Welcome Gwynne Mhuireach and the Garden(er) Microbiome Project

This post a from Gwynne Mhuireach, who will be studying the microbiome of garden soils . . . and gardeners!!

***********

A little about me…

Gwynne Mhuireach will be studying the microbiome of garden soils and gardeners!

I am a researcher, farmer, and mom to twin teenagers. My formal education is broadly cross-disciplinary, including degrees in biology, architecture, and landscape architecture. While I was working on my Masters, I began studying microbes inside buildings as a member of the Biology and Built Environment Center at the University of Oregon, where we discovered that our exposure to microorganisms indoors depends a great deal on what microorganisms are present in the immediate outdoors. This line of inquiry was so fascinating that I entered the PhD program in Landscape Architecture to investigate how urban green space might influence the airborne microbial communities that people are exposed to in their daily lives. Ultimately with my research, I aim to gain a deeper understanding of how human health and environmental health are connected through the microbes we share. 

In addition to my academic research, I also own and operate a small livestock farm with my two teenagers, Lyric and Cadence, and my partner, Tom. A native Oregonian, I was born and raised on a small farm near Klamath Falls, Oregon, where my family produced (and continues to produce) hay and cattle. Now I choose to continue the agricultural lifestyle that has been my family’s way of life for three generations. Producing food through hard work and stewarding a small piece of land to pass on to my children is very important to me. I believe that having a strong connection to the land is also part of what drives me to study microbes in the context of the outdoors, particularly how we interact intimately with them by getting our hands dirty in the soil.

The Garden(er) Microbiome Project

In partnership with Gail Langellotto, I am launching a new citizen science project called, “Microbes under your fingernails? An exploration of the garden microbiome and potential transferability to human skin.” While soil science is well-developed in terms of nutrients and organic matter needed to keep plants healthy, less is known about the diversity and composition of microbes present in agricultural soils, particularly in small-scale farms and gardens. Astonishingly, despite the likelihood of substantial exposure to soil microbes while gardening, yet we lack even the most basic understanding of how much microbial transfer from soil to skin occurs, what types of microorganisms are transferred, or how long they persist. Through this project, we seek to answer these questions with the help of volunteers—you!

Gardeners who volunteer to participate in this project will be asked to collect soil samples from several different beds in their gardens and from the surface of their hands and/or forearms. There will also be questionnaires that ask for information about garden management practices and daily skin care (use of anti-bacterial soap or lotion, etc.) during the sampling period, which will last 2 days. Volunteers will receive detailed results, including a comprehensive soil health assessment and skin/soil microbiome reports. We will also share our findings with other researchers, farmers/gardeners, and the broader public online and through the Master Gardener network. We anticipate that this citizen science project will not only answer our original research questions, but also shed light on how different management practices can impact garden soil health in different climate zones of Oregon.

If you are interested in participating in this project, I am hosting an informational webinar on Friday, June 5th (2020) at 10am. Registration is required to attend. The webinar will be recorded and posted.

If you are unable to attend, but are still interested in participating, please let us know a bit more about you and your garden by taking this short survey. Please note that for this particular project, we are specifically seeking gardens located in Oregon’s Willamette Valley or High Desert regions.

How COVID-19 Has Impacted the OSU Garden Ecology Lab

I asked our group if they would be willing to share how COVID-19 is impacting their science, their studies, and their life. Our collective reflections can be found, below.

Gail Langellotto, Professor and Statewide Master Gardener Coordinator: In early February, I woke up from a dream, sobbing. I had dreamt that my parents were sick in Baltimore, but that domestic air travel had been shut down. I am not an expert in the ecology of infectious disease, but I used to teach infectious disease models to pre-meds. And, there were several things that I saw in reports of this emerging disease that greatly troubled me. Unfortunately, my fears of large scale community spread have come true, and life has changed for us all. Luckily, my parents and sisters continue to be healthy, even though they live in a COVID-19 hotspot.

I teach two face-to-face entomology courses at OSU during the spring term: ENT 311 and ENT/HORT 444/544. I had exactly one week to pivot these classes to fully remote offerings. Instead of real time (and automated) assessment of learning using TopHat, I’m building quizzes and assignments into Canvas, where I am manually grading 210 quizzes and assignments per week. I’ve drastically cut down on course content, in part because I continue to try and focus on essential messaging, but also because I know that many of my students are under immense stress.

Spring term is when I normally move to having a lighter touch with the Master Gardener Program. New Master Gardener students are completing their coursework and exams. Long-time Master Gardeners move their attention to plant sales, garden fairs, and educational outreach. Not this year. Training classes had to move online or to Zoom. Plant sales, garden fairs, and other Master Gardener events were cancelled. Our working group started trading resources and ideas via weekly Zoom meetings. Each new dictate from the Governor or the University requires attention and consideration of how it applies to the Master Gardener Program. It’s been a challenge to stay on top of everything, and a challenge to keep a positive attitude.

In terms of science, there has been good and bad. The ‘bad’ is that, as an Associate Editor of the journal Urban Ecosystems, it has been difficult to find peer reviewers for scientific manuscripts. And, it feels ‘out of touch’ to prod folks to get their reviews in, when they may be sick, or they may be busy home-schooling kids or shopping for senior family members. Also in the ‘bad’, I generally have zero time or energy to work on my own scientific manuscripts. Exhaustion is a constant. The ‘good’ is that I can’t sleep at night. And, during these sleepless nights, I often think about next steps in our research, and plotting out key questions in urban ecology that remain unresolved, but could be addressed in garden systems.

Gail’s workstation at home. The photo of the bear and fish (to the right) is named ‘A meditation on perspective’. When working, I often stop to tell myself ‘be the bear, not the fish’.

Angelee Calder, senior year June 2020, Agricultural Science undergraduate: Covid has greatly impacted my plans and life!  As some of you may remember from my last blog post, I was expecting to spend my final term as a senior at Oregon State University doing an internship in Costa Rica! Twelve days before I was scheduled to leave, we entered a worldwide pandemic and all my plans where flipped and turned upside down! In preparation to leave for Costa Rica, I had put in my 30 day notice in on my apartment and my roommate found somewhere else to live. Last minute, I had to scramble to get my refunds, register for classes, and find somewhere to live. Since then, I have been struggling with homelessness.

Currently, I am living in the emergency housing at OSU provided by the Human Resources and Services Center. While I am extremely thankful to be here, I am only permitted to stay for less than a month. Which means my struggle with homelessness during my final term of school will continue to be an issue well into finals week. I started my first term at OSU homeless and I am finishing my final term homeless! While this is stressful and uncertain, I have managed to continue to kill this term academically. I am proud of myself for prevailing during these hard times to thrive under these heavy pressures and keep my eyes on the prize of my diploma that I have worked 5 long years to earn.

My passion for agriculture and my dedication to school go unwavered. This time has helped me to feel more secure in my chosen field as Agriculture than I ever have before. After seeing the bare shelves at the store and hundreds of thousands of Americans get laid off of their jobs, I realize agriculture is about as “essential” as you can get! My passions and education can not only create stable work for myself but also can help the rest of the world through these difficult times with stable sustainable food production.

Angelee’s workstation at the OSU Human Services Resource Center.

Mericos Rhodes, M.A. Student in Environmental Arts and Humanities. As a practitioner of ecological agriculture, this COVID era is one of the most interesting times of my life. Put simply, I have never witnessed such intense interest in what is, to me, the most interesting topic in the world: local ecological farming.

The farm that I help run, Spoon Full Farm, has completely sold out of CSA memberships and many other items. Our waitlist is growing. Here in Corvallis, the farmers markets are well-adjusted and well-attended. I can understand why: a shorter food chain means far fewer opportunities for food to be contaminated. Healthy nutrient-dense food is a cornerstone of resilient health. Small businesses such as local farms need our support now, more than ever.

In an exciting development, a friend and I are busy converting an old grassy field, across from the Corvallis Fairgrounds, into a small-scale community-based farm. We connected with the landowner after he put up a sign at the co-op seeking farmers! So, our restorative farming project has begun! It doesn’t look like much, but we have 7 chickens moving rapidly through the grass between our dug rows of mixed perennials (mostly currant bushes and thyme), fertilizing the ground to support annual vegetable beds. We plan to dig a little pond and use a heavy mulch of leaves and/or wood chips.

The Corvallis field that Mericos and his partner are converting into a farm.

How is this relevant to the garden ecology lab? In two ways:
First, I am planning my graduate project to be a narrative introduction to ecological farming (stories, characters, motives will be highlighted). This personal experience will be part of the story. Second, this project will put into place many practices suggested by Gail’s Insect Agroecology class (ENT 544), which I am currently taking, including creating diverse perennial habitat for insects, and not spraying pesticides or synthetic nitrogen. It will also be an experiment in “Dry-Farming,” which basically means zero irrigation – perhaps a critical farming technique here in the Northwest, where irrigation water may be in much shorter supply, in the decades to come.

I feel extremely grateful to be able to work outside, with living nature, during these times when so many are stuck in screen world, all day every day.

Aaron Anderson, PhD Candidate: During this uncertain time, I feel lucky to be able to be part of the Garden Ecology Lab and be able to continue my classes and work. As I am in my fourth year as a graduate student here at OSU, I have already collected all of my field data. This means that I am able to hunker down at my desk here at home, without having to worry about the logistics of conducting fieldwork during a pandemic. I’ve been busy taking two courses, and also plugging away on some data entry and statistical work.

Things can be undeniably stressful due to the background worries about COVID-19, but working from home has had some plus sides. The first is the ability to work with a cuddly cat on my lap. I’ve also been able to take breaks out in the yard, where we’ve been working on our garden bed and also seeded the side yard with several native plants from my study. We have Phacelia heterophyla just starting to germinate, and Clarkia amoena and Achillea millefolium are both beginning to bolt. Hopefully, some native bees will be visiting soon!

Aaron’s cat.
Aaron’s side garden.

Signe Danler, Instructor, online Master Gardener training course: As an instructor of an online course, most of my work was already done online via computer before the pandemic hit. I have also worked from home for many years in a variety of jobs, so I already had a full office set up at home, and did much of my OSU work at home already. In this regard, there was not much change – I grabbed a few things from my office at OSU so I would have them at home, and have not been on the campus since the stay-at-home order.

Nevertheless, life suddenly became much more stressful. For the first few weeks, the constant bombardment of new and conflicting information was terribly distracting, making it hard to be productive on any project requiring sustained effort. The cancellation of virtually all events I normally participate in has been saddening and frustrating. With two vulnerable family members at home, we have to exercise great caution in outside contacts. I not only have to do all grocery shopping, but do it in a way that takes much longer than usual, and is tiring and stressful. I’m keeping trips out very infrequent!

All in all, though, I feel we are very fortunate, since we are in a position to ride this situation out with minimal problems. To stay healthy and sane I’ve been taking more walks, which is easy since we live at the edge of town and crowds are non-existent. My large garden is getting more attention than usual, and I’m propagating more of my own plants to reduce nursery visits. As I have adjusted to the new normal, my ability to focus is getting back to normal too, and I am confident we’ll get through it just fine. 

Signe’s Plant starts.

Mykl Nelson, Instructor of Urban Agriculture: The first thing I noticed was how much remained the same. I was already fully remote and integrated with eCampus. I was lucky. I watched the flurry of emails, the hectic conference meetings, the string of popular articles. Everyone seemed to scramble as essentially the entire academic world pushed to move fully online and remote. I’m excited to see this push because I hope to see advancement in the teaching of remote teachers. When I first started trying to educate myself about educating others in agricultural topics in a remote classroom, I saw very little supporting material. I hope that changes now.

I’ve seen real changes in the community around me. Store shelves lay bare as a slow realization—the façade of abundance—spreads across stores. I know from my time as a grocery clerk that those shelves aren’t stocked that deep, and the “back stock” is kept as thin as possible. I’m watching my country get squeezed around me; the most vulnerable of my fellow citizens being forced to confront the more dire aspects of this pandemic. 

But in this panic, I feel safe. I get to add yet another scenario to the privileged category of my life. From my youth in a military family to my time now as university faculty, I am repeatedly shown the benefits of access to health care. When it comes to basic hygiene and global health, I want everyone to be able to wash their hands just as easily as they could access medicine. It only makes sense to extend such secure foundations to as many people as possible.

Mykl’s workstation in Central Oregon.

Happy 50th Anniversary of Earth Day

Today is the 50th anniversary of earth day. I am almost as old as earth day (I will turn 50, next February), and am finding myself in a reflective mood.

Ever since I was a child, I have been fascinated by and loved nature. I used to try and catch lightning bugs, and put them in a mason jar, hoping to catch so many that I could make a lantern. Today, when I visit my folks near my childhood home, nary a lightning bug can be found. Scientists suspect that increased landscape development has removed the open field habitats and forests that the lightning bugs depend upon to display their mating signals and to live. Light pollution likely also plays a role.

lightning bug 8758
Eastern Lightning Bug. Photo Credit: Terry Priest. https://www.flickr.com/photos/artfarmer/197649535

My time in college was my first real exposure to nature. I worked at Patuxent Wildlife Research Center, supporting the work of James Wagner when he was a graduate student at UMBC. He was studying wolf spiders, and I fell in love with these amazing creatures. Did you know that wolf spider mommas carry their young on their back ~ at least for the first few days of a baby spider’s life? Did you know that to collect wolf spiders, you go out at night with a flashlight . . . shining the flashlight into the forest floor litter, to find eight tiny glowing eyes staring back at you? Wolf spider eyes glow, as an adaptation to capture more light (enabling them to see better) when hunting at night. Like a cat’s eye, wolf spiders have a tapetum at the back of their eye . . . a mirror that re-reflects light back out, and lets the spider’s eyes have a second shot at capturing that light. My time working with James was magical. For the first time in my life, I gained the skills to identify trees, and wildflowers, and birds, and insects. I tell people that it was as if a scrim had been lifted from my eyes, and I saw the world in an entirely different light. I was forever changed, by this newfound knowledge that allowed me to ‘read’ the natural world in a different way.

Behind the rusty eyes
A wolf spider. Photo Credit: Jean and Fred. https://www.flickr.com/photos/jean_hort/4430861610

As a graduate student, I studied salt marsh insects on the New Jersey coastline. I had never been to a salt marsh before, despite living within an hour of the ribbon of salt marsh that hugs the eastern seaboard. I saw horseshoe crabs for the very first time. I saw the fishing spiders in the genus Dolomedes that I had read about in books. I went bird watching and butterfly hunting with scientists who were generous with their time and knowledge, most notably, my advisor, Robert Denno. Now, so much of that ribbon of coastline has been destroyed. What remains is at risk due to increased nutrient pollution from fertlizers and run-off.

Big cordgrass salt marsh
Tall grass in an eastern salt marsh. Photo Credit: Ecological Society of America. https://www.flickr.com/photos/ecologicalsocietyofamerica/25086412492

My post-doctoral work was spent in California on many projects, including studying the food webs of cotton fields that were using organic or conventional production practices. From talking to the farmers and stakeholders, I learned that there are not insurmountable impediments to growing organic cotton. The problem was that there was a limited market for organic cotton, grown in the United States. Growers who would plant organic cotton faced an uncertain market and reduced yields. Often, reduced yields might be compensated for with a premium price for organic products. But not in the case of US-grown organic cotton. This is when I first started to realize that science can not work in a silo, but that an understanding of economics and the social sciences is critical to promoting more sustainable solutions.

My first faculty position was at Fordham University in the Bronx. I had no idea what I would study, as an entomologist in the Bronx. Luckily, I had the great fortune of taking on Kevin Matteson as my first graduate student. Kevin had been studying the birds of New York City community gardens. I asked him if he might be willing to instead study insects. His work was ground-breaking and is heavily cited, showing the potential of small garden fragments in one of the most heavily populated cities in the world, to support a diverse and abundant assemblage of insects. He also showed that the strongest predictor of butterfly and bee diversity in gardens was floral cover. Through Kevin’s work, as well as associated work by Evelyn Fetridge, Peter Werrell, and others in our Fordham lab group, I became convinced that the decisions that we make in home and community gardens have the potential to make a real and positive difference in this world.

I came to OSU in 2007, for the opportunity to work with about 30 faculty and staff and between 3,000-4,000 volunteers who were dedicated to sustainable gardening. Coming from a teaching and research position to an Extension position was initially a challenge for me. I recognized importance of bringing good science to Extension and outreach work, but I didn’t know exactly how I would or could contribute. In 2016, I started the Garden Ecology Lab at OSU, mostly because I was more convinced than ever, that having good science to guide garden design and management decisions can truly make a positive difference in this world. I sometimes talk about ‘how gardening will save the world’, which is a lofty and aspirational goal. But, I truly believe (and science backs up this belief), that the decisions that we make on the small parcels of land that we might have access to in a community or home garden matter. These design and management decisions can either improve our environment (by provisioning habitat for pollinators and other wildlife) or harm our environment (by contributing to nutrient runoff in our waterways, or by wasting water when irrigation systems fall on the sidewalk more than on our plants).

This is one reason that I stand in awe of the Master Gardener Program. When I was purely a researcher, rarely interacting with the public, I doubt that many people were able to take our research findings and apply them in their own yard. When I was initially struggling with my new Extension position, I went to my former Department Head at the University of Maryland entomology deparment, Mike Raupp. Mike had a lot of experience with Extension and outreach, in addition to being a world-reknown researcher and a super-nice person. I remember him saying ‘Gail, when you publish a research paper, you’re lucky if 20 eggheads will read it. When you talk to the Master Gardeners, you have the opportunity to make real change in this world.’

And together with the Master Gardeners, I hope that is what we have done. I hope that is what we will continue to do. I hope that we find new and novel ways to discover how folks can manage pests without pesticides, to reduce water use in the home garden, and to build pollinator- and bird-friendly habitat. And then I hope that we will reach and teach our neigbhors and friends how to appreciate the biodiversity in their own back yard, and the small changes that they can make to improve the garden environment that they tend. I hope that we can instill a wonder for the natural world in the next generations, and to preserve or improve the natural world, so that our kids, and grandkids, and subsequent generations can hunt for lightning bugs, or spiders, or butterflies.

And I want to do it with you, dear gardeners. Together, we truly can make a difference.

Pollinators in Your Parking Strip

What’s the first thing people see when approaching a house? The parking strip.
What is often the ugliest, most barren part of a yard? The parking strip!

The parking strip, often called a “Hell Strip”, is a tough landscaping challenge. Narrowly linear, sun-baked, hard to water, often compacted, subject to foot, dog and other traffic…what self-respecting plant would want to grow there?

This is why parking strip “landscaping” tends to default to lawn, mulch, or gravel.

But there’s another option. For every habitat there are plants to match, so if you want a garden in your hell strip, choose plants that LIKE it hot and dry, and are compact in size. Careful design and plant selection can result in a parking strip that is a beautiful asset, rather than a barren wasteland.

As a bonus, many plants that are suitable for planting in a parking strip are also great for pollinators. There are many Oregon native plants that can thrive in such conditions, and since native plants are generally best for pollinators, why not dedicate your parking strip to growing mostly native plants in a beautiful pollinator garden?

Tips for Success

  • Before making any parking strip plans, be sure to check with your local government (the owner of the parking strip) for any regulations or requirements you need to take into account.
  • Provide a paved landing or path for exiting cars.
  • Don’t obscure utility covers with plants.
  • Before planting, loosen the soil and dig in compost. It can be worth spending a year or two improving the soil, if it is very bad.
  • Plant in fall if possible, to give plants all winter to grow strong roots before having to cope with summer heat and dry.
  • Be patient – it may take some trial and error to find the best plants for your parking strip.

Choose the Right Plants

  • Low water needs
  • Persistent (bulbs, perennials, low shrubs)
  • Compact and tidy form
  • Attractive foliage
  • Variety of textures, shapes and colors
  • Varied bloom times over long season

In Jen’s post a couple of weeks ago, http://blogs.oregonstate.edu/gardenecologylab/2020/03/14/how-do-we-know-what-flowers-bees-like/, she listed flower characteristics that bees and butterflies are attracted to. Here’s a short list of plants that feature these characteristics, AND are good candidates for a parking strip planting.

PNW Native Flowers
Achillea millefolium (common yarrow)
Allium cernuum (nodding onion)
Arctostaphylos uva-ursi (kinnikinnick, bearberry)
Balsamorhiza deltoidea (balsamroot, mule’s ears)
Clarkia amoena (godetia, farewell to spring)
Deschampsia cespitosa (tufted hairgrass)
Eriophyllum lanatum (Oregon sunshine)
Eschscholzia californica (California poppy)
Fragaria chiloensis or vesca (beach or woods strawberry)
Gaillardia aristata (blanketflower)
Gilia capitata (globe gilia)
Iris tenax (tough-leaved iris)
Lupinus formosus (western lupine)
Madia elegans (showy tarweed)
Phacelia spp (phacelia)
Plectritis congesta (Seablush)
Sedum spathulifolium ‘Cape Blanco’ (broadleaf stonecrop) 
Symphyotrichum/Aster subspicatum (Douglas aster)

You can also add compatible non-native plants, that are also attractive to pollinators.

Bulbs for early bloom: Crocus, Iris reticulata, species tulips
Perennials, Low Shrubs, and Ornamental grasses
Achillea ‘Moonshine’ (yarrow)
Callirhoe involucrata (wine cups)
Caryopteris (blue mist shrub)
Coreopsis grandiflora (largeflower tickseed)
Dianthus ‘Allwoodii’, ‘Flashing Lights’ and others (pinks)
Epilobium (Zauschneria) spp (hummingbird trumpet, Calif. Fuchsia)
Lavandula (lavender)
Nepeta cvs (catmint)
Penstemon spp
Perovskia (Russian sage)
Sedum spp
Thymus ‘Elfin’, ‘Archer’s Gold’ ‘Doone Valley’, red creeping

Resources:
Hellstrip Gardening” by Evelyn Hadden & Joshua McCullough
“On the Verge” by Tracy Byrne www.pacifichorticulture.org/articles/on-the-verge/
Pollinator Parkways Do-it-Yourself Manual

Astroculture 101

#SpaceFlower, a zinnia grown on the International Space Station (ISS). Image courtesy of Wikipedia Commons.

Read this article to learn:

  1. The diversity of crops grown in space
  2. First food crop grown in space (onion)
  3. What ‘lightsicles’ are
  4. NASA and air purification
  5. Space Seeds™
  6. The primary problem facing astroculture (irrigation) and why (microgravity)
  7. First space-grown vegetable eaten in space (lettuce)
  8. Expansion of production area in astrocultural trials (1000x increase)

Why astroculture?

Astroculture: growing food in space! ‘Sure, cool concept,’ you might be thinking, ‘but what does this have to do with garden ecology?’ Well, the tight confines onboard spacecraft are more constraining than most any compact, dense city on Earth could claim. Perhaps only those in capsule-style housing can begin to appreciate the cramped living quarters of astronauts.

The effort to grow food in space is about more than creating a system which can reduce the need for supply shuttles from Earth. Astroculture is the proving ground for compact, synthetic production environments. Any experiments are as isolated as possible. This has resulted in NASA (or the National Aeronautics Space Administration) and other space agencies playing a central role in the development of new technologies to support the growth of plants in artificial conditions.

From 1970 to the present there have been:

  • 21 plant growth chamber design systems
  • 50 different cultivation experiments
    • across ~40 species

The first food crop grown in space were onions in July, 1975, by cosmonauts Klimuk and Sevastianov during the Salyut space program of the Soviet Union. They aimed a few bulbs from the crew’s on-board lighting system at the seeded trays, but nothing more. Some plants did germinate, and for the first plants humans have put in space, that’s a significant enough accomplishment on its own. One of the limitations to this and all the other experiments at this time were the short flight durations. Only two years previous, the record time in space was set at just eight weeks—by the United States.

NASA pioneered research into intra-canopy lighting with a technique they called ‘lightsicles’—poles of lights which lit ever-higher as the plants grew taller. This idea itself isn’t new. Experiments ‘on the ground’ had shown that shading out lower leaves will lead to senescence or the decay and loss of those leaves.

See, the problem wasn’t in supplying the right spectrum of light—controlled conditions in space quickly produced plants with lush growth in their upper canopy. The problem they quickly realized was a shading out and subsequent decay and loss of leaves below the plant canopy. Lights like high-pressure sodium or metal halide were simply too hot to be placed within the plant canopy itself. This heat also meant there was significant distance between light source and plant. This empty space between light and plant was the most the aeronautic agencies were willing to sacrifice to carry out these agricultural experiments. They definitely were not going to now account for empty space between lights on multiple sides of a plant’s growing area!

The scientists at NASA were ready and waiting for something better. They quickly embraced emerging technologies like LEDs for all the same reasons Earth-bound producers have: they’re energetically efficient with little waste heat all in a compact design. This lighting design and strict need for density meant NASA also found itself on the frontier of vertical farming innovations.

Experiments in astroculture, of growing plants in space, mostly boil down to understanding plant function in microgravity. Be this on a shuttle, station, Luna, or Mars, all locations exert less gravitational force than the Earth.

Steve Swanson tending Romaine lettuce aboard the ISS. Image courtesy of Wikipedia Commons.

In 1982 Arabidopsis was successfully grown seed-to-seed in space then germinated back on Earth. This was proof of concept, plant life off-planet was possible. But the success rate was only about half, and all with a simple, model plant. This is like sending mice into space before chimps or humans. Subsequent experiments of greater scope found microgravity seriously impedes and sometimes even alters plant physiology.

Now, let’s talk about carbon dioxide for a second. Plants breathe the air, just like us, but they’ve got a use for CO2: it plays a key role in photosynthesis. Atmospheric enrichment of CO2 within closed production environments has been practiced since the 1970s. A limited set of experiments in 1989 found CO2 supplementation also improved a great number of factors in microgravity. But this might not be so groundbreaking or critical to astroculture. This is still well before the current field of controlled environment agriculture had developed. We now see carbon dioxide as key to increasing plant growth but also recognize a number of other inherently limiting factors within artificial environments. Put shortly: most plants, on terra firma or in outer space, do better with CO2 supplementation.

What has emerged as uniquely problematic in microgravity is irrigation. Maintaining a reliable range of moisture in the root zone has become the critical adaptation of astrocultural production. I’m sure we’re all familiar with water adhesion and its surface tension. On the planet’s surface, adhesion and tension are frequently dwarfed by the force of gravity itself. This pulls water into the soil, pulls water through the soil, and actually plays a large part in the water cycle itself. In microgravity, adhesion and tension begin to exert their dominance. It’s difficult to direct and instead will cling to most surfaces it touches. So when water is applied to the root zone, it clings to the roots. Many plants end up anoxic: they’ve drowned in their flooded conditions.

The latest developments are using porous tubes and/or plates to slow the delivery of water and nutrients. It seems like, if we can’t stop water from coating everything it touches, the plan is to greatly restrict its flow and access to non-target areas. A slow osmosis via a clay pipe works as a bottleneck to prevent drowning.

In the early 2000s on board the International Space Station, astronauts successfully completed two generations–that’s seed-to-seed,-to-seed—of soy: Space Seeds™. Ok, they’re not really trademarked, but it’s fun to call them ‘space seeds.’

Astronauts Scott Kelly and Kjell Lindgren eating the first leaves of space-grown lettuce. Image courtesy of NASA Johnson on flickr.

On August 10, 2015, NASA astronauts were officially allowed to eat space-grown produce for the first time: some leaves of lettuce.

In addition to innovative irrigation control techniques, the latest astrocultural experiments have just recently begun to increase in scale. The first growing area, in 1971, was a mere 10cm2. Little gains were made until 2014 when they achieved 1700cm2 of production area by using an ‘inflatable’ model which astronauts assembled once in outer space. The latest plans utilize a vertical racking system and aim for a full square meter (10,000 cm2).


Well, that’s a lengthy enough primer on growing plants in space. There’s plenty more to be told and a wealth of discoveries yet to be made. If you’re interested in some further reading, perhaps try some of these options.

A grand summary of astroculture is nicely reported in Zabel et al. (2016) http://dx.doi.org/10.1016/j.lssr.2016.06.004

Read a report from NASA (2010):  https://www.nasa.gov/mission_pages/station/research/10-074.html

Space Gardening with NASA: https://science.nasa.gov/science-news/news-articles/space-gardening

There are some visually pleasing, incredibly informative graphics here: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160013269.pdf

ISS: from NASA to Napa  https://www.nasa.gov/mission_pages/station/research/news/ADVASC

How do we know what flowers bees like?

Pollinator Syndromes

Pollinator syndromes are the characteristics or traits of a flower that appeal to a particular pollinator. These traits often help pollinators locate flowers and the resources (e.g. pollen or nectar) that the flowers have to offer.

Syndromes include bloom color, the presence of nectar guides, scents, nectar, pollen, and flower shapes. We can use these traits to predict what pollinators might be attracted to certain flowers or we can use these tools to guide us to pick the right plant for the right pollinator!

Bees, for example, are most attracted to flowers that have white, yellow, blue, or ultra-violet blooms.

Blue Flax (Linum lewissii)
Male long-horned bee on a white bindweed flower
Orange bumblebee (Bombus sp.) on a sunflower

Pollinator Syndromes for Bees & Butterflies

Table adapted from the North American Pollinator Protection Campaign

TraitBeesButterflies
ColorWhite, yellow, blue, UVRed, purple
Nectar GuidesPresentPresent
OdorFresh, mild, pleasantFaint but fresh
NectarUsually presentAmple, deeply hidden
PollenLimited; often sticky or scentedLimited
Flower ShapeShallow; with landing platform, tubularNarrow tube with long spur; wide landing pad

What are nectar guides?

Nectar guides are visual cues, such as patterns or darker colors in the center of a flower, that lead pollinators to nectar or pollen. These cues are beneficial to plants and their pollinators because they can reduce flower handling time, which allows bees to visit more flowers and transfer more pollen in a shorter amount of time.

Northern Blue Flag Iris (Iris versicolor).

The petals (yellow arrow) and sepals (red arrow) both have dark purple nectar guides. The yellow portion of the sepals may also be a nectar guide!

Image courtesy of Mike LeValley and the Isabella Conservation District Environmental Education Program

While the iris’s nectar guides are visible to humans and their pollinators, this is not always the case. Some flowers have nectar guides only visible in ultra-violet light. The video below shows how different flowers look to us (visible light), and simulates what the flowers look like to butterflies (red, green blue, and UV) and to bees (green, blue, UV).

What about pinks and purples?

Red-flowering currant (Ribes sanguineum)

It’s not uncommon to see bees visiting flowers that are colors outside of their typical pollinator syndromes. In the spring in Oregon, we see bees visiting red-flowering currants, many pink and magenta rhododendrons, plum blossoms, and cherry blossoms. Lavender, catnip, and other mint-family plants too are common on pollinator planting lists, but tend to have purple flowers.

Pollinator syndromes can help us understand these anomalies. These flowers may appear differently in ultraviolet light or may have strong nectar guides that encourage bees to visit them, despite how they look to us. Alternatively, these flowers might have rich reserves of pollen and nectar that draw bee visits.

How else do we know if a flower is a good choice for bees?

Many people have developed plant lists based on personal observations, so there are many pollinator plant lists available to choose plants from. Many nurseries include pollinator attraction information with their planting guidelines too. While these are often based on anecdotal evidence, many researchers (including Aaron and I) are working to provide empirical evidence for plant selections.

To find native plants to attract bees and other pollinators, I recommend starting your plant selections by checking out your local NRCS Plant Materials program.

Many extension programs may also have regionally-appropriate plant selections! Here is the link to Oregon State’s list of native pollinator plants for home gardens in Western Oregon.

When you’re ready to buy some plants, make sure to check out this blogpost by Aaron.

Where to buy native plants in Oregon?

As an ecologist who studies garden systems, the increasing use of native plants in urban and suburban landscaping is exciting to me (see lab member Signe Danler’s great blog post on “ecological gardening”). Unfortunately, there are still many challenges associated with growing the adoption of native plants by home gardeners, with the largest barrier simply being the lack of availability of these species. I have noticed this barrier when giving talks to the public – many home gardeners are interested in gardening with high-ecological value native plants, but don’t know where to purchase them. These anecdotal observations are backed up by peer-reviewed literature, as several studies that have investigated the use of native plants in urban landscapes identified availability as one of the major barriers to adoption.

So, if you are a gardener in Oregon interested in gardening with native plants, where do you start? The good news is that native plants are available! Most big box stores (like Home Depot) have few to no native plants. One option is to go to a large, diverse nursery, like Portland Nursery or Garland Nursery in Corvallis. Besides perusing the selection of native plants they do stock, you can always ask them if they are able to stock a native plant you are interested in. These nurseries generally have contacts with a variety of growers, and demonstrating demand for native plants may lead to nurseries stocking more of these species on the shelf.

But what if you don’t have a specific native plant in mind, or what if you are new to the native plant world? Your best bet is to go to a specialty native plant nursery. Luckily, in Oregon there are a variety of native plant growers throughout the state. Below is a (non-comprehensive) list of some of the retail options. Keep in mind that some of these nurseries grow/stock a wide variety of species, while others specialize in plants of a certain region of the state or in a certain type of plant (think trees, or shrubs). I did not include nurseries that are primarily wholesale operations.

Portland Region:

Bosky Dell Natives

Echo Valley Natives

Livingscape Nursery

Sauvie Island Natives

Sparrowhawk Native Plants

Xera Plants

Columbia Gorge:

Humble Roots Farm and Nursery

Salem to Eugene

Willamette Gardens

Willamette Wildings

Doak Creek Native Plant Nursery

Southern Oregon:

Shooting Star Nursery

Althouse Nursery

Bunyard’s Barnyard Specialty Nursery

Eastern Oregon

Clearwater Native Plant Nursery

CTUIR Tribal Native Plant Nursery

WinterCreek Nursery


There are a few sources of native seed in the region. These can be easily ordered online!

Silver Falls Seed Company

Willamette Wildlings

You can find more information on the Oregon Flora Project’s website, where they have a tool that lists Oregon native plant nurseries, as well as a list of what each grower stocks.

http://www.oregonflora.org/gardening.php

Finally, another great source of native plants are native plant sales! Many Master Gardener chapters and many soil and water conservation districts put on native plant sales in the spring. Here are a few, but check with these organizations in your county and see if they have sales scheduled!

Benton Soil and Water Conservation District

East Multnomah Soil and Water Conservation District

Marion Soil and Water Conservation District

Yamhill Soil and Water Conservation District

Ethnobotany of Oregon Wildflowers

As many of you may know at this point, Aaron Anderson and Jen Hayes are conducting some amazing research regarding Oregon native plants and their pollinator attractiveness. If you haven’t had the chance to read about their research yet, check out Aaron’s here and Jens here. While those two are producing data to determine the ecological benefits derived from some of our wildflowers, I chose to go down a more selfish route and see what our native plants can do for me. . .forget the bees. Below I have compiled a list of ethnobotanical uses for 6 of the 23 Willamette Valley wildflowers included in Aarons research – California Poppy, Camas, Pearly Everlasting, Oregon Iris, Western Red Columbine, and Goldenrod (my favorite). 

Before you read any further, be aware that I am not an expert in wildcraft, ethnobotany, or herbalism. Never ingest the parts of any plant without being absolutely sure of its effects on the human body. Think of this more as a jumping-off point for your own research rather than any sort of guide or expert recommendation. 

California Poppy – Escholzia californica

Courtesy of Decker Seeds

The California Poppy – the ubiquitous orange herald of summer can do significantly more for you than just adding a pop of color to your yard or garden. E. californica can also be used as a medicine or candy! The flower itself is high in carotenoids and slightly sweet, the whole thing can be eaten raw as a candy-like treat. The ground roots and sap of the plant can be made into tinctures or infusions and be taken as a sedative, pain reliever, and muscle relaxer. California Poppy has been used by herbal practitioners as a “safe and gentle sedative for hyperactive children”. Maybe because they had too much poppy candy earlier in the day.

CamasCamassia leichtlinii:  

Courtesy of Euro Bulb
Courtesy of Honest Food

Camas is perhaps one of the best known plants on this list for its very popular edible bulb. The bulb is the most useful part of the plant and can be prepared in a few different ways. The two most popular are roasting and steaming. The roasted bulb gives off a flavor similar to a potato with a little hint of sweetness. Frying or mashing the bulb after the roasting are also common options to expand the flavor. Steaming camas bulbs is another popular practice which results in a food not unlike an onion. They are gelatinous and rich in complex carbohydrates, a fully browned camas bulb is just as delicious as any caramelized onion. 

Pearly EverlastingAnaphalis margaritacea

Courtesy of Southern Living

Pearly Everlasting, a sweet little flower that has always reminded me a bit of a brilliant white star with a bright yellow center. These little flowers could also be a star of your ethnobotanical handbook considering how useful they are! The slender green leaves can be eaten as a normal green once they have been cooked a bit, perhaps by way of steaming or sautéing. A. margaritacea also offers a whole pallet of dyes all from one plant, depending on the concentration of each, it can provide shades of yellow, green, and brown. Pearly Everlasting can be employed as treatment for a whole range of ailments. The whole plant is filled with metabolites which can act as an anodyne, antiseptic, and sedative. Internally, it can also be used to treat diarrhea, dysentery, and some pulmonary affiliations. Externally, a poultice of the whole plant can be used to alleviate pain from burns, sores, ulcers, and bruises. 

Oregon IrisIris tenax:

Courtesy of Katen Fahey
Courtesy of Mt. Pisgah Arboretum

Oregon Iris is well known and celebrated for its floral beauty, but its grass-like leaves are often overlooked despite their usefulness. The long and immensely durable leaves can be used to make ropes or baskets. The 19th century botanist David Douglas once described Iris tenax’s leaves as “. . .in point of strength it will hold the strongest bullock and is not thicker than the little finger”. Like any craft, basket-weaving requires practice and learning, however the unique texture and color of the leaves are bound to make the product stand out among the rest. 

Courtesy of East Tennessee Wildflowers

Western Red ColumbineAquilegia formosa

The number of uses associated with Aquilegia formosa practically matches the number of bright red petals surrounding its cascading stamens. In terms of edibility, Western Red Columbine boasts edible leaves when boiled and a sweet nectary treat from the flowers themselves, but you have to share with the hummingbirds. Medicinally, treatments can be found from the roots, seeds, and leaves. The mashed roots can be used to relieve aching pains, for diarrhea, to counteract dizziness, and stomachaches. The chewed leaves can be used to alleviate sore throats and calm and upset stomach. Finally, a paste made from mashed seeds can be applied to the scalp to kill lice! 

Goldenrod Solidago canadensis:

Courtesy of USDA Plant Guide

Although sometimes considered cumbersome due to its amazing ability to spread, Goldenrod is one of the Pacific Northwest’s most diversely useful plants. It offers medicinal properties from its internal metabolites, edible roots and seeds, and of course Goldenrod’s signature pigmentation can be harnessed for dying. Infusions made from the flowers can offer relief from a variety of ailments, fever, flu, diarrhea, and sore throats are just some. Roots are commonly eaten smoked and seeds can be eaten roasted or raw. Finally, the flowers can bring a beautiful golden hue to any natural fiber that needs dying, just with a simple soak in warm water.

Further reading – 

California Poppy: 

https://plants.usda.gov/plantguide/pdf/pg_esca2.pdf

https://ethnobotany.csusm.edu/search_details.php?plant_id=9

Camas:

http://naeb.brit.org/uses/species/699/ http://arcadianabe.blogspot.com/2012/06/how-to-cook-camas.html

https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/orpmcpg13213.pdf

https://honest-food.net/cooking-blue-camas/

Pearly Everlasting: 

https://practicalplants.org/wiki/Anaphalis_margaritacea

Oregon Iris: 

https://www.mountpisgaharboretum.com/habitats-and-ecology/plant-list-at-mount-pisgah-arboretum/iris-tenax/

http://naeb.brit.org/uses/18060/

Western Red Columbine: 

http://naeb.brit.org/uses/species/303/

https://www.sutrostewards.org/single-post/2017/07/25/Columbine-A-Flower-of-Meanings

Goldenrod: 

http://naeb.brit.org/uses/species/3734/

https://plants.usda.gov/plantguide/pdf/pg_soca6.pdf

Does Repeated, Lethal Sampling Contribute to Insect Declines?

Over the past few months, I have shared data on bees and other insects that we have collected from Portland-area gardens. For every garden insect we study (except for butterflies, which can be identified to species by sight), we use lethal collection methods. This is because most insects can only be identified to species after close examination under the microscope. In fact, some insects require dissection before we can get them to species.

Bombus sitkensis male, with abdomen dissected, in order to make a species-level identification.

It seems odd that we kill bees in order to help understand how we can build gardens that can help to conserve bees. By collecting and killing bees and other insects, what role were we playing in promoting insect decline? How do projects, such as our own as well as the Oregon Bee Atlas, factor into bee declines?

That’s an excellent question, and one that we often ask ourselves. When we collect bees, we work to make sure that we are not needlessly causing harm. For example, our pan traps are good for collecting small bees, but are not good at collecting larger bees, including reproductive queens. When we hand-collect bees, we avoid taking queen bees. In fact, of the 2,716 bees that we collected in 2017-2019, only three were queens. We limited our sampling frequency to three times per year, and limited our sampling effort to 10 minutes of hand-collecting time and six pan traps, per garden. Even with these precautions, we are still faced with the question: does our research, or the research of others who collect and kill insects, harm the very species we are trying to conserve?

Water pan traps, used to collect garden bees and other small, flying insects. Insects are attracted to the color. When they land in the soapy water, they break the surface tension, drown, and die.

To address this question, I turn to the scientific literature. Gezon and colleagues set up an experiment to see whether lethal sampling for bees using pan traps and netting (the same methods we use in our research) has negative effects on bee abundance or bee diversity. For five years, they sampled nine sites every two weeks during the flowering season. They compared bee abundance and bee diversity in these repeatedly-sampled sites, to metrics from 17 comparable sites that were only sampled once. They found no significant difference in bee capture rate, bee species richness, or bee abundance between sites that were sampled repeatedly versus those that were sampled once. When they partitioned bees according to nesting habit (e.g. cavity, soil, wood, etc.), social structure (e.g. eusocial or not), and body size (e.g. small, medium, and large bees) they also found no significant differences in bee capture rates of single-sample versus repeat-sampled sites. They did catch more pollen specialists in repeated-sample sites than in single sample sites. However, the magnitude of the effect was relatively small, and did not represent a large change in catch rate between single-sample versus repeat-sampled sites. I suspect that the authors caught more pollen specialists at their repeat-sampled sites, because pollen specialists are fairly rare in time and in space. They drastically increased their odds of intercepting a pollen specialist on their repeatedly-sampled sites.

Gezon and colleagues suggest a few hypotheses that could explain why increased sampling effort had no significant effect on bee abundance or diversity. First, they suggest that reducing bee populations by sampling could benefit the bees that remain, by reducing competition for limited resources. If this is the case, bee populations can compensate for some losses due to sampling, by increasing reproduction in the bees that remain behind. Second, they note that if bees were sampled after they have mated and laid eggs, the overall impact of removing a bee from via sampling will be fairly small. Finally, they note that most bees are solitary, and that most solitary bees have short flight seasons. In this case, sampling every two weeks may not result in bee declines, if researchers are effectively collecting a new species during each sampling event.

I can breathe a bit easier. The data suggests that our research is not immediately responsible for documented bee declines. Still, I know that I can personally do more to help protect bees in my own garden. Even though our lab group studies native plants, I have not yet planted Aster subspicatus (Douglas’ Aster) in my own garden. This will be my mission for 2020: to find and plant this gorgeous perennial at home. In 2018 and 2019, it bloomed from mid June through mid November at our study plots in Aurora, OR, with peak bloom (75% or more of the plant in bloom) lasting one month! And, from 2017-2019, it was always a top five plant for native bee abundance. I give this Pacific Northwest native plant my highest recommendation for home gardens! There are plants that attract more native bees, such as Phacelia heterophylla. But, no other plant that we studied offers the triple threat of beauty, bees, and longevity.

Douglas’ aster (Aster subspicatus) is currently my favorite garden plant for bees.

What Exactly is “Garden” Ecology?

In the Garden Ecology Lab, researchers are studying specific pieces of the garden ecology puzzle, including soil nutrient levels, pollinators, and native plants. But what exactly is “garden ecology”, and why is studying it important?

Let’s start by defining our terms. If you hear the word “garden”, some pretty specific pictures may come to mind, but it is really a very broad term, encompassing anything from pots on a patio to acres of arboretum. A garden is by definition a human-influenced system involving plants, but there are many human-influenced landscapes that are not considered gardens, such as agricultural fields (though gardens may grow food), golf courses (though a garden could include a putting green), tree farms (though many gardens have trees), and parks (though ornamental plants may grow in parks).

Urban vegetable garden

Brittanica defines a garden as a “Plot of ground where herbs, fruits, flowers, vegetables, or trees are cultivated.”  This suggests that the keys are variety and control. A garden is typically composed of a variety of different plants and types of spaces…not unlike a natural ecosystem! In addition, there is the element of control (cultivation). Human choice and aesthetic sensibilities strongly influence what plants grow in a garden. Even a very naturalistic garden has some human-imposed order in it, or it wouldn’t be a garden.

Naturalistic urban garden

Now we get to “ecology”. Ecology is a relatively new natural science, with beginnings in the early 1900’s, when scientists in Europe and the U.S. began to study plant communities. At first animal and plant communities were studied separately, but eventually American biologists began to emphasize the interrelatedness of both communities.1

The word Ecology (originally oekologie) comes from the Greek oikos, meaning “household,” “home,” or “place to live”, so ecology is the study of the relations and interactions between organisms and their environment – the place they live.  Brittanica further clarifies that “These interactions between individuals, between populations, and between organisms and their environment form ecological systems, or ecosystems.”

The study of ecology most often takes place in natural, or near-natural, areas, such as a forest, meadow or mountain. Ecologists study these wilderness environments, searching for guidance on how to restore degraded ones. This reinforces the common concept of nature as being “out there”, far away from where most people live.

Urban ecology studies parks, greenbelts, and forest preserves – the large, public green spaces of a city. But garden ecology? Can something as small as most gardens have an ecology at all? And why should we care?

Well, if you have a garden, and spend much time caring for it, then you are a part of the ecology of that place. Every person who manages a plot of land, however small, is part of the ecology of that land, and all of them together, along with the other people and parts of a city, form the ecology of that city. What is done on those small plots, what grows and lives (or doesn’t) on each one, multiplied by hundreds or thousands or hundreds of thousands of individual plots, has the potential to influence the ecosystem – and the health – of the entire city.

The deeply-entrenched American reverence for lawns means that, at present, the relatively barren landscape of manicured, often chemical-soaked turf is the dominant ecosystem in most cities. Ecologically speaking, such sites don’t contribute much to the local ecosystem.

But that is changing, as more people become aware that a diverse, densely-planted landscape can support a diverse cast of fauna and provide many ecosystem services, including carbon sequestration. This enriches the local ecosystem immeasurably. If this stewardship ethic can be multiplied by even a fraction of the yards in a city, we will begin to see that “garden ecology” is another name for OUR ecology. It is the interrelationship of we humans to the plants and animals, stones and streams, among which we make our homes. It is part of understanding that nature is not just far away, in pristine wilderness. Nature is right here, sipping nectar from your flowers, nesting in your trees, burrowing under your feet and buzzing past your nose.

1https://www.britannica.com/science/ecology