gardens! There are plants that attract more native bees, such as Phacelia heterophylla. But, no other plant that we studied offers the triple threat of beauty, bees, and longevity.
In the Garden Ecology Lab,
researchers are studying specific pieces of the garden ecology puzzle,
including soil nutrient levels, pollinators, and native plants. But what
exactly is “garden ecology”, and why is studying it important?
Let’s start by defining our
terms. If you hear the word “garden”, some pretty specific pictures may come to
mind, but it is really a very broad term, encompassing anything from pots on a
patio to acres of arboretum. A garden is by definition a human-influenced system
involving plants, but there are many human-influenced landscapes that are not
considered gardens, such as agricultural fields (though gardens may grow food),
golf courses (though a garden could include a putting green), tree farms
(though many gardens have trees), and parks (though ornamental plants may grow in
parks).
Brittanica defines a garden as a “Plot of ground where herbs, fruits, flowers, vegetables, or trees are cultivated.” This suggests that the keys are variety and control. A garden is typically composed of a variety of different plants and types of spaces…not unlike a natural ecosystem! In addition, there is the element of control (cultivation). Human choice and aesthetic sensibilities strongly influence what plants grow in a garden. Even a very naturalistic garden has some human-imposed order in it, or it wouldn’t be a garden.
Now
we get to “ecology”. Ecology is a relatively new natural science, with
beginnings in the early 1900’s, when scientists in Europe and the U.S. began to
study plant communities. At first animal and plant communities were studied
separately, but eventually American biologists began to emphasize the interrelatedness
of both communities.1
The
word Ecology (originally oekologie) comes from the Greek oikos, meaning “household,” “home,” or “place to live”,
so ecology is the study of the relations and interactions between organisms and
their environment – the place they live. Brittanica further clarifies that “These
interactions between individuals, between populations, and between organisms
and their environment form ecological systems, or ecosystems.”
The study
of ecology most often takes place in natural, or near-natural, areas, such as a
forest, meadow or mountain. Ecologists study these wilderness environments,
searching for guidance on how to restore degraded ones. This reinforces the common
concept of nature as being “out there”, far away from where most people live.
Urban
ecology studies parks, greenbelts, and forest preserves – the large, public
green spaces of a city. But garden ecology? Can something as small as most
gardens have an ecology at all? And why should we care?
Well, if you have a garden, and spend much time caring for it, then you are a part of the ecology of that place. Every person who manages a plot of land, however small, is part of the ecology of that land, and all of them together, along with the other people and parts of a city, form the ecology of that city. What is done on those small plots, what grows and lives (or doesn’t) on each one, multiplied by hundreds or thousands or hundreds of thousands of individual plots, has the potential to influence the ecosystem – and the health – of the entire city.
The
deeply-entrenched American reverence for lawns means that, at present, the
relatively barren landscape of manicured, often chemical-soaked turf is the
dominant ecosystem in most cities. Ecologically speaking, such sites don’t
contribute much to the local ecosystem.
But that is changing, as more people become aware that a diverse, densely-planted landscape can support a diverse cast of fauna and provide many ecosystem services, including carbon sequestration. This enriches the local ecosystem immeasurably. If this stewardship ethic can be multiplied by even a fraction of the yards in a city, we will begin to see that “garden ecology” is another name for OUR ecology. It is the interrelationship of we humans to the plants and animals, stones and streams, among which we make our homes. It is part of understanding that nature is not just far away, in pristine wilderness. Nature is right here, sipping nectar from your flowers, nesting in your trees, burrowing under your feet and buzzing past your nose.
I am writing here to share my story! Possibly also to toot my horn a bit. I am extremely proud of what I have been up to lately!
In the Lab…
I joined this lab through the STEM Leaders program. They connected me to the Urban Ecology lab where I started work in January 2019. January 2020, I presented a research poster at the STEM Leaders Symposium on Professor Gail Langellotto’s and Aaron Anderson’s research projects, as well as my role in them. My role is, primarily, to provide support to the Lab’s research projects. My tasks included things like cleaning, data basing, and pinning bees. I also provided help in the field by weeding plants, observing pollinators, and collecting specimens. The research projects I contributed to are amazing and I am proud of the work I have done. I am very thankful for knowledge and skills I have gained along the way. As a result of these skills, I have been able to be successful in school and my other opportunities.
Starting at Oregon State University…
When I transferred to Oregon State University (OSU) from Southwestern Oregon Community College, I knew that I wanted to participate in research. I had no idea where to begin. After earning a spot in the program, STEM Leaders provided me with the tools I needed to be successful in a lab. They then connected me with Gail Langellotto, my first choice in labs. Since starting work, I have gained a new passion for urban ecology and pollinators. I have also learned many skills that will directly translate to, and benefit me, in my journey to a possible master’s degree and my future career.
In my time at OSU, I have been presented with many opportunities. Originally, I was concerned about finding a community here at OSU. I am from the small town of Baker City, Oregon. The biggest town I had lived in, before Corvallis, was Coos Bay, Oregon. Since my first term, I have been participating in TRIO (student support services), STEM Leader’s, and the Organic Grower’s Club. These programs have provided me with a wide range of support and connections.
Current Events…
Recently, I have been involved with the OSU Human Resource Service Center’s Advisory Board and the Presidential Student Legislative Advocacy program (PSLA). PSLA is a non-credit course aimed to reach students who want to be advocates for Oregon State University. They work to teach and engage students in policy issues related to our interests. Through this class, I was able to advocate for the program “Coast to Forest”, from OSU’s College of Public Health. This program aims to reduce mental health issues and opioid addiction in four rural counties across Oregon, including Baker County. I was able to advocate for this much-needed program by giving an invited personal testimony to the Oregon Senate Committee on Public Health. This was my first time participating in the public process. For that reason, I was encouraged to pursue an internship at the State Capitol.
Later, I earned an internship position at the State Capitol. I am now an intern in State Representative Caddy Mckeown’s office during my final winter term here at OSU. As a first generation, low income, and Agricultural Science student, I never thought that I would have the opportunity to learn about the legislative process first-hand by doing office work in a Representative’s office. I am extremely thankful for this opportunity as I have already learned a lot and have made many new connections. I am looking forward to learning more as we progress through the 2020 legislative short session. Similarly, I am extremely excited for my other upcoming events.
Future Events…
Next term, my final term at OSU, I will embark on my biggest journey yet! I earned a full time internship at the Monteverde Institute in Costa Rica! This is a huge leap for me! I have never left the country, have hardly left the Pacific Northwest, and have never travelled alone. I could not be any more excited! Here, I will be working with the local farmers to develop farm designs and do soil analysis. I will work to advance the Monteverde Institute’s goal to advancing sustainability on a global level. Additionally, I have the opportunity to design a local pollinator garden at the local elementary school and educate the children on it! In this way, I will be bringing a bit of the Garden Ecology Lab to Costa Rica with me!
Finally, my graduation will be in June 2020, after I return from my 2.5-month internship in Costa Rica. I will have earned a major in Agricultural Science and a minor in Comparative International Agriculture. My time here at Oregon State has been short, yet very fruitful. It is sad to see my educational journey end. I will be eternally grateful to all the people I have met along the way. I would not have made it where I am without their guidance and help. They will not ever know how truly grateful I am and how impactful their presence has been in my life. Thank you, Gail Langellotto for your leadership, knowledge, and the opportunities you have given me!
I will be blogging from Costa Rica. If you would like to follow this, or learn a bit more about me you can find my personal website at the link below.
You know about butterflies, about bees, beetles, and ladybugs, all of our favorite garden critters – but do you know about the parasitic wasp? Alias: The Parasitoid. Not quite a parasite and not quite a predator, they are the zombie-creating hymenopterans that make your garden their home and hunting ground. Unlike a true parasite, the parasitoid will eventually kill its host, but unlike a true predator, there is a gap between parasitism and host death. The Parasitoid is truly one of a kind, but with thousands of species in over 40 families, there are many of that kind. They prey by laying their eggs in or on the bodies and eggs of other arthropods, growing, aging, and getting stronger as their unknowing host provides their executioner food and shelter until the parasitoid is ready to attack.
As menacing as their way of life may seem, parasitic wasps are actually one of the most effective biological pest control agents available to home gardeners, and can be an excellent indicator of habitat health for ecologists. As biocontrol agents, parasitoids can effectively manage a very wide variety of pests from aphids and sawflies to weevils and mites, along with many more. They occur naturally if their hosts/prey and habitable conditions are present and it costs little to nothing to maintain their populations. If pest outbreaks are not completely out of control and the site is habitable, parasitoids can safely, easily, cost-effectively, and naturally bring pest populations below economic injury thresholds. Know any pesticides that check all those boxes? In terms of habitat health, parasitoids can drive biodiversity and positively influence ecosystem functions. As such, their diversity and abundance can act as an indicator for the overall health and functionality of an ecosystem – such as your home garden.
Is it starting to seem like parasitic wasps could be an area of research for say. . .a garden
ecology lab? Certainly seems like that to me. That’s why this upcoming year I will be taking on an undergraduate research project to assess the parasitoid populations present in the Portland home gardens Gail and I have collected bees from for the last 3 years. Thanks to our sampling methods, we already have lots of parasitoid data to perform this analysis with, so there won’t be any more soapy bowls in your gardens this summer. This is the first of hopefully many blog posts that will accompany this research, so stay tuned as the year progresses to learn more about your new flying friends!
Natives Plants & Native Cultivars Recent studies report an increase in consumer demand for native plants, largely due to their benefits to bees and other pollinators. This interest has provided the nursery industry with an interesting labelling opportunity. If you walk into a large garden center, you find many plant pots labelled as “native” or “pollinator friendly”. Some of these plants include cultivated varieties of wild native plant species, or native cultivars, sometimes referred to as “nativars”. While many studies confirm the value of native plants to pollinators, we do not yet understand if native cultivars provide the same resources to their visitors.
An Echinacea Example Above are three purple cone flower (Echinacea purpurea) plants: on the top is the wild type, in the middle is a native cultivar ‘Maxima’, and on the bottom is another native cultivar ‘Secret Passion’. In some cases, like ‘Secret Passion’s double flower, there is an obvious difference between a native cultivar and a wild type that might make it less attractive to insect visitors. Since we can’t see the disc flowers (the tiny flowers in the center of daisy family plants), we might assume that ‘Secret Passion’ may be more difficult for pollinators to visit. The floral traits displayed by ‘Maxima’ seem similar to the wild type, but it might produce less pollen or nectar, causing bees to pass over it.
Unless we observe pollinator visitation and measure floral traits and nectar, we can’t assume that native plants and native cultivars are equal in their value to pollinators.
Native Cultivar Research One study looking at the difference between native species and their cultivar counterparts has come out of the University of Vermont (my alma mater!). A citizen science effort started by the Chicago Botanic Garden is also currently ongoing. My Master’s thesis will be the first to use a sample of plants specific to the Pacific Northwest. We have selected 8 plants that are native to Oregon’s Willamette Valley and had 1-2 native cultivars available. These plants have shown a range of attractiveness to pollinators (low, medium, or high) based on Aaron’s research. We are including plants with low attractiveness because it’s possible that a native cultivar may have a characteristic that makes it more attractive, such as a larger flower or higher nectar content.
Experimental Design We have four garden beds in our study, and each bed contains at least one planting of each native species and their cultivar counterpart(s). This kind of design is called a “Randomized Complete Block” (RCB). The RCB has two main components: “blocks”, which in our case are garden beds, and “treatments”, which are our different plant species. Above I have drawn a simplified RCB using two of our plants: Camas and California poppy. The bamboo stakes outline each plot and have attached metal tags that label the plants.
We planted our seeds and bulbs in November and will plant out 4″ starts of the other plants in early Spring. Look out for my spring and summer updates to see how these plots progress from mulch and bamboo stakes to four garden beds full of flowers and buzzing insects!
This week’s post comes from Mericos Rhodes, who is a MAIS student at Oregon State University. His M.A. studies combine the fields of Horticulture, Food in Culture and Social Justice, and Public Policy Mericos’s capstone thesis will be comparing the history, practices, philosophies, available research funding, and scientific basis of four agricultural approaches: biodynamic, permaculture, organic, and regenerative farming. Mericos is a farmer, himself. He’s also a deep thinker and eloquent speaker and writer. We think about farming in two very different ways: I am more of a scientist and he is a practioner and an artist. I look forward to our conversations, because I always broaden my perspective after talking with Mericos. He’s truly been a delight to have in the lab. (-Gail-)
Maybe ‘permaculture’ brings to mind an herb spiral, with rosemary, thyme, and some basil crowning it in summer. Or you may envision intricate systems of swales, which slow down and carry water to ridgelines. Maybe it’s as simple as letting ducks into an orchard. Or maybe ‘permaculture’ means nothing to you, at all!
Well, permaculture is most definitely a thing. Yet it’s a slippery thing, a concept full of emergent behaviors and biodiverse adaptation, unsuited to singular, rigid definition. Permaculture has been growing “from the bottom up,” and its
distributed growth takes as many forms as there are watersheds on this planet. Indeed, one of the difficulties of defining permaculture is due to its fundamental principle that no particular crops, tools, or techniques are universally beneficial, for land
management and food production. Learn your land. Learn its quirks, its frost pockets, and its native flora and fauna. Let what you learn guide you. Of course, following these principles will lead to vastly different techniques and plantings, across the world’s
different ecosystems.
Unlike “conventional” industrial, yield-driven modern agriculture farms, no two permaculture farms will look alike. Even the cultural trappings of permaculture affirm this diversity: instead of “conferences,” permaculture people gather
in “convergences,” to share evolving ideas and practices.
The distributed, evolutionary, informal nature of ‘permaculture’ makes it a nightmare for rigorous research. During my very first conversation with Dr. Langellotto, she brought this up. My application letter had mentioned an interest in applying permaculture to broad-scale agriculture. Just seeing “the P word” made her wary, she said. Luckily, my interest wasn’t a deal breaker, it was an inspiration: Dr. Langellotto suggested that I direct my interdisciplinary research towards defining permaculture in a way that researchers could use to study it.
So part of my inquiry is a simple question with a complex answer: “What is permaculture?”
Along with permaculture, i will also be examining organic and regenerative farming. ‘Organic’ has been codified by the USDA, a process that has directed more funding, research, and legitimacy to that type of farming, but has diluted the whole concept, in the eyes of many elder organic farmers. ‘Regenerative’ is a newfangled, five syllable word that seems to refer to farm practices that actively build soil health, rather than depleting or even simply maintaining it. The word is tossed around more and more, with relative impunity.
Can we create a system that defines, legitimizes, stabilizes, and preserves the spirit of ‘regenerative,’ in a way that ‘organic’ no longer does, for many farmers and ecological eaters? Is that possible for permaculture? That’s the hope,
and the motivation for my studies.
If all of this sounds more qualitative than the research that you may expect from a horticulture department, that’s because it is! However, I am loving being a part of the Garden Ecology Lab, and the Horticulture department, because the plant and insect-focused research being undertaken by my peers constantly grounds me. All of these types of agriculture and land management are, after all, just different ways of interacting with plants, animals, and soil. My hope is that my presence here may inspire those who think so beautifully about horticulture and all of its related fields to deeply consider how our work affects the biodiversity of life on this planet, climate change, and the role that our human species can play in healing the Earth.
For my dissertation research, I am studying which native Willamette Valley wildflowers are most visited by pollinators and natural enemies for use in home gardens and urban landscaping. I’ve previously shared preliminary results from my field study on our blog, namely pollinator abundance and richness. For a refresher, here are summaries from 2017, 2018, and 2019.
Initial survey
Determining which of these flowers are most attractive to insects is only half of the equation — I also want flowers that are attractive to gardeners. To investigate this I developed two surveys — thanks to anyone reading who took them! The first simply asked gardeners to rank the aesthetic appeal of my study plants, as well as how likely they would be to utilize them in their home gardens. This allowed me to get a baseline understanding of how appealing these flowers are for use in home gardens and landscaping.
As you can see in the figure below, many of the plants most visited by bees (highlighted in orange) were the least attractive to gardeners (Fig. 1), while plants gardeners liked the most (e.g. Iris, Columbine) were hardly visited by bees. However, its notable that many of these native wildflowers ranked around a four on a 1-5 scale, showing that these flowers do have a high potential appeal for use in landscaping!
Figure 1: Gardener ranked aesthetic appeal of study flowers on a scale of 1-5. Orange bars note plants that were consistently highly visited pollinator plants. N=587
Follow-up survey
The follow-up survey consisted of a subset of ten flowers most visited by bees, and again asked respondents to rank the aesthetic appeal and likelihood of planting for each of these flower species. Then, they were shown facts about and images of bees that visit each flower species, and asked whether they viewed each plant species more favorably, less favorably, or the same. Finally, they were asked to re-rank how attractive they found the flower species and how likely they would be to use the species in their garden, both on a scale of 1-5.
Gardener acceptance
This second survey showed a remarkable increase in gardener acceptance of pollinator friendly native plants after being educated on plant-pollinator associations. Over 80% of respondents stated that they viewed Clarkia amoena as more attractive after gain, and over 60% of respondents viewed Phacelia heterophylla, Madia elegans, and Gilia capitata as more attractive (Fig. 2).
Figure 2: Percent of respondents viewing flower species as more attractive after learning about pollinator associations. N=184.
Likelihood of planting
After learning about the benefits these flowers provide to pollinators, gardeners were also more likely to plant all ten flower species (Fig. 3). Notably, they were 40% more likely to plant Phacelia heterophylla, (a species that ranked as the least aesthetically appealing overall in the first survey). As a whole, they were also over 20% more likely to plant Solidago canadensis, Clarkia amoena. Similar increases were also observed in likelihood of planting Oreganum vulgare and Nepeta cataria. Many of the plants that showed a smaller percent change are species that started out with a higher aesthetic appeal (e.g. Gillia capitata, Lavendula intermedia, Aster subspicatus), meaning gardeners were already very likely to include these plants in their home garden before learning about the ecological benefits they provide.
Figure 3: Percent change in respondent’s likelihood of planting each top pollinator flower after learning about the pollinators associated with each. N=184
Ecological beauty
What does this all mean? This suggests that although native plants are frequently denounced as being less attractive than showy garden species, many home gardeners are still willing to use native flowers in their landscaping. Additionally, this lends credence to the concept of “ecological beauty” – that many gardeners are willing to utilize plants that will increase the habitat value and wildlife diversity in their yards.
This post comes from Cliff Brock, who is a graduate student in the Contreras (plant breeding), Langellotto (pollinators), and Lambrinos (invasive plants) lab groups. Cliff is studying the impact that plant breeding has on invasiveness and pollinator visits in butterfly bush (Buddleja davidii) and its cultivars. Having three co-advisors can be extremely challenging. However, Cliff has been a true joy to work with, and seems to have navigating the complexities of three labs, quite well.
Cliff decided to write about flies as pollinators. When I asked him why he wanted to write about flies, he mentioned that they usually pollinate flowers that have foul smells, or that may not be as attractive as other flowering plants. He said that he has a special place in his heart for these ‘botanical underdogs’ ~ a sentiment that I thought was sincerely sweet.
***************************************
While bees deservedly get most of the attention regarding their pollination services, many of our most important crops and wildflowers are primarily pollinated by flies. Generally speaking, fly-pollinated flowers are dark maroons to reds and emit earthy, fermented, or putrid aromas. The coevolution of plants and flies has resulted in some of the most amazing and unusual flowers. The largest flowers in the word, Amorphophallus and Rafflesia, are almost exclusively pollinated by flies and beetles.And even our beloved chocolate requires a small midge fly for its sole pollinator.
Here in the US, many of our most beloved spring ephemerals have coevolved with flies. While many Trillium are bee pollinated (e.g. the abundant white Trillium ovatum), species with red and brown flowers are primarily pollinated by fungus gnats. The iconic American pawpaw (Asimina triloba), which has seen a resurgence in popularity, smells of rotting flesh and is irresistible to a whole host of fly species.
Asarum, or wild ginger, is a generally diminutive herbaceous plant often grown as a groundcover. The odd flowers are born close to the ground and are usually hidden from human view. Yet I find them particular beautiful, and every year I look forward to rediscovering them beneath the mottled foliage. Asarum takes fungal mimicry to a new level. Panda ginger, one of the Asian species, is especially funky. The flowers mimic the colors, textures, and smells of toadstools.