Positive Feedback Loops to Propel the Sustainability Transition

David P. Turner / March 8, 2024

In the jargon of systems theory, a positive feedback means that a change in a system initiates other changes within the system that amplify the original change.

A clear example in the Earth system is the water vapor feedback:  as the atmosphere warms (e.g. from increasing CO2) it can hold more water vapor (mostly evaporated from the ocean), and since water vapor itself is a greenhouse gas, the atmosphere warms further (Figure 1).

A box and arrow diagram shows the steps in the water vapor and snow/ice albedo feedbacks to climate warming.

Figure 1. The water vapor (blue loop) and snow/ice albedo (red loop) feedbacks. Climate warming induced by anthropogenic CO2 emissions drives changes in the hydrosphere and cryosphere that amplify the warming. A plus sign means causes to increase and a minus sign mean causes to decrease. Image Credit: David Turner and Monica Whipple.  Figure appeared originally in the Technosphere Respiration Feedback blog post.

Positive feedbacks are generally considered destabilizing to a system, potentially pushing it into a new state.  Negative feedbacks aremore familiar, e.g. the furnace/thermostat cycle in home heating; they tend to stabilize a system.

The Earth system has significant negative feedbacks that have helped keep global mean temperature in a habitable range over its 4-billion-year existence.  However, these feedbacks (e.g. the rock weathering thermostat) operate at a geologic time scale, and are thus not going to save humanity from the vast geophysical experiment that we began by burning fossil fuels and boosting atmospheric concentrations of greenhouse gases.

We need something faster.  Hence, it is worth identifying and perhaps cultivating various positive feedback mechanisms that could support global sustainability.  Here, I’ll consider three varieties of positive feedback loops that might help us.

Type 1.  Psycho-social Positive Feedback Loops.

Humans have various cognitive biases, meaning our decisions are sometimes subject to unconscious tweaking.  These tweaking tendencies have genetic as well as experiential origins, and may or may not be helpful in any given decision.  Prestige bias, under which we are drawn to believe and emulate individuals who have achieved high status in our society, is an example. 

A cognitive bias that might help the spread of sustainability principles and practices is the conformity bias.  As the name suggests, we tend to adopt ideas and practices that are already embraced by a significant proportion, or the majority, of our society.  The positive feedback comes in because converts increase the proportion of the society that are believers, which strengthens the pressure on nonbelievers to conform.

Figure 2.  Conformity Bias Positive Feedback Loop.  Image Credit: David Turner and Monica Whipple.

The history of social norms and behaviors related to littering and paper recycling show evidence of conformity bias kicking in at some point.

Now that greater than 50% of Americans believe that climate change is for real, conformity bias may help enlarge the pool of believers, and hence the support for relevant policy changes. 

Type 2.  Technical-economic Positive Feedback Loops.

As new technologies become more widely adopted, the associated manufacturers begin to benefit from economies of scale, i.e. the marginal cost of production comes down as usage increases because larger production facilities are typically more efficient than smaller ones.  More efficient production means that the product can be offered at a lower price, and hence demand will likely increase.  This positive feedback loop can lead to rapid growth in product use.

An essential requirement for mitigating climate change will be conversion of the power sector from fossil fuel to renewable sources of energy.  This conversion is ongoing and is benefitting from economies of scale.  Installation of solar and wind power generators is expanding rapidly, in part because the economics are beginning to favor these sources over coal-fired plants.  The cost of installed solar panels and wind turbines has decreased over time because of economies of scale and rapid technical advances.  Hence, a virtuous cycle of more installations favors more decisions to go with renewables.

A second powerful technology-oriented positive feedback involves “network effects”.  Here, as a new technology becomes more widely utilized, its value to the user increases, and more users are recruited.  The spread of the telephone is the classic example. 

Figure 3.  Example of a Network Effect Positive Feedback Loop.  Image Credit: David Turner and Monica Whipple.

The network effect is readily applicable to the proliferation of electric vehicles (EVs).  The replacement of internal combustion engine powered vehicles with EVs is widely advocated to mitigate climate change.  This transition has started, and is fortunately accelerating because of positive feedbacks.  One feedback loop is that as more EVs enter the market, the economic incentives to build more charging stations has increased.  More charging stations makes it easier to take long trips, which reduces range anxiety and incentivizes drivers to purchase EVs rather that gas powered vehicles.

Type 3.  Socio-cultural Niche Construction Loops

Cultural evolution is the process by which the beliefs and practices of individuals and groups of various sizes change over time.  At the level of group selection, particular ideas and group practices may strengthen the group when faced with intergroup competition (e.g. intertribal warfare).

There are many group traits that are shaped by cultural group selection; for analytical purposes we can divide them into three types: sociological, technical, and ecological (Table 1, also below).  It is the constellation of these traits, including how they influence each other, that determines the success of a group.

Socio-cultural niche construction refers to the idea that human societies alter their physical environment (e.g. the vegetation, the energy infrastructure) in ways that reciprocally influence how the society is structured and functions.  Positive feedback loops among two or more of the group traits in Table 1 can result in rapid societal change.

If a group (e.g. a nation) invests (a sociological trait) in research and implementation of renewable energy technologies, the outcome may be a change in the mix of societal energy sources (a technical trait), which could result in cheaper and more reliable energy delivery to the society, which strengthens the society and encourages further investment in renewable energy sources.  The societal choice of energy source also influences the ecological trait of local air quality.  Improvement there would further strengthen the society and enhance group strength.

Figure 4.  Example of a Socio-cultural Niche Construction Positive Feedback Loop.  Image Credit: David Turner and Monica Whipple.

Conclusion

The various feedback loops reviewed here suggest that societal principles and policies are not simply top-down impositions on citizens.  Rather, they can be significantly strengthened or weakened by reciprocal interactions with features of the social, technological, and ecological environment.  To propel conformity bias regarding a particular value or technology, leaders and media can package it as a new social norm.  To propel sustainable technologies that benefit from economies of scale and network effects, societies can subsidize early stages of their development.  To foster revolutionary changes in technology (e.g. a renewable energy revolution), leaders must advocate for them based on the full range of their benefits to society.

These psychological and sociological considerations make the transdisciplinary aspects of Earth System Science ever more apparent.

Table 1. Examples of group traits that may interact to influence group selection.


Sociological Traits

Laws
Customs
Policies
Belief system (e.g. religion)
Type of political organization (e.g. tribe vs. nation state)
Type of military organization
Civic institutions

Technological Traits

Type of fuel for energy production
Form of transportation
Form of electronic communication

Ecological Traits

Local species composition
Local net primary production
Local air quality


Genetic Programming, Cultural Programming, and Self-programming

image of axons in the human brain
Axonal nerve fibers in the brain as determined by the measured anisotropy (directionality) of water molecules inside them.  Image Credit: Connectome

David P. Turner / March 13, 2022

There are many specific prescriptions about how humanity must change to restore a hopeful future (e.g. a global renewable energy revolution), and implementing these prescriptions will require new pro-environmental behaviors by individuals along with shifts in societal values.  In this post, I briefly examine four aspects of a simple psychological framework that shapes the personal sphere of social transformation, and I consider how adoption of that framework could inspire pro-environmental behavior.

A common first approximation to explaining how humans behave is by reference to “nature and nurture”.  I will add a third factor – the influence of self-determination, i.e. the products of self-directed thought.  My fourth factor in this framework is one’s personal experience, which of course can crush us or enable us to blossom.

1. Nature refers to our genetic inheritance.  Neurologists broadly understand the genetically-based architecture of the brain, and the role of neural circuity in brain function, but they are still working on how processes like memory and consciousness actually work biophysically. 

Studies of brain function associated with specific activities show that certain areas or modules of the brain (genetically derived) perform particular functions, e.g. mathematical operations or making music.  Psychologists and neurologists generally believe that humans are born with genetic predispositions in how we feel, think, and act (presumably related to the wiring of our brain).  Some examples include our attraction to sweet foods, our fear of snakes, and how readily as children we learn a language.  

Without going overboard (i.e. espousing that genes alone determine behavior), we might use a computer programming metaphor to indicate significant genetic influences on behavior.  Sociobiologist E.O. Wilson opined that “genes hold culture on a leash”, referring specifically to the influence of genes on values. 

Regarding our feelings and behaviors related to the environment, it is important to recognize that some genetically-influenced traits – while being the product of millions of years of biological evolution – may be obsolete in the context of our contemporary high technology civilization.  We are much better at paying attention to rapidly changing threats (e.g. a charging rhinoceros) than to slow onset threats (e.g. climate change), yet now we must attend closely to threats in the long-term future. 

On the other hand, some proposed genetically-based traits – such as biophilia (love of nature) – may be particularly helpful in the context of fostering pro-environmental behavior.

2) Nurture refers to the influences of our cultural environment on how we think, feel, and act.  The success of Homo sapiens is attributed in part to our capacity for social learning.  Children mimic behaviors of their caregivers and tend to adopt their belief system.  As adults, we continue to learn from a variety of cultural sources.

Learned behaviors (e.g. hunting in a hunter/gatherer society) are often adapted to the local environment, and learned cultural beliefs help bind us to our local social group.  Here again, I think the term “programming” is appropriate if used in a metaphorical sense.  We are culturally programmed in some respects. 

Richard Dawkins referred to the units of cultural inheritance as memes.  Note that memes do not have to be true to be useful.  A mythical narrative of tribal origins may help create a sense of tribal identity, which could strengthen within group solidarity in the face of inter-tribal rivalry.

As with our genetic influences, some of our cultural influences may be obsolete or need modifying in the context of on-going environmental change, e.g. the current emphasis on consumerism in the developed countries.

To complicate things, we have significant biases (going back to our genetic programming) about what we learn.  We are particularly likely to believe or imitate leaders (prestige bias) and tend to believe what is believed by a majority of our peers (conformity bias).

3) Self-determination (self-programming) is an overlay on genetic and cultural programming.  Mature human beings can consciously consider alternative views and reflect on what to believe and how to act (albeit there is always a lot going on unconsciously).  This capacity introduces a sense of agency and inspiration.

Self-determination is certainly impacted by emotions, thoughts, and information that originate from genetic and cultural programming.  To some degree, however, impulses from these sources can be consciously recognized and over-ridden

Education is in a sense cultural programming, but training in critical thinking and more broadly learning how to learn, can open the door to robust self-programming.  The firehose of information now available through the various media (some true and some not) makes this kind of thinking especially relevant now. 

4.  Personal Experience.  Many genes are expressed only under particular circumstances, and learned behaviors can only be acquired when there is exposure to a relevant example or information.  Additionally, the degree to which learned information is internalized and begins to affect behavior depends on other psychological factors.  Motivation to learn is stimulated by a) a positive connection between teacher and learner, b) a sense of autonomy or self-direction rather than being controlled, and c) a feeling of competence associated with accomplishing a well-designed gradation of tasks and getting approval from significant others.

Let’s consider two cases of pro-environmental behavior in which the three types of programming and experience interact.

Slowing Population Growth.  Historically, most cultures encouraged high levels of reproduction, which is certainly predictable in the face of the kind of intergroup competition common in human history.  More group members make for stronger groups.

Considering the importance of reproduction in biological evolution, it also makes sense that there is a strong genetic influence in favor of reproductive behavior (e.g. mate seeking and sexual pleasure in humans). 

For a woman or couple to decide to have few or no children for pro-environmental reasons (potentially in the face of their own instincts and pro-natal cultural policies) would require significant self-programming.  Growing up (experiencing) a society that values education and opportunities for self-actualization other than parenthood would make the choice easier.

Global and Planetary Citizenship.  Global scale problems, like anthropogenic climate change, require humanity to work collaboratively towards changing the current dangerous trajectory.  However, we seem to be genetically primed to identify with a social group of some kind, which also implies a tendency to classify everyone outside the group as suspect. 

Our local society inculcates a unique language and a belief system that differentiates us from outsiders and may induce xenophobia.  Nationalism is on the ascendency these days, but it is not the limit of what a society can be. 

Thus, becoming a global citizen requires some degree of self-programming.  Individuals must learn about issues of global environmental change and deliberate on how to participate in ameliorating the problems.

Besides identifying with humanity as their tribe, it will be important that people identify with the Earth system as their home, as a whole of which they are a part

A common model for societal change begins with an early adopter minority that inspires broader uptake of new values, leading (with some help from prestige and conformity biases) to a majority view (e.g. the broad adoption of anti-littering in the U.S. in the 1960s).  The early adopter minority may come from people who recognize the possibility that the majority view is wrong, and then begin to envision and act on alternatives.  It is encouraging to see a bubbling up of pro-environmental minorities nearly everywhere on the planet now that could grow in an organic manner to become a pro-environment majority.