Products of an Order-friendly Universe

David P. Turner  /  August 4, 2022

Given the vast amount of order in the universe, can humans reasonably hope to add a new increment of order in the form of a sustainable, high-technology, global civilization?

On the plus side, the universe is said to be order-friendly.  Complexity is a rough measure of order, and we can observe that from its Big Bang origin to the present, the universe displays a gradual build-up of complexity.  Systems theorist Stuart Kaufmann says that we are “at home in the universe” and he emphasized the widespread occurrence of self-organization (Figure 1).  From atoms to molecules, to living cells, to multicellular organisms, to societies, to nation states – why not onward to a sustainable planetary civilization?

chemical dissapative structure

Figure 1.  The Belousov-Zhabotinsky Reaction.  This mixture of chemicals generates geometric forms (order) that oscillate until chemical equilibrium is reached.

Whether the universe is order-friendly or not is of course not strictly a scientific question, but scientists do aspire to explain the origins and elaboration of order.  Broadly speaking, they refer to the process of cosmic evolution with its components of physical evolution, biological evolution, and cultural evolution.  Cosmic evolution is a unifying scientific narrative now studied by the discipline of Big History; it covers the temporal sequence from Big Bang to the present, emphasizing the role of energy transformations in the buildup of complexity. 

Physical evolution of the universe consists of the emergence of a series of physical/chemical processes powered by gravity.  Formation of the higher atomic weight elements by way of fusion reactions in successive generations of stars is a particularly important aspect of physical evolution because it sets the stage for the inorganic and organic chemistry necessary for a new form of order life.

Biological evolution on Earth began with single-celled organisms, and by way of genetic variation and natural selection, led to the vast array of microbes and multi-cellular organisms now extant.  Each creature is understood as a “dissipative structure”, which must consume energy of some kind to maintain itself and reproduce.  Biological evolution produced increments of order – such as multicellularity – because each step allows for new capabilities and specializations that help the associated organisms prevail in competition for resources. 

Scientists are just beginning to understand how biological evolution favors cooperation among different types of organisms at higher levels of organizationEcosystems, which are characterized by energy flows and nutrient cycling, depend on feedback relationships among different types of organism (e.g. producers, consumers, decomposers).  The biosphere (i.e. the sum of all organisms) is itself a dissipative structure fueled by solar energy.  Biosphere metabolism participates in the regulation of Earth’s climate (e.g. by its influence of the concentration of greenhouse gases in the atmosphere), thus making the planet as a whole an elaborate system, now studied by the discipline of Earth System Science.

Cultural evolution introduces the possibility of order in the form of human societies and their associated artifacts.  It depends on the capacity for language and social learning, and helps account for the tremendous success of Homo sapiens on this planet.  As with variation and selection of genes in biological evolution, there must be variation and selection of memes in the course of cultural evolution.  In the process of cultural evolution, we share information, participate in the creation of new information, and establish the reservoirs of information maintained by our societies.

The inventiveness of the human species has recently produced a new component of the Earth system – the technosphere.  This summation of all human artifacts and associated processes rises to the level of a sphere in the Earth system because it has become the equivalent of a geologic force, e.g. powerful enough to drive global climate change. 

Unfortunately, the technosphere is rather unconstrained, and in a sense its growth is consuming the biosphere upon which it depends (e.g. tropical rain forest destruction).  Technosphere order (or capital) is increasing at the expense of biosphere order.  The solution requires better integration within the technosphere, and between the technosphere and the other components of the Earth system – essentially a more ordered Earth system.

How might the technosphere mature into something more sustainable?  One model for the addition of order to a system is termed a metasystem transition.  I have discussed this concept elsewhere, but briefly, it refers to the aggregation of what were autonomous systems into a greater whole, e.g. the evolution of single-celled organisms into multicellular organisms, or the historical joining of multiple nations to form the European Union. 

In the case of a global civilization, the needed metasystem transition would constitute cooperation among nation states and civil society organizations to reform or build new institutions of global governance, specifically in the areas of environment, trade, and geopolitics.  Historically, the drivers of ever larger human associations have included 1) the advantages of large alliances in war, and 2) a sense of community associated with sharing a religious belief system.  But perhaps in the future we might look towards planetary citizenship.  Clear benefits to global cooperation would accrue in the form of a capacity to manage global scale threats like climate change. 

Conclusion

Living in an order-friendly universe allows us to imagine the possibility of global sustainability.  However, the next increment of order-building on this planet will require humans and humanity to take on a new level of responsibility.

Biological evolution gave us the capacity for consciousness and now we must use guided cultural evolution to devise and implement a pathway to global sustainability.  Besides self-preservation, the motivation to do so has a moral dimension in terms of 1) minimizing the suffering of relatively poor people who have had little to do with causing global environmental change but are disproportionately vulnerable to it, 2) insuring future generations do not suffer catastrophically because of a deteriorating global environment caused by previous generations, and 3) an aesthetic appreciation or love (biophilia) for the beauty of nature and natural processes.

Our brains, with their capacity for abstract thought, are the product of biological evolution.  They were “designed” to help a bipedal species of hunter-gatherers survive in a demanding biophysical and social environment.  Hence, they don’t necessarily equip us to understand how and why the universe is order-friendly.  But we can see the pattern of increasing complexity in the history of the universe, and aspire to move it forward one more step – to the level of a planetary civilization.

Growth of the Technosphere

David P. Turner / January 28, 2020

The growth of the technosphere is changing the Earth system, pushing it towards a state that may be inimical to future human civilization [1].  As technosphere capital − e.g. in the form of buildings, machines, and electronic devices – is increasing, biosphere capital −in the form of wild organisms and intact ecosystems − is decreasing [2].

Figure 1.  Decline in freshwater, marine and terrestrial populations of vertebrates.  Adapted from Ripple et al. 2015 [3].

The growth of the technosphere has tremendous momentum and we must ask if it can be shaped and regulated into something that is sustainable, i.e. able to co-exist with the rest of the Earth system over the long term.

Figure 2.  Earth system indicator trends 1750-2010.  Adapted from Steffen et al. 2015 [4].

Why is the technosphere growing so vigorously?  Let’s consider three quite different factors. 

1.  The most general driver of technosphere growth is what systems ecologist Howard Odum called the “maximum power principle”.  It states: “During self-organization, system designs develop and prevail that maximize power intake, energy transformation, and those uses that reinforce production and efficiency” [5].   Self-organization is a widely observed phenomenon, extending from the funnel of water formed in a draining bathtub, to inorganic chemical reactions that create arresting geometric designs, to giant termite mounds, and indeed, to cities [6].  Given Earth’s vast reservoirs of fossil fuel energy, and a selection regime that rewards growth, the technosphere will indeed tend to increase energy consumption, matter throughput, and complexity. 

2.  Underlying much of the momentum of technosphere growth is the global market economy.  Capitalism is essentially the operating system of the technosphere.  Corporations, the state, and workers are compelled to expand the economy and hence the technosphere [7]. 

The market economy rewards increasing efficiencies in production (to reduce costs) and often the route to greater efficiently and greater economies of scale is by investment in technology.  Technical progress is now the expected norm and investments in research and development are a part of corporate culture and national agendas.  Economists refer to the “treadmill of production” in which “competition, profitability, and the quest for market share has contributed to an acceleration of human impact on the environment” [8].  Economic globalization has geographically extended the market economy to the whole world.

3.  Historically, war has been one of the biggest drivers of technological expansion.  In the Parable of the Tribes, historian Andrew Schmookler describes the sustained pressure on societies to conquer or be conquered [9].  Technology advances certainly help in winning wars and national governments invest heavily in research and application of technologies for war.  The Internet began with U.S. Defense Department funding to build a communications infrastructure that was hardened against nuclear attack.

Humanity has of course benefited broadly as the technosphere expanded.  Billions of people now have standards of living rivaling those of royalty a few hundred years ago.  The proportion of the global population living in poverty continues to decline.

But even before the use of the term technosphere, scientists and philosophers had begun to question whether technology was always a benevolent force.  The concept of “autonomous technology” suggests that the growth and elaboration of technology can escape human control [10, 11].  The possibilities for a nuclear holocaust or a greenhouse gas driven climate change catastrophe are indicative of technology-mediated global threats. 

What can be done?

The maximum power principle does promote energy throughput, but there is plenty of scope for insuring that technosphere energy prioritizes renewable energy.  Carbon taxes may be the simplest approach to rapidly driving down fossil fuel combustion.  Comprehensive recycling, based on a circular economy, will help constrain the mass throughput of the technosphere.  Finishing the global demographic transition [12] will reduce future demand for natural resources.

Capitalism will not go away but could undergo a Reformation.  That means more corporate responsibility, better governmental oversight of corporate behavior, and increased attention by consumer to the environmental footprint of their consumption.

The global incidence of physical war is decreasing, which will help slow the growth of the technosphere.  Wars are often based on the threat of an enemy, but humanity may become more unified based on the common threat of global environmental change.  The Paris Accord is suggestive of the possibilities.

Implications

The trajectory of the technosphere is towards limitless growth.  However, we live on a planet – there are indeed limits to the natural resources upon which the technosphere depends.  Humans are only a part of the technosphere, thus cannot truly control it (13).  But they can certainly shape it .  Likewise, the technosphere is only part of the Earth system, thus cannot fully control the Earth system: quite possibly, the Earth system will respond to the environmental impacts of the technosphere with changes that suppress the technosphere and associated human welfare.  Improved understanding of technosphere growth in the context of the rest of the Earth system is clearly warranted.

1.  Steffen, W., et al., Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018. 115(33): p. 8252-8259.

2.  Diaz, S., et al., Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 2019. 366(6471): p. 1327-+.

3.  Ripple, W.J., et al., World Scientists’ Warning to Humanity: A Second Notice. Bioscience, 2017. 67(12): p. 1026-1028.

4.  Steffen, W., et al., The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review, 2015. 2: p. 81-98.

5.  Odum, H.T., Self-Organization and Maximum Empower, in Maximum Power: The Ideas and Applications of H.T. Odum. 1995, Colorado University Press: Boulder CO.  See Hall review.

6.  Prigogine, I. and I. Stengers, Order out of Chaos. 1984: Bantam.

7.  Curran, D., The Treadmill of Production and the Positional Economy of Consumption. Canadian Review of Sociology-Revue Canadienne De Sociologie, 2017. 54(1): p. 28-47.

8.  Hooks, G. and C.L. Smith, Treadmills of production and destruction – Threats to the environment posed by militarism. Organization & Environment, 2005. 18(1): p. 19-37.

9.  Schmookler, A.B., The Parable of the Tribes: The Problem of Power in Social Evolution, Second Edition 1994: Suny Press. 426.

10.  Winner, L., Autonomous Technology: Technics-out-of-Control as a Theme of Political Thought. 1978: The M.I.T. Press. 402.

11.  Kelly, K., Out of Control: The New Biology of Machines, Social Systems, & the Economic World. 1995: Basic Books.

12.  Bongaarts, J., Human population growth and the demographic transition. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009. 364(1532): p. 2985-2990.

13.  Haff, P.,  Humans and technology in the Anthropocene: Six rules. 2014. The Anthropocene Review:126-136.