The sunny days are diminishing as summer rolls into autumn, and as the sun descends, the bees’ flight lulls to rest. Bees sense and respond to light and use the sun to orient themselves and navigate. Along with their two large compound eyes that are used for vision, bees have three simple eyes that sit atop their their heads in a triangular formation. These are called ‘ocelli’ and they sense light.
There is a video circulating the internet of honeybees flying in an enclosure in a laboratory. The video shows the researcher turning off the lights in the enclosure, causing the bees to drop to the ground instantaneously, showing how honeybees will not fly in the absence of light.
We notice similar behavior in the field on days where clouds pass over the sun intermittently. When the sky is bright, our plants bustle with pollinators, and when shadows come over, most bees are suddenly out of sight. It makes sense that as the days get shorter and colder the sight of pollinators will become more and more fleeting!
Some bees are still coming out during the warm October afternoons, and collecting their final energy reserves for the winter. Goldenrod, Douglas’ aster, California poppy, bee balms, and black-eyed Susan, amongst other late blooming pollinator plants are still providing bees with nectar and pollen during this time of transition.
During this season, honeybees and bumblebees predominate the landscape, while long-horned bees (genus: Melisoddes), leafcutter bees (genus: Megachile) and sweat bees (family: Halictidae) can still be seen as they finish up resource collection in the Willamette Valley.
Social bees
Honeybees must make enough honey before temperatures drop and they can no longer leave the hive, so you’ll find them foraging for pollen and nectar as late in the season as possible.
In late summer and fall we begin to see an influx of bumblebee queens. During the summer, the queens are busy reproducing in their underground hives, while worker bees take to the landscape. However, near the end of the foraging season, new queens hatch and fly out to find mates and food. You may see bumblebee queens getting their last bits of food energy before overwintering, while the rest of the colony (males and workers) dwindle away.
Many solitary bees are finishing their last nests where they’ve laid eggs for the next generation of their species.
If you care for nest boxes in your garden be sure to take appropriate steps to bring your bees indoors and clean their cocoons. Check out the Linn Master Gardener Association Bee Notesemail list to receive timely emails about the seasonal steps of caring for mason bees.
When solitary adult bees finish reproducing and nest building, their work is done, so they die off. But small carpenter bees, from the genus Ceratina, are an exception. Ceratina females remain as late into the cold season as they can muster in order to guard their nests.1 These protective mothers fend off predators, pests and parasitoids that try to invade the nests.
This fall, we hope you are able to see some of the last glimpses of bees of the year!
This post concludes our series on what the bees are doing right now! Thank you for taking part in this seasonal journey through the lives of bees in the Willamette Valley.
Source Cited:
1: Danforth, B. N., Minckley, R. L., & Neff, J. L. (2019). The solitary bees: Biology, evolution, conservation. Princeton University Press.
Summer is the main active season for many bee species. After a wet spring in Western Oregon, the sun is out and our world is in bloom!
So what are summer bees up to right now? The main events of the season are…
Foraging for nectar and pollen
Finding mates and laying eggs
Excavating, finding and building nests for offspring.
Adult bees also experience predation by spiders and birds during this time. This Crab Spider caught a female long horned bee in its jaws!
So who exactly is out and about in your garden at this time of year?
Bumblebees and honeybees visibly dominate the landscape throughout the summer, but lean in closer to your flowering plants and you’ll find the smaller sweat bees (family: Halictidae), long horned bees (genera: Melissodes and Eucera), leafcutter bees (genus: Megachile) and small carpenter bees (genus: Ceratina). Although there are many others amid the vast diversity of bee species science is only beginning to understand, these are some common garden visitors. We’ll go through each group and their summer activities.
Notice the two adomenal segments beneath the yellow stripe of this male yellow-faced bumblebee(Bombus vosnesenskii). Photo by Jen Hayes.
Bumblebees: By summertime, most queens have established colonies of workers who do the foraging for the hive, so we see less large queen bumblebees and more smaller workers as the season progresses. Later in the season, queens lay male eggs as well as eggs for the next generation of queens. Male bumblebees take to the landscape in mid to later summer, recognizable by their additional segments on their abdomen, long antennae, and by the fact that they don’t carry pollen like females do. Males do not have stingers, so if you can confidently identify male bumblebees, they are fun to play with while they’re waiting around for new queens with which to mate. You’ll find them sipping on nectar-rich plants like lavender, herbs, asters and heal-all.
Honeybees: Summer is prime time for honeybees! Worker populations are at their peaks; pollen and nectar are flowing. As hive population size rises and available hive space remains static, honeybees may organize a swarm. In this process, the current queen lays new queen eggs and part of the colony joins her to lift off and leave the colony in search of a new cavity to make their home. Swarming is considered a form of colony-level reproduction supporting the idea that honey bee colonies are super organisms. Swarming is common in spring and early summer. Beekeepers add new boxes to hives so prevent their colonies from swarming.
Late summer is mating season for honey bees. Males and new queen eggs are laid and emerge to mate with individuals from other colonies. Honeybees mate in the air at heights ranging between 15 and 60 m1.
Sweat bees
A halictid dear to our hearts at the Garden Ecology Lab is the metallic green bee (genus: Agapostemon). While females provision nests in the soil, you can find males resting in congregations on flowers in the evening time and early morning!
Sweat bees are one of the most common groups of “small” bees you’ll find in your garden. They forage on a wide variety of plants and come in a wide range of sizes, but most have striped abdomens, and all carry pollen on their hind legs and nest in soil.
Long Horned bees
Long horned bees are most active on our research plots in the mid to late summer. I love this group because they are so easy to recognize. Males have antennae that are way longer than other bees’ relative to their bodies. The females, who bear antenna of normal lengths, are still easy to spot because they have long feathery scopa (or hairs) on their hind legs for collecting pollen that they absolutely pack with pollen while foraging.
Long horned bees are sometimes referred to as “sunflower bees” for their love of foraging on sunflowers.
Long horned bees nest in the soil2, so when you see them take it as a reminder to leave some uncovered, undisturbed soil in your garden for these bees to persist!
Small Carpenter bees
When I point out small carpenter bees (genus: Ceratina), most of my friends can’t believe they are bees. They think they are some kind of flying ant. Their bodies are sleek, and often shimmer with a green or blue reflective gleam.
Small carpenter bees are considered wood excavators as they dig out the pith from dry plant canes for their nests. Ceratina are a unique group in terms of their parenting style. Unlike other solitary bee mothers, Ceratina mothers guard their offspring even after their offspring have developed into adults. Mothers stick around as long as they can until Winter falls.2
Leafcutter bees
Leafcutter bees (genus: Megachile), as their names suggest cut leaves from their host plants! They use these bits of leaves to line their ground and cavity nests, to waterproof and protect their offspring.
Leafcutter bees are from the bee family Megachilidae, a family known for creative nest building. Bees in this family were supposedly able to expand their ranges due to their flexibility in nesting site and material. They’ve been found nesting in wood, porous stones, stems, galls, and even snail shells filling these various cavities with leaves, mud, plant resins, pebbles, straw and even petals2. The fascinating nest building behavior we’ve gotten to witness in the field is petal cutting of Farewell-to-Spring (Clarkia amoena) blooms.
Thank you for joining us on this exploration of some of Oregon’s summer bees and what they are currently doing! We will release one more blog post in this series. Be sure to subscribe so you don’t miss the next in the series!
It’s early spring and the trees have begun leafing out. Colorful flowers are springing from the ground, and the landscape is slowly coming to life with insect activity. In this post, I’ll highlight some of Oregon’s ubiquitous spring bees, what they are up to, and how to easily recognize them.
Queen bumblebees are emerging from their winter burrows under leaf litter and forest duff. They zoom by with boisterous buzzes. Queen bumblebees are sturdy and furry, and can power through wind, rain and cold better than any other type of bee. Queens are much bigger than the workers that will come once the queens find nest sites and begin laying eggs. For now, they work alone, preparing to lay their first set of worker eggs.
If you see (or hear) any queen bumblebees this spring as they scan the sparsely blooming landscape, they are most likely looking for a proper nest site, finding nectar to energize this search, or, if one has already found her nest, she may be collecting pollen to feed her developing worker offspring.
Mason bees (Osmia lignaria) are a cherished Oregon spring bee active from March to early June. Look closely in a bee hotel for a chance to observe mason bees in action!
Male mason bees emerge first from their pupal cocoons. You might see them patrolling bee hotels waiting for a female to chase down. When the females emerge a little later, they mate and then begin their work provisioning nests with pollen balls and eggs. An individual female has a short lifespan living only about 20 days, but in this time, she may provision anywhere from 2 to 7 nest holes each containing many offspring cells.1 Quite the busy bee!
Andrena is a genus of mining bees that are some of the earliest risers when it comes to spring emergence. They are a diverse group of small, furry, ground-nesting bees that are only active for a few weeks out of the year. Andrena are solitary bees, but can be seen foraging and mating in droves on early blooming fruit trees like cherry, apple and pear. Last spring, I watched hundreds swarm this cherry tree to collect nectar and mate.
Spring Bee Quick ID:
Now, let’s identify some of the bees you may see out and about on sunny spring days when the wind is low. We’ll start with the most conspicuous group – the bumblebees. Bumblebees are the biggest and the loudest bees on the landscape, covered in a thick coat of fuzz. Here’s how to recognize the 3 most common species of bumblebees you’ll see in the Willamette Valley in early spring.
Bombus vosnesenskii or the “yellow-faced bumblebee” is by far the most common bumblebee in this region. It is recognized by the yellow fuzz on its face and yellow band near the distal end of its abdomen.
Bombus melanopygus, the “black-tailed bumble bee” is another of the earliest Bombus species to emerge. You can identify this bee by the orange band in the middle section of its abdomen!
Bombus mixtus, the “fuzzy-horned bumblebee”, tends to emerge a little later than the previous two species, and has orange hair on its lowest abdominal segments.
Mason bees can be recognized by their deep iridescent blue-green color, that sparkles in the sun. Males are distinguished from females by their small size and the yellow mustaches found on the front of their faces. Females lack the yellow tufts and are larger than the males but smaller than a honey bee. They carry pollen on the underside of their abdomen which is a trait unique to their bee family, Megachilidae.
Andrena are a diverse group that are tricky to identify. They can be distinguished from other small, furry bees by the presence of velvety hairs between their eyes and the middle of their face called “facial fovea”.2
They also carry pollen on their hind legs and on hairs between their abdomen and thorax, which distinguish them from bees in the Megachilidae family.
We hope this little guide will help you experience the native bees in your landscape this spring that make the pollen go round.
Thank you for joining us on this exploration of Oregon’s spring bees and what they are currently doing! We will release two more blog posts in this series, one for each of the four seasons. Blogs will be posted during their prospective seasons, so be sure to subscribe so you don’t miss the next in the series!
Welcome to the Garden Ecology Lab’s “What are the bees doing” mini-series! This series will extend through the four seasons to shed some light on where bees are in their life cycle and what they may be doing during each of the four seasons. We begin with winter, and an overview of the overwintering and nesting strategies of common groups of bees in the Pacific Northwest.
As the seasons change, where do all the bees go? Different groups of bees utilize unique strategies to survive the cold of winter. In many cases, bees require cold temperatures to develop properly, and as spring rolls around, they rely on thermal cues to determine when to start their next phase of life.
❄️
We can divide bees into four broad categories based on their strategy to nest and survive the winter. There are the Ground Nesters – who find or dig in the ground to nest and lay eggs, Cavity Nesters – who nest in hollow reeds, canes, or in people’s backyard “bee hotels”, Bumblebees – whose new-born queens burrow into leaf litter, waiting to start a colony in spring…. and then there is the oddball: the European Honey Bees, who are not native to North America, but were brought here along with European colonizers and are now key players in modern agriculture. They do things pretty differently than our native bees, so we’ll start our discussion with them.
The European Honey Bee
European honey bees (Apis mellifera) survive the winter huddling in their hive! They are an example of a social insect and many consider a honey bee hive a superorganism. Fueled by their honey stores, the colony huddles together in a mass to thermoregulate at temperatures between 33 – 36°C (91.4 – 96.8°F).1 I love these words from the American Bee Journal:
"The honey bee is a cold blooded insect; but the honey bee colony is a warm blooded creature."1
We will see that honey bees are the only bee in our landscape to overwinter socially. The rest go it alone.
Bumblebees
Bumblebees are social bees too, living in natural cavities most often in the ground, but in winter, the members of the colony die off except for the new-born queens. These queens will fly out of the hive on her maiden voyage to mate with a male bumblebee before finding a place to settle and overwinter alone.
Queens find a safe environment often a few inches deep under leaf litter or light soil. As temperatures decrease in Fall and early Winter, the queens do not thermoregulate. Instead, they enter diapause, which is a state of arrested development. An overwintering queen appears frozen in the soil until warmer temperatures wake her again. In the late Winter or Spring she will begin looking for a site to start her own colony.
Cavity Nesting Bees
About 30% of native bees are cavity nesters who build their nests inside cavities in wood or reeds.2 These bees avoid overwintering as adults, and instead, they lay their eggs in cavities and die before the winter temperatures come.
Female cavity nesting bees forage for pollen and nectar and nesting materials in the spring or summer and make balls of pollen and nectar (often called “bee bread”) as food for their offspring!
They lay eggs on the pollen balls, and then proceed to seal off compartments, one for each of the eggs, until the cavity nest is full. These eggs will hatch into larvae that consume the bee bread as winter approaches.
Here is a video of a small carpenter bee larva eating its bee bread, magnified under a microscope!
Once the larvae finish off their food store, they may spin themselves a cocoon in which they further develop into pupae. Cavity nesters spend the winter developing from pupae to young adults in their cocoons. These developing bees go into a state called torpor to survive the winter, where the bee is inactive and its body temperature drops, but it still goes through critical physiological processes and development.
These bees must experience low Winter temperatures natural to their region to undergo proper development. Mason bees, for example, have lower survival and vital rates when exposed to warm nest temperatures that simulate predicted climate change temperatures for their region.3
Mason bees (genus: Osmia) are cavity nesters that have become well known in garden and agriculture circles in recent years, but many other groups of bees fall into this category too including leafcutter bees (family: Megachilidae), small carpenter bees (genus: Ceratina), large carpenter bees (Genus: Xylocopa),and masked bees (family: Colletidae).
A friend of the lab, Olivia Honigman, conducted a brief research project on small carpenter bees in Vermont. Here are some photos from her study that showcase a tiny cavity nesting bee, from the genus Ceratina, nesting in raspberry canes.
Ground Nesting Bees
Last but certainly not least are the ground-nesting bees which make up about 70% of native bee species! Bees from the genera Andrena, Lasioglossum, and Halictus fall into this category.4 Ground-nesters have unassuming nests that are hard to spot, but under the soil, they are putting down bee loaves and laying eggs in a compartmentalized fashion, just like cavity-nesters!
Similarly, adult ground-nesters die after they finish provisioning their nests for their offspring. In the winter, the young bees of the new generation are developing from pupae into adults in their underground nests.
Left: exposed soil revealing tiny holes- could these be bee nests? Top right: A ground-nesting bee pokes its head out of its home. Bottom right: The entrance to a ground-nesting bee’s home.Photos by Gail Langellotto.
Although their nests are modest, some of Oregon’s showstopper bees fall in the ground-nesting category, such as the metallic green sweat bees (Agapostemon).
Long-horned bees from the genera Melisoddes and Eucera also flaunt unique forms with noticeably fluffy, feathery hair on their legs they use for collecting massive volumes of pollen!
To invite these bees to your garden, leave patches of earth free from wood mulch and instead mulch with compost! To avoid disturbing ground nests, avoid tilling when possible.4
Something remarkable about nesting in the ground is that, depending on nesting depth, ground nesters are more buffered from extreme temperatures than honey bees and cavity nesters whose homes may be in the direct sun. This may be a critical difference when it comes to surviving climate change.
Changing Climatic Norms…
With climate change upon us, native bees have experienced warmer than usual winter temperatures. These conditions may be suboptimal for their development and survival and encourage bees to emerge earlier in the season. Cavity and ground nesting bees require low temperatures with which they have evolved to reach physiological benchmarks for their development, and scientists worry that there will be phenological mismatches between plants and their pollinators in which bees emerge at different times than when their optimal food sources are in bloom as plants and insects will experience novel timing of thermal queues under climate change predictions.5
As bees and other pollinators face a multitude of challenges, we should support our local bees and appreciate them while we can!
❄️
Thank you for joining us on this exploration of what bees are doing during the winter! We will release three more blog posts in this series, one for each of the four seasons. Blogs will be posted during their prospective seasons, so be sure to subscribe so you don’t miss the next in the series!