Peak Technosphere Mass and Global Sustainability

David P. Turner / June 21, 2022

The technosphere is a component of the contemporary Earth system.  Like the biosphere  ̶  also an Earth system component  ̶  the technosphere has a mass, requires a steady input of materials, and utilizes a throughput of energy.

Technosphere mass is composed of all human-made objects, including the mass of buildings, transportation networks, and communication infrastructure.  That mass has built up over centuries, and is still accumulating at the rate of 3-5% per year.

The material inputs to the technosphere (besides fossil fuels) include food, water, wood, and minerals.  These inputs are derived from the geosphere, hydrosphere, and biosphere  ̶  often with destructive consequences.  Upward trends in consumption of these inputs are associated with an upward trend in global Gross Domestic Product of about 3% per year.

The energy that drives technosphere metabolism comes mostly from fossil fuels (80%).  Global fossil fuel consumption was increasing at a rate of about 5% per year (2009 2019) until the recent dip associated with the Covid-19 pandemic.

The growing impact of the technosphere on the Earth system has been widely documented by the scientific community (IPCC, IPBES) and scenarios for a sustainable high technology global civilization require that technosphere mass, inputs, and use of fossil fuels peak as soon as possible.  If the peaks are left to occur spontaneously, the outcome may well be a collapse of civilization driven by the stress of global environmental change, rather than a soft landing at a state of global sustainability.

Peak Technosphere Mass

Earth system scientists have estimated both current technosphere mass (in use) and the current biosphere mass (i.e. including all microbes and multicellular organisms).  Coincidentally, those numbers are of approximately the same magnitude (about 1018 g).  However, technosphere mass is increasing substantially each year, while the multi-century trend in biosphere mass and diversity is towards a diminished and depauperate state.  The technosphere is essentially now growing at the expense of the biosphere

There are a few cases at the national scale where peak technosphere mass has been reached, albeit not specifically by design.  In Japan, the number of automobiles is close to its peak and the length of pipelines and high-speed rail are not increasing.  Ninety-two percent of the population is urban.  Total energy use is declining.  These trends can be traced to a high level of development and a declining population. 

A low birth rate and a low level of immigration account for the decreasing population.  As a case study, Japan points to the role of population size in stabilization of technosphere mass.  Per capita technosphere mass is relatively high, but is not rising because the country is already highly developed.  Hence, technosphere mass at the national scale has likely peaked.  By 2050, population is projected to decline about 25% from its peak, which may allow for a decrease in national technosphere mass.

China is an interesting case at the other extreme of technosphere mass dynamics, with vast on-going growth of its technosphere mass.  Despite a low birth rate, China’s population is still growing (slowly).  More importantly, per capita wealth is increasing.  Consequently, the number of people owning modern housing and an automobile is rising rapidly.  The government is also making huge investments in infrastructure – notably in power plants and high-speed rail.

Humans do sometimes place limits on technosphere mass expansion  ̶  as in the urban growth boundaries around cites in the state of Oregon (USA), and in areas of land and ocean that are in a protected status (e.g. wilderness areas in the U.S.).  Idealized prescriptions for future land use include 30 X 30 and 50 X 50.  These values refer to 30 percent of Earth’s surface dedicated to biosphere conservation by 2030, and 50% by 2050.  Seventeen percent of land and ten percent of ocean are in a protected status at present.

These conservation goals are consistent with the strong global trend towards urbanization.  Over half of humanity now lives in an urban setting, a proportion that is projected to rise to 66% by 2050.  The key benefits of urbanization with respect to technosphere mass are that 1) it potentially frees up rural land for inclusion in biosphere protection zones, 2) the per capita technosphere mass of urban dwellers is less than that of equally wealthy rural dwellers (e.g. living in multiple unit buildings as opposed to living in dispersed separate building, and using public transportation rather than everyone owning an automobile), and 3) birth rates decline as people urbanize, which speeds the global demographic transition.

Peak technosphere mass will occur sometime after peak global population.  That assumes global per capita technosphere mass will also peak eventually, which brings up the fraught issue of wealth inequality.  Individual wealth is equivalent in some ways to individual technosphere mass (e.g. owning a yacht vs. owing a row boat).  Given that there are biophysical limits to human demands on the Earth system, the nearly 8 billion people on the planet cannot all live like billionaires.  From a humanist perspective, a wealth distribution that brings standards of living for everyone up to a modest level is desirable.  That worthy principle is the guiding light for significant philanthropic efforts and should figure into policies related to taxation of income and wealth.  Whether to explicitly attempt to reduce the ecological footprint of the wealthy is a related, and highly contested, question.

An estimate of technosphere mass that includes landfills, and other cases of human-made objects not in use, is much larger that the 1018g estimate of technosphere mass in use.  Indeed, geoscientists looking for a depositional signal for the Anthropocene are considering discarded plastic as a marker.  It will take a concerted effort to decrease material flows into landfills before we will see a peak in unused technosphere mass.

Peak Technosphere Input of Material Resources

Humans already appropriate around 25% of terrestrial net primary production, and divert 54% of available fresh water flows.  Mining geosphere minerals for input to the technosphere covers approximately 57,000 km2 globally.

The concept of the Great Acceleration captures the problem of exponentially rising technosphere demands on the Earth system.  It refers to the period since 1950 during which many metrics of human impact on the global environment have risen sharply (Figure 1).  Obviously, those trends cannot continue.  Humanity must bend those usage curves and redesign the technosphere to maintain itself sustainably. 

Figure 1. The Great Acceleration refers to the period after 1950 when impacts of the technosphere on the global environment grew rapidly.  Image Credit: Adapted from Welcome to the Anthropocene.

Some metrics, like wild fish consumption, have already peaked but that is because the resource itself has been degraded.  Future increases in fish consumption will have to come from cultured sources.

Many rivers around the world are already fully utilized (and then some), e.g. the Colorado River Basin in Southwestern United States.  Policies like tearing out lawns in Las Vegas to save water portend the future.

Global wood consumption increases several percent per year and is projected to continue doing so for decades.  Much of current industrial roundwood production is from natural forests, sometimes in association with deforestation.  Forest sector models suggest that high yield plantations in the tropical zone could supply most of the projected global demand for industrial wood, thus reducing pressure on natural forests.

Resource use efficiency can be increased by extending product lifetimes (e.g. automobiles), boosting rates of recycling (e.g. paper), and improvement in design (e.g. more efficient solar panels).  Again, these changes must be made along with the stabilization of population if we are to end continuing growth of technosphere demand for natural resources.

Peak Technosphere Consumption of Fossil Fuels

An abrupt decline in carbon emissions from fossil fuel combustion in 2020 was induced by the COVID-19 pandemic, hinting at the possibility that 2019 was inadvertently the year of peak fossil fuel emissions

In 2021, fossil fuel emissions roared back to about the level of 2019.  Emissions in 2022 will likely be impacted significantly by the war in Ukraine, possibly reducing global emissions since moves to avoid purchasing Russian gas, oil, and coal are driving up prices for fossil fuels.  Certainly, there is increased political support in the EU and elsewhere for rapid transition from fossil fuels to renewable energy sources.  Technological constraints will slow the pace of that conversion, and emissions will continue to increase in many countries outside the EU (especially China and India).  Thus, the actual peak year for global fossil fuel emissions is uncertain.

The faster that fossil fuel-based energy is replaced by renewable energy sources, the better chance of avoiding a climate change catastrophe.  Multiple policy rationales, beside reducing carbon dioxide emissions, support the goal of a global renewable energy revolution.

Note that total energy consumption need not decline within the context of global sustainability if the energy sources are renewable.  Projected peak global energy use – with accounting for increasing efficiency, population growth, and the curing cases of energy poverty – is on the order of current global energy use.

Conclusion

The sprawling mass of the technosphere, its demands on natural resources, and its flood of chemicals and solid waste into the global environment, have begun to diminish the biosphere and threaten human welfare on a massive scale.  Humanity must begin to work as a collective to redesign technosphere metabolism such that it conforms to the biophysical limits of the Earth system.

Capitalism and the Global Environment

David P. Turner / January 15, 2021

Humanity is beset by global scale problems, notably climate change, pandemics, and geopolitical struggles.

Clearly, global scale solutions and – broadly stated – more global solidarity are needed.

The most obvious factor currently binding together nearly all humans and nations on the planet is the global economy.  That economy is rooted in capitalism, albeit in various forms (e.g., free market capitalism, crony capitalism, state capitalism, and monopoly capitalism).  Thus, capitalism is a logical place to look for both the source of our global scale problems and perhaps even, in its reform, solutions to those same problems.

The ubiquity of capitalism is not in doubt.  Its characteristic feature is a market that allows for competitive exchange of goods and services.  Legal support for accumulation of capital and its investment in profit making enterprises is foundational.  In recent decades, capitalism has taken on a global character, featuring globalization of the labor market and capital flows.

The upsides of national level and globalized capitalism include efficiency in the distribution of goods and services, economic growth to support rising standards of living, and the availability of capital for investment in productive enterprises.

Important downsides include growing inequality of wealth and income, both within and between nations, growing instability of the global financial system, and growing environmental degradation at all scales.

This blog post is primarily concerned with the relationship of capitalism to the global environment.

The impact of capitalism on the global environment traces back to its fundamentals.  A capitalist organizes labor to manipulate natural resources and create products, which can then be sold in a competitive market.  Income from product sales pays for the costs of production, for personal or corporate profit, and possibly for expansion of production.

Key problems with respect to the environment lie in the propensity for expansion and the pressure to minimize costs.

Because of the competitive nature of capitalism, producers are compelled to expand.  More profits mean more capital to invest in beating competitors.  Expansion tends to allow economies of scale that help minimize costs, hence increase competitiveness.  However, production cannot expand indefinitely on a finite planet.  Graphic examples include unsustainable use of ground water for irrigated agriculture, and unchecked conversion of rain forests to soybean fields. 

Minimizing costs often means externalizing environmental costs.  Greenhouse gases such as carbon dioxide are freely emitted as a byproduct of the fossil fuel combustion that powers much of the modern economy.  The emitter does not pay the cost of climate change impacts.  Economic globalization makes the externalization of environmental costs easier by shifting production to countries with relatively weak regulation of pollution.

It is time for a global scale reckoning of capitalism, in all its forms, with the fact that nearly eight billion people and a biosphere need to co-exist on what has become a crowded, rapidly warming, planet.  Capitalism clearly causes environmental problems that it cannot solve.

Despite the fact that global climate change “changes everything”, capitalism is not going to go away.  A primary mechanism by which to modify capitalism is policy changes at the level of the nation-state.  Historically, the relationship of western capitalism to the state has undergone several major transformations and the time is now for the next reset.

A very brief history of that relationship runs as follows.

The Capitalist State arose in the 19th century in association with the Industrial Revolution.  This type of state strongly supported rapid expansion of capitalist enterprises but displayed limited concern for workers or the environment.

Reaction to inequality in wealth and overexploitation of workers led eventually to the Welfare State in which government expanded and supported provision of decent wages, health care, and old age income (e.g., the New Deal in the U.S.).  By the 1960s, the issue of environmental quality also began to be considered a governmental responsibility.

By around 1980, the Neoliberal State (think Reaganomics) began to replace the welfare state.  Here the size of government shrank, i.e., lower taxes and less regulation.  Capitalists were again given free rein to maximize profits. 

Forty years later we find ourselves with vast inequality in the distribution of wealth and income, in America approaching levels in the early 20th century, and an alarmingly deteriorating global environment.

The appropriate transformation at this point is from the Neoliberal State to the Green State.  Governmental concern for the environment must rise to the level of its concern for economic, security, and social welfare issues.  The economic system is then seen as embedded in a society and constrained by the local and planetary ecology.  If the goal is a sustainable Earth system, governments will have to increasingly intervene in the economic system to moderate capitalism’s worst excesses.

The transformation to Green States will require well educated citizens who share environmental friendly values, reformed corporate governance, and leaders who employ government to protect rather than exploit common pool resources (e.g. a carbon tax).    

Note that economic inequality and environmental quality are linked by the notion that people who are not materially secure are not in a position to support potentially costly policies that improve environmental quality.  Consequently, redistribution of income and wealth to improve material security are critically important – not only for the sake of social justice but also for the sake of the environment.  More ominously, highly skewed distributions of wealth are historically associated with violent conflict, which often has adverse environmental consequences.

Moderating the impacts of capitalism on the global environment will require innovations in Earth system governance that parallel the transformations at the nation-state scale.  The institutions of global geopolitical governance, economic governance, and environmental governance must be redesigned and empowered to protect the global environment.  Thus, we might speak of fostering a green planet (or Green Marble as I have termed it).  The vision of a Global Green New Deal from the United Nations outlines some steps that will move us in that direction.