About Gail Langellotto

I'm a Professor in the Department of Horticulture at Oregon State University (OSU), where I lead the OSU Garden Ecology Lab.

The Ethics, Politics, and Science of Lethal Insect Sampling

A version of this blog post was written for the Hardy Plant Society of Oregon (HPSO) Quarterly Magazine, and was greatly improved by comments and feedback from the HPSO team of editors.


I had been to my mom’s hometown of Bagamanoc many times, but never before as a budding entomologist. In 1993, I packed my bags with the many tools used to collect and curate insects: glassine envelopes to store and sort butterflies, insect pins and boxes, a pinning block, and nets. Once on the ground in this rural region of the tropics, I set out to catch and kill new specimens for my personal insect collection. My prized find was a large birdwing butterfly, with black and red markings and wingspan of more than 6 inches: Atrophaneura semperi. I nearly vibrated with excitement as I caught her in my net. I carefully pulled her out and held her between my thumb and forefinger, so that I could pinch her thorax and break her flight muscles; a trick that was passed down to me by more experienced entomologists. This would ensure that she could no longer move, an activity that might scrape off scales or tear her wings. Pristine specimens are the standard for insect collections.

A large, red and black Philippine Batwing Butterfly. You can see a hand holding the butterfly's wings.
Philippine Batwing Butterfly. Photo from iNaturalist. © LARKSPUR ALFORQUE, some rights reserved (CC-BY-NC)

By the time I boarded a plane to return home, my prized find had been decimated. Ants had found her, and eaten her abdomen. I was crestfallen and ashamed that I had killed her. Since that time, I largely stopped collecting insects for my personal collection. I limit my collection to two taxa (longhorned beetles and metallic wood boring beetles), to keep from killing and pinning every insect that I see. But I have been involved in the lethal collection of many insect specimens for my work, and it is not without the occasional pangs of guilt.

A recent news story profiled Master Gardener volunteers who had collected 25,000 bees in Pennsylvania to further scientific understanding of wild bee abundance and diversity in the state.1 As the story was shared on social media, the comments and concerns related to lethal sampling accumulated: why was it necessary to kill the bees we are supposed to be helping?

In this article, I briefly examine the science, politics, and ethics of lethal sampling.

The Science

I know of only one study that has directly examined the impact of repeated, lethal sampling on insect communities.2 In this study, the authors sampled wild bees every two weeks throughout a season, or once per season. They found no effect of repeated sampling on any of the response variables they measured, including bee abundance, species richness, or community composition. They suggest that density-dependent competitive release may explain their results: decreased survivorship by some is compensated by increased fecundity from others. In essence, as you remove bees from the community, it reduces the intensity of competition and allows surviving bees to produce more offspring than they would have been able to if they had to compete with other bees for resources.

Lethal sampling has long been the rule in studies of insect biodiversity. In homage to the “lock and key hypothesis,” which suggests that genital morphology acts as a reproductive barrier that ultimately defines a species, identifying an insect to species may mean dissecting out genitalia for microscopic examination. In fact, there is a piece of equipment that some entomologists use, that is designed to inflate and harden insect genitalia, called a phalloblaster or vesica everter. This penis pump for insects cost $2,727 in 1997.

A shift away from lethal sampling has been happening for quite some time, particularly for butterflies and other large insects that can be identified by sight. On iNaturalist, many insects are identified to species by combining advances in machine learning and computer vision with crowd-sourced verifications from the iNaturalist community. The platform has led to the discovery and rediscovery of multiple insect species.3, 4

A few of the 2,691 specimens collected for a recent study of garden bee biodiversity. Photo credit: Gail Langellotto.

The Politics

Insects are generally exempt from regulatory oversight. But recent stories of insect declines and the emergence and growth of the insect farming industry has led at least one law school to teach a course on insect law. Institutional Animal Care and Use Committees (IACUC) govern the ethical care of animals used in research studies, but exempts invertebrates from oversight, except for cephalopods (octopus, squid and cuttlefish).

Few laws govern the collection of insect specimens. However, in the state of Washington, insects are classified as wildlife. Permits are required to collect insects for scientific study. This has complicated the launch of the Washington Bee Atlas, run by the Washington Department of Agriculture, which must secure permits from the Washington Department of Fish and Wildlife for every bee collected.

The Ethics

The cephalopod exemption to IACUC oversight is notable, and is based on the recognition that cephalopods are sentient, self-aware, and capable of feeling or fearing pain. Insects don’t have a brain, per se. Instead, they have three clusters of nerve fibers, which form the supraesophageal ganglion. This fact has sometimes been used to argue that insects can’t feel pain, but reviews of recent studies suggest that there is evidence that some insect adults may feel pain,5 and that some may feel emotional states such as stress.6

Another high-profile study found evidence that bumblebees play.7 Play is classified as an activity that does not result in an obvious reward or adaptive outcome, among other criteria. In this study, researchers documented bumblebees interacting with balls in ways that satisfy the criteria for play. The bees received no reward for this behavior. As in many other animals, younger bees played more often than older bees. If insects are sentient, the field of entomology would undergo a revolution of practice.

Conclusion

Insects are so diverse. Many have yet to be discovered and described, and many others look remarkably similar. The only way to identify most insects to species is to have a physical specimen in hand that you can manipulate and examine under a microscope. And it’s notable that a landmark study of insect declines over 27 years used non-selective Malaise traps to enable the capture and counting of what must be tens of thousands of insects.8 It is extremely difficult to study many questions of insect ecology without lethal sampling.

But scientists are increasingly using and improving nonlethal methods in entomology,9 including the use of DNA barcoding, catch and release, and camera traps. Because the study of insects has largely been exempt from regulatory oversight, most entomologists have yet to reflect on the moral considerations of catching and killing insects. However, as we learn more about insect cognition, the time may be coming to carefully weigh the costs and benefits of lethal collection methods and to invest in technologies that advance the use of non-lethal options.

Aa solar-powered camera trap, to study insect visits to an artificial flower platform. On a single pole is mounted (from top to bottom) a solar panel, camera in protective white housing, and yellow flower platform.
An example of a solar-powered and open sourced camera trap, to study insect visits to an artificial flower platform. Photo by Maximilian Sittinger. (CC-BY-SA-4.0).

1Stimpston, Ashley. 2024. Twenty master gardeners have collected 25,000 bees. Here’s why. The Washington Post (October 24, 2024).

2Gezon, Zachariah J. et al. 2015. The effect of repeated, lethal sampling on wild bee abundance and diversity. Methods in Ecology and Evolution, 6(9): 1044-1054.

3Tugwell, James, Masashi and Gaston, Kevin J. 2024. Sixteen insect species photographed for the first time by citizen scientist. ABC News, Australia (October 19, 2024).

4Mesaglio, Thomas. 2021. First known photographs of living specimens: the power of iNaturalist for recording rare tropical butterflies. Journal of Insect Conservation, 25: 905-911.

5Gibbons, M. et al. 2022. Can insects feel pain? A review of the neural and behavioral evidence. Advances in Insect Physiology, 63: 155-229.

6Lambert, H. et al. 2021. Wouldn’t hurt a fly? A review of insect cognition and sentience in relation to their use as food and feed. Applied Animal Behavior Science, 243: 105432.

7Galpayage Dona, Hiruni Samadi et al. 2022. Do bumblebees play? Animal Behavior, 194: 239-251.

8Hallman, Caspar A. et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS One, 12(10): e0185809.

9Lovei, Gabor L. and Ferrante, Marco. 2024. The use and prospects of nonlethal methods in entomology. Annual Review of Entomology, 69: 183-198.

Gardens as an Antidote to “Extinction of Experience”

This article was written for the Hardy Plant Society of Oregon Quarterly (HPSO) Magazine and was greatly improved by the efforts of the HPSO editorial team.


Robert Michael Pyle first used the term “extinction of experience” over 30 years ago in his memoir, which centers on the power of human-nature interactions. Extinction of experience refers to humankind’s increasing alienation from the natural world and the consequent impacts that include increasing disaffection towards the natural world. As Pyle so eloquently phrased it, “What is the extinction of a condor to a child who has never seen a wren?” 1

Children spend less time in nature than the previous generations and this gap has only widened over time.2 Our loss of connection with nature is due in part to lack of opportunity in an increasingly urbanized world. But lack of opportunity grows a loss of emotional affinity to the natural world, thus creating a positive feedback cycle that further distances younger and future generations from nature.3  I have spent quite a bit of time thinking about this concerning trend and how I have seen it manifested in myself, and in younger generations.

I grew up in the suburbs of Baltimore City, Maryland, where I relished opportunities to catch lightning bugs, pick mulberries, and crawl through the culverts of channelized streams. These experiences constitute some of my favorite childhood memories. Yet I remember being confused when I learned about deforestation in school, because I could see trees on every street. I had no frame of reference for how vast and diverse nature could be. It wasn’t until I took an undergraduate student position in an ecology lab that I started to understand how important the natural world was to humanity—and to my own existence. I worked in a peri-urban wildlife refuge, where I saw my first deer, hunted for spiders at night, and learned the names of an array of plants, birds, and invertebrates. I describe this time of my life, at the age of 21, as one where I felt like a scrim had been lifted from my eyes, and I saw the world in a whole new light.

My core experiences with nature occurred between 1976 and 1993. But today’s world is different from when I came of age. Decades before we were introduced to virtual reality and the metaverse, two celebrated nature writers warned that “children’s very ability to perceive the environment may be diminished by the replacement of multisensory experiences in richly textured landscapes . . . .4 Today, humanity lives in a world where the metaverse and social media platforms play an increasingly important role in social construction of reality, including how nature is experienced and perceived.5 In fact, as early as 13 years ago, 7-11 year olds, from both rural and urban settings, were found to be more apt to correctly identify and have positive feelings for virtual animals, compared to local animal species.6

More recent research has found that gardens can counteract extinction of experience. This is somewhat surprising, since gardens themselves are not natural areas; garden floras are diverse mixtures of both planted and volunteer plants and tend to be dominated by non-native and cultivated species.7 Nonetheless, gardens were ranked in the top five most frequented natural areas in a survey of 4,600 French adults.8 Gardens provide opportunities to notice and experience elements of the natural world in an accessible and relatively safe setting. And multiple studies (including those from the Oregon State University Garden Ecology Lab) have shown that, as people become more familiar with the plants, insects,9 and birds10 in a garden, they grow more positive feelings towards the natural world. This cycle of familiarity and increased emotional attachment to nature thus creates a positive feedback loop that disrupts and counteracts extinction of experience.10

There are two things you can do to create a positive feedback loop of familiarity and increased attachment to the natural world in a garden. First, you need to create a space that promotes biodiversity. If you have an affinity for neat and tidy gardens, challenge yourself to create at least one section of the garden that has a more natural look. If your garden is dominated by non-native and cultivated plants, look for opportunities to add a few native plant species. Don’t release beneficial insects into your garden. Instead, try to attract them with proper plant selection and by reducing or eliminating pesticide use. Second, practice noticing and identifying the volunteer plants, resident insects, and visiting birds in your garden.

If you are online, you may want to try using iNaturalist, which is a social media platform that uses artificial intelligence to help identify organisms. However, the artificial intelligence built into iNaturalist depends upon the community of naturalists that use the platform. The community aspect of iNaturalist allows nature lovers to connect with and learn from others. It is not unusual for a nationally or internationally renowned taxon expert to provide species-level determinations for bees, or beetles, or other syrphid flies on this platform. I use iNaturalist often and have expanded my own understanding of local biodiversity as a direct result of my engagement with the site.

Noticing and identifying nature in your garden are the very first steps to growing an appreciation for local biodiversity. Once you are able to identify a new garden organism, further challenge yourself to learn more about its basic biology and ecology. There are so many surprising ways that organisms make their way in this world, including cooperation and altruism to social parasitism and deception. Nature never ceases to amaze me.

This column is most likely to be read by gardeners, who already have a level of appreciation and affinity for plants and greenspaces. What about others, including those most fascinated with the digital and virtual worlds? With my students and my own kids, I try to connect elements from popular movies and video games with analogs in the natural world. The creature from the Predator movies has a face with insectoid-like mandibles that extend like a dragonfly naiad. The fictional Sarlacc pits from Return of the Jedi remind me of how antlion larvae hunt. And when you’re really struggling to catch the attention of someone seemingly bored with the natural world, you can always draw from British biologist Olivia Judson’s excellent and hilarious book,11 Dr. Tatiana’s Sex Advice to All Creation, which was first recommended to me by a Lane County gardener. For readers of this book, there will be no denying that the natural world is often stranger than fiction.

A few of the 213 garden species observed during a 2021 one-day BioBlitz of Oregon Gardens. There is a diversity of nature in every garden, particularly if you can pull back on pesticides and other design and management practices that exclude diverse species.

References

  • 1Pyle, Robert M., The Thunder Tree: Houghton Mifflin, 1993.
  • 2Clements, Rhonda, Contemporary Issues in Early Childhood, 5(1): 68-80, 2004.
  • 3Soga, Masashi and Gaston, Kevin J., Frontiers in Ecology and the Environment, 14(2): 94-101, 2016.
  • 4Nabhan, Gary P. and St Antoine, Sarah, Chapter 7. (pp 229-250) in, The biophilia hypothesis Island Press, 1993.
  • 5Rossmeier, Albert. Chapter 23 (pp 429-449) in, Landscape Conflicts: Springer, 2024.
  • 6Ballouard, Jean-Marie et al. Public Library of Science, 6(8): e23152, 2011.
  • 7Thompson, Ken, et al., Journal of Vegetation Science 14(1): 71-78, 2003.
  • 8Colléony, Agathe, et al., Landscape and Urban Planning 159: 23-31, 2017.
  • 9Anderson et al., HortTechnology 31(4): 458-469.
  • 10Garfinkel, Megan, et al. Biological Conservation 289: 110400, 2024.
  • 11Judson, Olivia. Dr. Tatiana’s sex advice to all creation: The definitive guide to the evolutionary biology of sex. Macmillan, 2003.

New Lab Member: Anna Perry

Anna Perry joined our lab group, to work on the Building-Integrated Agriculture project that is a collaborative effort between the University of Oregon School of Architecture, OSU College of Agriculture, and WSU Western Center for Metro Extension and Research. Specifically, Anna will be studying the agriculture array that is located outside of the windows on the 5th floor of the PAE Living Building. The arrays currently struggle to produce crops, in part because they go through cycles of drought and over-irrigation.

Urban agriculture arrays sit outside of the 5th floor of the PAE living building. The arrays were originally planted with nursery pots that had water trays beneath them. The nursery pots have been replaced by larger ‘containers within a container’. The building managers have stated that water should not drain out of the rectangular containers. Water draining outside of the containers results in building stains and issues with a first floor ATM.
The arrays were replanted in 2024, to provide more space for soil/growing media. We will be following how plants perform, and will be tracking the soil temperature and moisture throughout the growing season.

Hey everyone! My name is Anna Perry and I use she/her or they/them pronouns. I’m an undergraduate in my final year here at OSU, where I am pursuing double degrees in Soil Science and Sustainability, a minor in Horticulture, and a certificate in Urban Agriculture

Anna, in her Corvallis garden.

Aside from my academic pursuits I also have been involved with Ten Rivers Food Web for the past 3 years, a local organization focused on the development of a resilient and sustainable local food system. I’m passionate about food as an unalienable human right, and believe that everyone deserves access to fresh food, regardless of their socio-economic standing.

I grew up in Davis, CA, where I was fortunate to be raised by a mom who is a fervent gardener. I didn’t realize how lucky I was to have this background until I started volunteering at the OSU Organic Growers Club, where I found that most of my fellow students had never gardened before. As the “Berry Manager” for the club in 2022 I found a lot of joy in being part of my peers first exposures to caring for plants, and in eating the literal fruits of our labor.

Last summer I had the privilege of getting to visit Aotearoa/New Zealand for a short faculty-led study abroad. My experiences there prompted me to reevaluate my career and graduate school plans, and as a result I realized that my true interests were more interdisciplinary than I had previously realized. In my time in Aotearoa/New Zealand I became more aware of the effect culture has on land management and design decisions, and by proxy the effect culture can have on the ecological function of landscapes. This prompted a reinvigoration of a long dormant interest in landscape architecture, an area of study which I hope to one day pursue at the PhD level.

My research interests include sustainable urban horticulture/agriculture, building-integrated agriculture, urban soils, and gardens and landscapes as socio-ecological systems. Ultimately, I’m interested in how the land management and design decisions people make impact ecosystem function, especially when food production is involved.

In my (ever-shrinking!) free time I love making and sharing food with my friends and family, knitting, crocheting, gardening, and drinking my weight in tea.

I’m so excited to be the newest member of the Garden Ecology Lab, and for the opportunity to work with such a wonderful and supportive group!

Anna in Palm Springs.

Garden Ecology Lab, Spring 2024 Update

It has been a while since we last posted a lab update. Although we’ve been quiet on the blog, we have been busy! This post provides a brief update on some of our efforts, over the past several months.

We have a new website! The website serves as our running record of research projects, lab members, and resources for gardeners. Of particular note is the series of ten Garden Ecology Lab Briefs, that translate our research into a two-page document, that can be used by gardeners. Each brief is divided into three sections: 1) Our research, 2) What we found, and 3) How does this relate to your garden. We have briefs on the common bacteria you will find in garden soils, the flowers preferred by specialist bees, and which plants attract beneficial natural enemies to the garden. More briefs will be coming, soon! In addition to the Garden Ecology Lab briefs, we also have a short form infographic and a long form infographic that can help guide gardeners seeking to buy native plants. We hope that these are useful to you, and would love to hear your feedback on these resources and your suggestions for other resources you would like to see.

An example of a Garden Ecology Lab brief. These briefs were created to translate science to action in the garden.

Nicole Bell successfully defended her M.S. thesis, entitled ‘Urban garden bees: Global context and local perspectives’ in November of 2023. Her thesis consisted of a systematic review of the garden bee literature (which she published in the journal Frontiers in Sustainable Cities). The second part of her thesis consisted of an online iNaturalist guide and companion booklet (the Portland Bee Guide). Nicole recently started a pollinator outreach position with the University of Massachusetts, Amherst. Congratulations, Nicole!

The Portland Bee Guide represented one aspect of Nicole Bee’s M.S. thesis work.

Svea Bruslind graduated with an honors B.S., for her thesis entitled ‘Bee’s eye view: using multispectral photography to simulate bee’s view of flowers in natural settings‘. She graduated with a group art show (Confluences, at the Little Gallery at Oregon State University), and a solo art show (A Bee’s Eye View) at the Pine Meadows Ranch for Art and Agriculture.

Svea in front of her photographic array. She captured a garden over the course of a day, using filters that give viewers a glimpse of the colors a bee can see in a garden.

Nina Miller joined our lab group as an M.S. student with a passion for syrphid flies! Nina will be studying the syrphid fly communities of Portland- and Corvallis-area gardens. Specifically, she will document their biodiversity within garden spaces, and will be measuring their capacity for aphid management on kale, collards, mustard greens, and other brassicas. You can learn more about Nina’s study, from this recent blog post.

Anna Perry has joined the lab, to work on a Building-Integrated Agriculture project. Anna will be studying soil moisture and temperature fluctuations, in a 5-th floor urban agriculture array of 13 planter boxes that are part of the PAE Living Building, in Portland Oregon. The data will inform future plantings on this and other urban buildings.

There are 13 containers planted along the east and south windows of this building. Plants are challenged by hot temperatures in the summer, shade, and lack of consistent moisture.

Gail Langellotto worked with Nina Miller and an international group of designers and ecologists to produce a book chapter entitled ‘Supporting Galapagos Native Species via Ecological Landscape Design in Urban Greenspaces’. The chapter came out of the 2023 Association of Pacific Rim University Sustainable Cities and Landscape Conference, which was held in San Cristobal, Galapagos. This interdisciplinary conference coupled architects, designers, and ecologists, to work on urban issues. In the Galapagos, biodiversity drives tourism, but is also under threat from invasive plant species. We compiled a list of 130 native and endemic plant species, and created example landscape designs, to promote the use of native plantings in the urbanized areas of the islands.

Jen Hayes was quoted in this February 2024 Washington Post article about natives and nativars. Jen Hayes and Gail Langellotto were featured in this recent Pacific Horticulture, Voices of the West article. Jen is finishing up revisions to her manuscript reporting pollinator preferences for native plants and native cultivars. We’re excited to share the results with the scientific community, as well as with gardeners.


This is just a sampling of the our work over the last few months. Make sure to bookmark our new lab website, and to share the resources for gardeners with your gardening friends.

The Controversy Surrounding ‘No Mow May’

This article was written for the regular column that I submit to the Hardy Plant Society of Oregon (HPSO) Quarterly Magazine. I am grateful to the team at HPSO for their editorial skills and feedback, that always improve what I write.


No Mow May is an initiative that was started in 2019 by Plantlife, a non-profit that works to restore meadow habitats in the United Kingdom. Their annual campaign called on garden owners and greenspace managers to cease mowing in the month of May, in order to move lawn-dominated yards towards a more natural approach. The movement quickly spread to other regions of the globe, as an easy and feel-good measure that almost any land manager could take to promote biodiversity and protect pollinators. In the United States, Bee City USA adopted the No Mow May campaign, which they also refer to as Mow Less Spring, as a way to conserve native pollinators.

 A No Mow groundcover, being managed for increased flowers and pollinators. Photo by: Kenneth Allen (CC BY-SA 2.0). Source: https://www.geograph.ie/photo/6860492

There is some science to support the notion that less-intensely managed lawns benefits biodiversity. Our lab group even wrote about it in a blog post on No Mow May, including sharing a meta-analysis of 14 studies from North America and Europe showed that plant diversity and invertebrate diversity increased in lawns, as mowing intensity decreased [1]. However, several studies included in this review had mowing treatments that are not generally practical for most residential yards. Some studies compared lawns mowed once per week to lawns that were mowed once per year, for example. One of the few studies that compared mowing frequencies that approximate real world conditions was conducted in Springfield, Massachusetts [2]. In this study, Dr. Susannah Lermann and colleagues compared bee abundance and diversity from yards mowed every week, every two weeks, and every three weeks. Lawns mowed every three weeks had 2.5X more lawn flowers than other lawns. Interestingly, lawns mowed every two weeks had the highest bee abundance, but lowest bee species richness. The authors speculate that the higher grass height of the three-week mowed lawns covered lawn flowers, and made them less accessible to many bees. The higher lawn height also made the three-week mowed lawns less acceptable to nearby neighbors, leading the authors to suggest that a ‘two-week regime might reconcile homeowner ideas with pollinator habitat’.

Example of a lawn-dominated yard participating in the Lermann et al. 2018 study. Note the minimal landscaping and bare patches in the lawns, which were common throughout the sites. Also note the yard sign in the lawn explaining the objectives of the study. Photo Credit: Susannah Lermann, from Lermann et al. 2018.

That brings us back to No Mow May, and whether or not there is science to support the idea that not mowing for an entire month might benefit pollinators. In 2020 (soon after the start and spread of No Mow May) Del Toro and Ribbons published a paper that suggested that households that observed No Mow May had three times more bee species and five times higher bee abundance than spaces that were regularly mowed [3]. The results were highlighted in a New York Times story [4], and resulted in a change in the City of Appleton code that suspended an 8” lawn height restriction for the month of May, via a 6-3 split vote for and against the resolution [5].  Israel Del Toro, lead author of the study, was elected to Appleton’s Common Council, soon after leading the effort to adopt the resolution. By 2022, an additional 25 U.S. cities had followed suit [6], with their own declarations in support of No Mow May.

As the No Mow May movement grew, so did controversy surrounding the Del Toro and Ribbons study. Bee taxonomist Zach Portman noted serious issues with the bees identified in the study. Horticulture Professor Bert Cregg noted that the study was confounded, by comparing home lawns that were not mowed to park spaces that were mowed. With this experimental design, it is impossible for the authors to disentangle the effects of mowing (e.g. mowed or not mowed) from the effects of habitat type (e.g. home lawn versus park). In November of 2022, the authors retracted their study ‘after finding several potential inconsistencies in data handling and reporting’. After the retraction, the City of Appleton considered a resolution to eliminate No Mow May, claiming that the program lacks scientific backing. However, this resolution did not pass [7].

What is a science-informed gardener to do, amidst confusing and sometimes conflicting messaging related to pollinator conservation in a yard? First, note that science self-corrects, when the system works well. Retractions are part of that corrective process. Second, remember that bees can be found in lawn areas, particularly if lawns are less managed. The Lermann study demonstrated that lawns can host a surprising richness of bee species: 72, 60, and 62 bee species, in lawns mowed every week, two weeks, or three weeks, respectively. Note that to be part of this study, homeowners had to agree to not use herbicides or irrigation, during the length of the study. As a result of reduced management, lawns in this study often had bare patches that might be good nesting habitat for soil-nesting bees. Relaxing your mowing regime to every 1-2 weeks is supported by good science. Stowing your mower for an entire month is not. Finally, if you want to manage your yard for pollinators, planning and planting a pollinator garden is likely to net more species than stowing your mower. Indeed, many critics of the No Mow May movement, including native plant advocate Doug Tallamy, suggest that providing a temporary safe haven, regardless of its length of time, is counterproductive for pollinators and other wildlife it was meant to benefit. We currently have a paper in review, addressing this very topic. I look forward to sharing the highlights with readers, once it is published.

A Willamette Valley lawn with grasses setting seed, after weeks of no mowing. Photo Credit: Gail Langellotto.

[1] Journal of Applied Ecology 57: 436-446

[2] Biological Conservation 221: 160-174

[3] PeerJ 8:e10021

[4] New York Times, March 28, 2022.

[5] Appleton Common Council resolution and vote, April 1, 2020.

[6] NBC 26 Local News, April 22, 2022.

[7] Post Crescent, April 10, 2023.

Research Study Seeking Gardeners in Lane or Linn Counties

This note comes from our collaborator at the University of Oregon, Dr. Gwynne Mhuireach. Dr. Mhuireach previously worked with our lab and local gardeners to document soil microbial communities, and the extent to which the act of gardening transfers soil microbes to gardeners’ skin ~ thus affecting the skin microbiome!

At the conclusion of the skin microbiome study, many gardeners asked for more information on how gardening affects the gut microbiome. Dr. Mhuireach received USDA funding to conduct a pilot study, to address this question. Gardeners in Linn and Lane Counties are specifically invited to apply.

The deadline to apply to participate in this NEW study is August 15th.


We are seeking healthy adult gardeners to engage in a research study exploring microbiota of fresh fruits and vegetables from gardens and supermarkets, and their potential to influence the gut microbiome. To be eligible, you must be between the ages of 18–45, be fluent in English, live in Lane or Linn County, and have access to a garden that can provide enough fruits and vegetables for the diet intervention. Participants will receive $50 at the beginning of the study, $50 upon completion, and a $75 allowance to purchase supermarket fruits and vegetables.

Study activities: If you participate, you will be asked to undergo two week-long diet intervention periods during which you will eat the USDA-recommended amount of fruits and vegetables. In one period all of the produce should be sourced from your garden and in the other the same produce should be sourced from a supermarket. You will be also asked to pre-plan your meals for the intervention periods, complete a Lifestyle, Health, & Diet Questionnaire, maintain a Daily Fruit & Vegetable Log, collect samples of all the fruits and vegetables you eat, collect stool (fecal) samples, and collect a tapwater sample. The total duration of participation is 24 days, with an expected average time commitment of 20–30 minutes per day.

Potential risks: Participants will be exposed to microorganisms from garden and supermarket produce, however, this exposure occurs during normal daily life. There is also a risk that privacy or confidentiality could be breached, though precautions will be taken to avoid such breaches.

Benefits: There are no direct benefits to participating in this study.

To see if you are eligible, please use this Qualtrics link (https://oregon.qualtrics.com/jfe/form/SV_9Gn0UOtZEbzWEh8) to take a brief screening survey. More information is available at www.gffstudy.com.

A place setting, on top of soil. In place of a plate is a shovel head full of vegetables.
Organic farm to table healthy eating concept on soil background.

We’re Looking for Ecolawns!

A group of five people are looking at a series of ecolawn study plots, while a female scientist is talking about ecolawns.
Ecolawn research plots at OSU’s Lewis Brown Turfgrass Research Farm in 2019.
Photo: Brooke Edmunds, Oregon State University

What is an ecolawn?

An ecological lawn, or ecolawn, is a reduced input alternative to a conventional mowed grass lawn. While numerous possibilities for an ecolawn exist, they all include multiple low-growing herbaceous plants that work well together and require less mowing, fertilizer and irrigation. In addition to reducing maintenance and resource utilization, they also provide important habitat for pollinators like bees and butterflies.

Help us find examples!

We are looking for examples of beautiful ecolawns throughout western Oregon. A few requirements:

  • Includes 3 or more different herbaceous broadleaf plants; additional grasses optional
  • Mutually compatible and ecologically stable when grown together
  • Installed for 2+ years (Spring 2021 or earlier)
  • All or most plants less than 1 foot in height
  • Looks good all year (and most of your neighbors would agree that it looks good 😊)
  • Needs little to no water to stay green through dry summer months
  • Little mowing (once per month to once per year)
  • Little or no fertilizer and no pesticides following installation

We want to find, understand and share your (or your neighbor’s) ecolawn. Ecolawns are part of a more sustainable future for Oregon. If you have a good example, please email 2-3 photos and contact information to Dr. Phil Allen, Visiting Professor in Horticulture at Oregon State University: allephil@oregonstate.edu

Biodiverse Gardens Can Improve Bee Nutrition and Reduce Bee Disease

This article was originally written by Gail Langellotto for publication in the Hardy Plant Society of Oregon Quarterly Magazine, available to HPSO members.


You are what you eat. This phrase can be traced back to an 1826 essay by Anthelme Brillat-Savarin, who wrote ‘Tell me what you eat and I will tell you what you are.’ Diet and health are inextricably linked for almost all animals, including bees.

Bees foraging from flowering plants obtain carbohydrates from nectar. Pollen provides protein, fats, and vitamins. While the quantity of food is provided by the abundance of floral plantings, the quality of food is determined by the diversity of floral plantings. This is because different flowering plants offer different nutrients to bees’ diets. And, different bees have different nutritional requirements that vary among species, or that vary across life stages of a single species. For example, mason bee larvae (Osmia bicornis) larvae performed best on carbohydrate rich diets. Fluctuations in protein made little different to bee health, but carbohydrate deficiencies slowed mason bee larval growth and reduced survival[i]. Bumblebees (Bombus terrestris) foragers select foods that provide a target mix of 71% proteins, 6% carbohydrates, and 23% lipids[ii].

A graph with nutrient 1 on the x axis and nutrient 2 on the y axis. Five ellipses are drawn in two dimensional space, to illustrate the hypothetical nutritional niches of five bee species.
Hypothetical optimal (horizontal lines within each ellipse) and the tolerated nutritional niche (lighter color of each ellipse) of five bee species (Sp1, Sp2, etc.). Strong deviations from the optimal nutritional niche will likely lead to negative impacts on bee health, over time. From Parreño et al. 2022, https://www.sciencedirect.com/science/article/pii/S0169534721003335#f0010

Diverse floral plantings also help to reduce bee disease. Flowers have been shown to be hotspots for bee disease transmission. If you think of a flower as an elementary school drinking fountain, it makes sense that a sequence of bees could be exposed to disease carried by previous floral visitors. Following a visit by parasite-infected bumblebees, some flowering plants (such as milkweed or bee balm) harbored more bee pathogens than others (e.g. thyme or snapdragons) [iii]. And here’s a fun fact you have likely never come across before: bees preferentially poop on seaside daisy compared to a variety of other flowering plants in the Malvaceae, Verbenaceae, or composites with less floral area in disk flowers[iv]. Planting diverse flower types diffuses interactions between healthy and diseased bees. Not all floral morphologies effectively hold and transfer disease. And, planting diverse plant types provides more foraging options for bees, which can limit opportunities for healthy and diseased bees to come into contact.

While some flowers may be hotspots for bee disease transmission, others provide anti-microbial compounds that help some bee to naturally fight disease. The common eastern bumblebee (Bombus impatiens), but not the brown-belted bumblebee (Bombus griseocollis) was able to fend off parasite infection after consuming sunflower (Helianthus annuus) pollen[v].

Research on the nutritional ecology of wild bees is relatively young. And, from what we’ve learned thus far, different bee species have different nutirtional needs. It’s thus impossible to provide a specific garden plant recipe that can promote optimal bee health. Nonetheless, a few key points are clear. Monocultural cropping systems are harmful to bee nutrition. Just as you or I could not achieve optimal health by limiting our diet to one food item, neither can bees. And, this nutritional harm that monocultural cropping systems presents to bees doesn’t even consider the increased pesticide applications that single-cropped systems generally require. Gardens, on the other hand, are better poised to meet the nutritional requirements of bees, by virtue of the diverse flowering plant community that is typical of most gardens.

Thus, in case you need a reason to go out and discover new flowering plants for bees and other beneficial insects in your garden, bee nutrition is yet one more reason to build biodiverse plantings into your garden design.

An image of garden flowers, with lawn in the foreground.
Gardens with diverse and abundant flowers provide healthy nutritional landscapes for bees. Photo by Gail Langellotto
An image of a young woman, collecting bees from flowering plants in a container garden.
Container gardens can be used to provision diverse floral resources for bees, when space or soil is limited. Photo by Gail Langellotto

[i] Austin and Gilbert. 2021. Solitary bee larvae prioritize carbohydrate over protein in parentally provided pollen. Functional Ecology 35: 1069-1080. https://doi.org/10.1111/1365-2435.13746

[ii] Kraus et al. 2019. Bumblebees adjust protein and lipid collection rules to the presence of brood Current Zoology 65: 437-446. https://doi.org/10.1093/cz/zoz026

[iii] Adler et al. 2018. Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99: 2535-2545. https://doi.org/10.1002/ecy.2503

[iv] Bodden et al. 2019. Floral traits predict frequency of defecation on flowers by foraging bumble bees. Journal of Insect Science 19: 1-3. https://doi.org/10.1093/jisesa/iez091

[v] Malfi et al. 2023. Sunflower plantings reduce a common gut pathogen and increase queen production in common eastern bumblebee colonies. Proceedings of the Royal Society B 290: 20230055. https://doi.org/10.1098/rspb.2023.0055

Celebrating Garden Ecology Lab Group Accomplishments!

These past few months have been filled with great news, for so many members of the Garden Ecology Lab team. In this post, I wanted to take a moment to celebrate their great work and accomplishments.

Aaron Anderson successfully defended his dissertation in February 2022, entitled Evaluating the Attractiveness of Pacific Northwest Native Plants to Insects and Gardeners, and graduated with his Ph.D. in horticulture. In September 2022, Aaron also published two chapters of his dissertation. This first is an Extension publication, geared towards gardeners: ‘Native Plant Picks for Bees‘. The second is the scientific paper that formed the basis of the Extension publication: ‘The Bee Fauna Associated with Pacific Northwest (USA) Native Plants for Gardens‘. Aaron is now working with the Xerces Society, as Pesticide Program Specialist.

Aaron at the spring 2022 OSU graduation ceremonies, awaiting official conferment of his Ph.D. degree!

Jen Hayes successfully advanced to Ph.D. candidacy in June 2022, by passing her comprehensive exam. The comprehensive exam (also known as ‘comps’) is perhaps the most difficult part of the Ph.D. journey. In Jen’s case, it involved a 3-hour long oral exam with her graduate committee (Drs. Lauren Gwin, Jim Rivers, Andony Melathopolous, Ryan Contreras, and Gail Langellotto), who took turns asking a series of questions on topics ranging from wild bee biology, native plant ecology, and ornamental plant breeding. Jen also prepared and defended a review paper focused on the process and impacts of breeding native plants to produce native cultivars. Jen also recently completed the prestigious ‘Bee Course’ offered by the American Museum of Natural History, at the Southwestern Research Station in Portal, AZ.

Jen Hayes advanced to Ph.D. candidacy in June 2022, and participated in the AMNH Bee Course in August 2022.

Signe Danler was promoted to Senior Instructor I, after thorough review of her accomplishments by the Department of Horticulture and the College of Agricultural Sciences. Signe manages the Certificate of Home Horticulture online course series, and also develops and provides online short courses to support Master Gardener training efforts across the state. Over the course of her career at OSU, she has created three new online classes (Sustainable Landscape Management, Sustainable Landscape Design, and Gardening with Native Plants), and has updated and revised an additional nine classes. Her efforts have grown revenue, so that her position is now fully funded, and also contributes to the operating expenses of the Garden Ecology Lab.

Signe Danler was promoted to Senior Instructor I at OSU, in June 2022.

Mallory Mead received two prestigious scholarships! First, she received the Garden Club of America’s Mary T. Carothers Summer Environmental Studies Scholarship, to support her work on the Clarkia Project. Mallory also won a Scholar’s Award from the American Society for Horticultural Science, in recognition of her scholastic achievement.

Mallory Mead, in a field of wild Clarkia species, the focal organism of her undergraduate research thesis.

LeAnn Locher led teams of Extension professionals that received two awards from the Association for Communication Excellence. LeAnn and team earned a Silver in the category of ‘Social Media Campaign (Organic)’, for a series of social media posts (and supporting peer-reviewed web materials) focused on supporting gardeners through extreme heat events. One web post was focused on identifying and preventing heat stress in plants. Another was focused on helping bees during a heat wave. A third post focused on helping hydrangeas through the heat wave. LeAnn and team also earned a Bronze in the category of ‘Social Media (Single Item)’ for a social media post (and supporting peer-reviewed web article) focused on stopping the spread of jumping worms during plant sales and trades. LeAnn conceived of the campaign, and designed the visuals and outreach strategy. She worked closely with other team members to quickly develop peer-reviewed web articles that could support the social media posts. LeAnn’s excellence in communications and outreach was also recognized via her receipt of the 2021 Oscar Hagg Extension Communication Award.

LeAnn Locher received the 2021 Oscar Hagg Extension Communications Award, and two 2022 awards from the Association for Communication Excellence.

Svea Bruslind received a 2022 Art-Sci Student Fellowship to support her ‘Bee’s Eye View’ project. This fellowship will allow Svea to display her work in her first-ever art exhibition! Gail is serving as Svea’s scientific mentor for this fellowship. We are beyond honored that Jasna Guy is serving as Svea’s artistic mentor!


Tyler Spofford graduated from our lab group in 2021, and was soon thereafter hired as the new SNAP-Ed Gardening Program Coordinator, working with our colleagues in the College of Public Health. In this role, Tyler will continue to build out the gardening resources in Food Hero, and will also help administer and manage the Seed to Supper program at OSU. You might remember that Tyler completed his undergraduate thesis research on containerized gardening in the Garden Ecology Lab.


Help me congratulate this amazing team of scientists, educators, communicators! I am lucky to work with such a great team.

Tyler’s Research on Containerized Vegetable Gardens

Today, Tyler successfully defended his undergraduate research thesis, entitled ‘Invest in Vegetables: A Cost and Benefit Analysis of Container Grown Roma Tomatoes (Solanum lycopersicum cv. ‘Roma’) and Italian Basil (Ocimum basilicum cv. ‘Italian’)‘.

A student in jeans and a long sleeved shirt, wearing a mask, stands in the middle of his containerized tomato garden research plot.
Tyler Spofford, in the middle of his containerized garden research plot, in the summer of 2020.

His research was inspired by the rush to vegetable gardening, that many households made during the start of the COVID-19 pandemic. Research has shown that there are many benefits to vegetable gardening, including social, emotional, physical, and financial. However, those in rental housing, or otherwise without easy access to land, were largely locked out of accessing these benefits.

Although previous research has shown that in-ground and raised bed vegetable gardening can yield positive economic benefits, to date, no studies (that we know of) have quantified the financial costs and benefits of growing vegetables in containers. Tyler thus set up a system of 5-gallon and 3-gallon bucket gardens, planted with Roma tomatoes, or Roma tomatoes plus Italian basil. He kept careful track of the cost of materials, and the time he spent gardening. He also kept careful track of the harvest he pulled off of each container.

Over the course of his study, he successfully learned about and fought back Septoria leaf spot, and blossom end rot. We learned that Roma tomatoes, in particular, are susceptible to blossom end rot. On top of these horticultural plant problems, Tyler’s research was abruptly halted by the late summer wildfires of 2020, that made air quality unsafe for him and others to continue their work, outdoors.

Despite these challenges, he was able to glean enough data from his project, to share some interesting findings:

  • None of the containers netted a positive economic benefit, in the first year of gardening, largely because the cost of materials outweighed the financial benefits of the harvest.
  • If the project were continued into year two, he projects that he would have had a positive financial outcome for the tomatoes grown with basil, in the 5-gallon containers.
  • Across the course of the season, he only spent 30 minutes tending to each container. Because he had few garden maintenance tasks, the time invested in container gardens was minimal. This is an important finding, for folks who may shy away from gardening because of lack of time.
  • As expected, the 5-gallon containers yielded more than the 3-gallon tomatoes. The 3-gallon containers stunted plant growth too much, to recommend them as a viable container gardening system. [As a side note, we were given the 3-gallon containers, for free, which is why we included them in the study.]
  • The fair market value of Roma tomatoes was fairly low (~$1.00 per pound). Thus, the net economic benefit of growing Roma tomatoes was also low. Basil, on the other hand, was a high value specialty crop that helped to raise the overall economic value of crops harvested from the buckets.

If you are interested in seeing Tyler’s thesis defense presentation (~30 minutes), you can do so, at the link below.

https://media.oregonstate.edu/id/1_8v2t4zd4?width=400&height=285&playerId=22119142

Tyler will be graduating in a few days, with a degree in BioResource Research from OSU! He’s worked in our lab group for two years, and has been an absolute joy to learn and work with. We wish him the very best on the next adventures that await him.