Notes from the Field: Midway Atoll (Pihemanu)

By Scott Shaffer

This was the rainiest and windiest conditions we’ve experienced at Midway over the years. Despite the weather, the albatross field crew of myself (Scott Shaffer), Henri Weimerskirch, Sarah Youngren, and Dan Rapp deployed nearly 80 data logging devices on Laysan and black-footed albatrosses over two weeks during the last half of January 2022. Our primary goal was to record albatross and fishing vessel interactions using GPS loggers enabled with radar detection sensors.

A Laysan albatross pair. The bird on the right is carrying at GPS data logger enabled with marine radar detection. The tags are taped to the feathers with a water-proof tape and are easily removed when the bird is recaptured.

Preliminary data show one Laysan albatross passing within range (but not interacting) of a fishing vessel upon its return to Midway after 10 days at sea. Stay tuned for more updates as we start analyzing the rest of the dataset. We plan to cross-reference the vessel detections with the AIS dataset amassed by Global Fishing Watch to better understand when and where albatrosses are encountering fishing vessels.

Sunset on Midway Atoll (Pihemanu).

A few images from Midway in January. We were incredibly lucky to be able to get a field team out to the island!

This project is funded by the National Fish and Wildlife Foundation (PI – R.A. Orben) to support the mission of conserving natural resources of the Papahānaumokuākea Marine National Monument, Northwest Hawaiian Islands. Photos were taken under permit: PMNM-2021-012. All field personnel were vaccinated against covid-19 and underwent a period of quarantine on arrival to Midway.

Overlap between marine predators and proposed Marine Managed Areas in the Falkland Islands

By Alastair Baylis, South Atlantic Environmental Research Institute

A globally significant wildlife wonder spot

The Falkland Islands, located on the southeast Patagonian Shelf, are a self-governing UK Overseas Territory (UKOT), and a globally significant wildlife wonder spot. Home to 75% of the global population of Black-browed albatross, 50% of the global population of South American fur seals, 30% of the global population of Rockhopper and Gentoo penguins, to list but a few. This means that population trends of Falklands seals and seabirds disproportionately influence the global population trends and conservation status of these species.

Marine Managed Areas & IUCN Key Biodiversity Areas

In recognition of the importance of the Falkland Islands environment to both wildlife and the community, and striving toward holistic marine management, the Falkland Islands Government started a process of Marine Spatial Planning. This included identifying marine areas for enhanced protection as Marine Managed Areas (MMAs)– a broad term that includes Marine Protected Areas (Esch 2006). MMAs focussed on marine wilderness areas – areas that have irreplaceable biodiversity and are near-pristine due to low fishing impact, but presently do not have a legal framework for protection. Through stakeholder engagement, several areas were chosen as proposed MMAs. These areas included seaward extensions of globally important breeding colonies of seabirds and seals where animals are known to congregate (Granadeiro et al. 2008).

To inform the Falkland Islands MMA process, we identified important at-sea areas for seals and seabirds to understand how these predators use the proposed MMAs. One overarching aim of our paper was to place the conservation value of the proposed MMAs into a global context. Hence, we also identified IUCN Key Biodiversity Areas (KBAs) – (marine) areas that “contribute significantly to the persistence of global biodiversity”, which are a widely adopted approach to help inform systematic conservation planning, and compared these to proposed MMAs.

Proposed Marine Managed Areas (MMAs) within the Falkland Conservation Zone including seaward extensions of globally significant breeding colonies of seals and seabirds at the Jason Islands group, Bird Island, Kidney Island, and Beauchene Island.

Our KBA journey

Much of this blog is focussed on our KBA journey, which is one component of the paper. In-part, because using tracking and survey data to identify KBAs are of particular interest locally. But, in general, we found limited discussion regarding challenges. This is perhaps, a good point to emphasize the distinction we make throughout the paper and again here, between the KBA concept (which we do not critique), versus methods used to identify polygons to assess against KBA criteria.  

Looking out over the Jason Islands. Photo: R. Orben

Our methods

Briefly, our methods went something like this – we collated tracking data (1999-2019) and used a several approaches to identify areas for assessment against KBA criteria (for those wanting the details, a combination of kernel density estimation methods originally designed to identify Important Bird and Biodiversity Areas (IBAs) and model-based predictions).

Here is what we found:

1. The Patagonian Shelf is vast and vastly important for marine predators.

It should come as no surprise that much of the Patagonian Shelf around the Falkland Islands is important (see also Augé et al. 2018, Baylis et al. 2019). In fact, depending on the methods used, over 70% of the Falkland Islands EEZ could qualify as a KBA. This is because the Falklands are home to numerous and globally significant populations of seals and seabirds – many species of which breed almost ubiquitously around the Falklands. We will touch briefly on how this could influence management later in this piece (see point 4). In terms of overlap with proposed MMAs, depending on methods used, up to 45 % of KBAs were overlapped with proposed MMAs. But this comparison and indeed the significance of findings, are a little clouded by caveats associated with methods (see point 2 and 3). 

2. Threshold-based criteria of KBAs are standardized, repeatable, and globally applicable – which is worth celebrating. For tracking data, the methods used to identify areas to assess against KBA criteria are not standardized.

Given KBAs might be considered for potential protected areas, it would be useful to understand and quantify uncertainty in areas selected to be assessed against KBA criteria. This is because as scientists, we want to provide decision makers with reliable data and robust science narrative, which ensure the areas identified as important are well supported.

A couple of challenges that we encountered when following popular methods, are as follows. Firstly, common to all tracking datasets, tracking data were inevitably imperfect and biased by tracking effort. This isn’t a deal breaker, but our potential KBAs reflected colonies from which seals and seabirds were tracked from, but not necessarily where they occur. For example, tracking data from one colony, might not represent important areas for other colonies.

A second widely recognized challenge is that current methods based on kernel density estimation are sensitive to often arbitrarily selected values. Indeed, areas identified for KBA assessment can vary by thousands of km, depending on model values selected. Ideally, with a bit of common sense and knowledge of species biology, you can make some informed decisions about what values are sensible to use, but it isn’t always clear, and this can create uncertainty in which areas are most appropriate to assess against KBA criteria. One approach to address these limitations was to use models to predict the distribution of animals from all colonies around the Falklands. But then the entire Patagonian Shelf around the Falklands is potentially a KBA (point 1).

3. IUCN KBA guidelines continue to be refined and updated.

Too right! It is important that the guidelines continue to evolve to ensure KBA guidelines are applied rigorously. The most recent guidelines (IUCN 2020) clarify that species must predictably aggregate at a site to trigger KBA criterion D1a (just one of several criteria, but the one we felt best suited our data). However, predictability is scale dependent and we don’t yet know how this definition will apply to tracking data for wide-ranging marine predators that forage on patchily distributed prey. Hence, a range of challenges exist with current methods and the motivation for highlighting these challenges are to stimulate discussion on how we can continue to improve methods that better serve the globally standardized KBA criteria.

4. Fixed boundary approach to marine conservation (MMAs, KBAs etc).

Moving away from challenges associated with methods, it is clear that the proposed Falkland Islands MMAs are imperfect in the context of encompassing the entire foraging ranges of wide-ranging marine predators. So where does this leave species that forage across vast areas of the ocean, and for which KBAs might also encompass vast marine areas? It might be that a fixed area approach to management may not be feasible or the most effective way to manage and conserve species, and we should look to combine fixed area management with other approaches.

The good news is that, in addition to existing large-scale regulations that are not area-specific (e.g., bycatch mitigation), other innovative options exist, which could potentially be used in combination with MMAs. For example,  Dynamic ocean management, could achieve similar protection to fixed-boundary spatial management in a smaller area, as it tracks the temporal shifts in the distribution of species and their threats, rather than having to encompass the entire temporal variability in a species range, within a fixed area (Maxwell et al. 2015). For some examples of this implemented in the USA check out TurtleWatch, WhaleWatch, and EcoCast.

A mixed flock of sooty shearwaters and imperial shags near Big Shag Island, East Falklands. Photo: R. Orben

Falkland Islands proposed MMAs

Despite limitations there is much to celebrate. The Falkland Islands proposed MMAs are an incredibly exciting development for marine management and conservation in the South Atlantic. The proposed MMAs include much of the Falkland Islands kelp forests, which play an important role in nutrient cycling, carbon sequestration and are crucial to larval life history phases of squid and fish, important to both fisheries and higher marine predators. They protect near-pristine benthic habitats and encompass the foraging ranges of many marine predators, while benefiting others by providing a buffer around breeding colonies.

In total, these areas would protect about 15% of the Falkland Islands Conservation Zones (i.e., Exclusive Economic Zone), allowing the Falkland Islands to make great strides towards contributing to the 2010 Aichi Biodiversity Target of 10% ocean protection (and the proposed 2030 Target of 30%).

The proposed MMAs, if designated, would also establish the policy and legislative framework for marine protection, which will pave the way for any future designations, facilitate the management and conservation of globally significant populations of marine predators, and usher in a new era of ecosystem-based management. However, there is more work to be done to support and refine this process. We are currently exploring how innovative methods, such dynamic ocean management, could compliment fixed area management to help conserve wide-ranging marine predators at relevant spatial scales.

Foraging black-browed albatross, Falkland Islands.

To access our paper please follow the link below:

Baylis, A.M.M., de Lecea, A.M., Tierney, M., Orben, R.A., Ratcliffe, N., Wakefield, E., Catry, P., Campioni, L., Costa, M., Boersma, P.D., Galimberti, F., Granadeiro, J.P., Masello, J.F., Pütz, K., Quillfeldt, P., Rebstock, G.A., Sanvito, S., Staniland, I.J. and Brickle, P. (2021), Overlap between marine predators and proposed Marine Managed Areas on the Patagonian Shelf. Ecological Applications. Accepted Author Manuscript e02426. https://doi.org/10.1002/eap.2426

This research was funded by the UK Government through The Darwin Initiative, The Falkland Islands Government, & the Winifred Violet Scott Estate Trust.

References

Augé, A., M. P. Dias, B. Lascelles, A. M. M. Baylis, A. Black, P. D. Boersma, P. Catry, S. Crofts, F. Galimberti, J. P. Granadeiro, A. Hedd, K. Ludynia, J. F. Masello, W. Montevecchi, R. A. Phillips, K. Pütz, P. Quillfeldt, G. A. Rebstock, S. Sanvito, I. J. Staniland, A. Stanworth, D. Thompson, M. Tierney, P. N. Trathan, and J. P. Croxall. 2018. Framework for mapping key areas for marine megafauna to inform Marine Spatial Planning: The Falkland Islands case study. Marine Policy 92:61–72.

Baylis, A. M. M., M. Tierney, R. A. Orben, V. Warwick-Evans, E. Wakefield, W. J. Grecian, P. Trathan, R. Reisinger, N. Ratcliffe, J. Croxall, L. Campioni, P. Catry, S. Crofts, P. D. Boersma, F. Galimberti, J. Granadeiro, J. Handley, S. Hayes, A. Hedd, J. F. Masello, W. A. Montevecchi, K. Pütz, P. Quillfeldt, G. A. Rebstock, S. Sanvito, I. J. Staniland, and P. Brickle. 2019. Important At-Sea Areas of Colonial Breeding Marine Predators on the Southern Patagonian Shelf. Scientific Reports 9:1–13.

Esch, G. . (Ed). 2006. Marine Managed Areas : Best Practices for Boundary Making. NOAA Coastal Services Cente.

Granadeiro, J. P., L. Campioni, and P. Catry. 2018. Short Communication Albatrosses bathe before departing on a foraging trip : implications for risk assessments and marine spatial planning: Bird Conservation International, 28:208–215.

IUCN. 2020. Guidelines for using A Global Standard for the Identification of Key Biodiversity Areas. Version 1.1. Prepared by the KBA Standards and Appeals Committee of the IUCN Species Survival Commission pp.220.

Maxwell, S. M., E. L. Hazen, R. L. Lewison, D. C. Dunn, H. Bailey, S. J. Bograd, D. K. Briscoe, S. Fossette, A. J. Hobday, M. Bennett, S. Benson, M. R. Caldwell, D. P. Costa, H. Dewar, T. Eguchi, L. Hazen, S. Kohin, T. Sippel, and L. B. Crowder. 2015. Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. Marine Policy 58:42–50.

Yaquina Head Seabird Monitoring: July 2021 Update

By, Laney Klunis, NSF REU Intern

Hello everyone!

We are excited to share with you an update on our nest monitoring of the common murres and cormorants at Yaquina Head Outstanding Natural Area (YHONA). Although our updates were on hiatus in 2020, we are happy to report were able to conduct monitoring. However, there was colony wide reproductive failure as a result of high rates of predator disturbance (bald eagles, 0.58/hour). At one point 15 bald eagles simultaneously hunting at Yaquina Head; a group size that has not been recorded at the site before or since.

This year, we began monitoring efforts in late May. In early July we were monitoring 161 common murre nests, 93 of which had eggs, and 11 of which had chicks. The first chicks hatched on June 28th on Lower Colony Rock and Satellite Rock.

Main colony rock at Yaquina Head Outstanding Natural Area, Newport, Oregon

Eagle Disturbances

As observed in recent years, bald eagle disturbances were fairly frequent within our Colony Rock nesting plots during the months of May and June. Beginning in July we have seen a noticeable decrease in disturbances. From June 2 – 30 June, 2021 we recorded 41 disturbances. Murres nesting in larger colonies appear to be holding their ground in all plots except for the top eastern half of Colony Rock where adult/sub-adult bald eagles perch periodically, allowing for gulls and turkey vultures to pillage unattended eggs. Flat Top Rock has remained nearly empty for the duration of the breeding season and was not included in this year’s monitoring efforts.

Cormorants

Along with common murre monitoring, we are also monitoring Brandt’s and pelagic cormorants. We are currently monitoring 22 Brandt’s cormorant nests and 37 pelagic cormorant nests. Chicks began hatching the week of July 5th and the majority of our nests for both species now have chicks.

We look forward to updating you on the success of our nests in August.

NSF REU Intern, Laney Klunis monitoring at Yaquina Head on a foggy morning.
This year, we’re delighted to have the addition of several new (and returning) lab members including Laney Klunis, a 2021 Research Experience for Undergraduates Intern from California State University Monterey Bay; Edward Kim, the 2021 Intern at Bureau of Land Management; Alyssa Nelson, USFWS Intern and former undergraduate lab member; and Noah Dolinajec, student in the Graduate Certificate in Wildlife Management (OSU) program are conducting field work for the 2021 YHONA season. We are pleased to be up and running with a full field team this year!

A field season on Middleton Island: Part II – cormorant oceanographers

By Jillian Soller, Brendan Higgins, and Adam Peck-Richardson
Middleton Island, Cormorant Oceanography Project, Oregon State University, Institute for Seabird Research and Conservation, Scott Hatch, Gulf of Alaska
Seabird research tower on Middleton Island – maintained by the Institute for Seabird Research and Conservation

We are drafting this blog during our last few days on Middleton Island. Our field season here flew by and this year’s chicks are beginning to fledge. We tagged 21 pelagic cormorants nesting on the seabird research tower and data are streaming in through the cell phone data network. For background on the seabirds and researchers that call Middleton Island home, and for an introduction to our work, check out our previous blog post: “A field season on Middleton Island: Tracking pelagic cormorants in the Gulf of Alaska.”

Getting to Know Pelagic Cormorants

Pelagic cormorants are medium-sized, piscivorous seabirds that inhabit rocky coasts from the Baja Peninsula into northern Alaska, and across the Aleutian Island Chain to Siberia. The second smallest of the six extant species of cormorant in North America, pelagic cormorants weigh between 1.5 and 2 kilograms with a wingspan of about 1 meter. Generally thought of as having all black plumage, they are quite colorful when viewed up close. During the breeding season their feathers shimmer with iridescent green, blue, and purple tones and the exposed skin around their eyes and bill becomes bright red.

Pelagic cormorants mostly forage along the nearshore seafloor and nest either singly or in large colonies, typically on steep cliffs above the water. The majority of the North American pelagic cormorants nest in Alaska, with an estimated population of 50,000 pairs. In the 1980s and 90s Middleton Island was home to the largest pelagic cormorant colony in the state with 2,300 pairs. However, the 1964 earthquake uplifted the island and the cliffs have since eroded into sloping bluffs. This loss of nesting habitat lead cormorant numbers to decline steeply. Today, fewer than 200 pairs nest on the island.

Middleton Island, Cormorant Oceanography Project, Oregon State University, Pelagic Cormorant Chicks
Four pelagic cormorant chicks at their nest at a window in the research tower

Building on a Research Legacy

Despite their broad distribution, pelagic cormorants are relatively poorly understood. Prior tagging studies on Middleton have shed some light on pelagic cormorants’ foraging behavior by examining dive depth, duration, and frequency (Kotzerka et al. 2011, Stothart et al. 2016). We are expanding on this knowledge by deploying GPS tags with integrated depth, temperature, motion, and salinity sensors. By examining where and how deep cormorants dive, we can make useful inferences about their ecology and about the places they inhabit.

Previous work has shown that cormorants breeding here spend the winter in southeast Alaska and northern British Columbia. One bird banded here in 2005 was even resighted in 2008 on Galiano Island in the Salish Sea (Hatch et al. 2011). We will continue to track a portion of our tagged cormorants through their post-breeding migration. Long term GPS tracking is made possible by solar panels integrated into the tags.

Cormorants as Oceanographers

A primary goal of our cormorant tagging work is to push the limits of what is possible for a seabird tracking project. In addition to studying cormorant behavior, we are also focused on collecting high-resolution oceanographic data as the birds swim, dive, and forage in coastal marine waters. To do this successfully we need reliable tags with specialized sensors. The newest tag models, which we are currently testing, include fast response thermometers and conductivity sensors (CTDs). If successful, these sensors will allow us to collect water temperature and salinity measurements. When paired with pressure (depth) data, we can use a series of cormorant dives to construct 3D visualizations of the temperature and salinity structure through the water column (see figures below). 

Temperature measurements collected by a pelagic cormorant across a series of dives reveal the internal temperature structure of the coastal waters (top; credit Dr. Jim Lerczak). (CTD Cormorant Oceanography Project)

Tag Effects

It is a challenge to study the effect that researchers have on an animal by capturing and fitting it with a tag. In particular cliff nesting cormorants can be challenging to capture at their nests, recapture, or observe. The lab-like setting of the colony on Middleton Island and the nesting population of color-banded individuals (from years of previous research) offered us a rare opportunity to closely monitor individuals after we captured and tagged them.

Our approach

We assess tag effects by comparing the behavioral responses of the individuals that we captured and tagged with a control group of birds that had not been captured in 2020. We approached this in three different ways. First, we will compare the productivity of tagged nests versus untagged nests. We intensively monitored a subset of tagged and untagged nests during daylight hours (3:30 am to midnight). By recording the time each parent spends attending the nest, and how often they feed their chicks, we will compare the contribution of tagged to untagged parents. Our third angle of inquiry is based on nest attendance. We checked tagged nests and control nests five times a day to record which pair member is attending the nest. These data will add to our knowledge of how our study species is affected by our handling and tagging activities and better inform future research efforts.

Future Research – Scaling Up

Middleton Island is an ideal venue to test our tags and tagging techniques. The tower provides a unique opportunity to reliably capture and tag cormorants, observe tagged individuals, and recover tags. The lessons learned from this season’s effort will help us refine our tagging methods, streamline our data management and analysis techniques, and assess how well our oceanographic GPS tags are performing in the wild. We will then apply these lessons to the next study location.

In late 2020 and early 2021 we will be working with collaborators at the United Arab Emirates University to tag Socotra cormorants nesting in the UAE and in Bahrain. Our work will focus on the movement ecology of this incredible species and water circulation processes in the Arabian Gulf.

References

Hatch, S. A., V. A. Gill, and D. N. Mulcahy. 2011. Migration and wintering sire of Pelagic Cormorants determined by satellite telemetry. Journal of Field Ornithology 82: 269-278.

Kotzerka, J., S. A. Hatch, and S. Garthe. 2011. Evidence for foraging site fidelity and individual foraging behavior of Pelagic Cormorants rearing chicks in the Gulf of Alaska. The Condor 113: 80-88.

Stothart, M. R., K. H. Elliot, T. Wood, S. A. Hatch, and J. R. Speakman. 2016. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants. Journal of Experimental Biology 219: 2192-2200.

A field season on Middleton Island: Tracking pelagic cormorants in the Gulf of Alaska

By Brendan Higgins, Jillian Soller, and Adam Peck-Richardson
Sunset over the seabird tower. Middleton Island, Alaska.

Greetings from Middleton Island, Alaska! This unique island in the Gulf of Alaska will be our home for six weeks as we investigate one of its common residents, the pelagic cormorant. We arrived on Middleton June 29th onboard a chartered nine-seat plane after a whirlwind shopping trip in Anchorage. The one-hour flight afforded us great views of Prince William Sound and the Kenai Ice field. Middleton Island, a treeless, 3.5-mile-long island is home to a variety of seabirds. This includes black-legged kittiwakes, rhinoceros auklets, common murres, tufted puffins, glaucous-winged gulls, and most importantly, pelagic cormorants. Middleton’s unique history has created an unprecedented opportunity for seabird researchers to obtain close-up access to ledge-nesting birds.

Field Work During A Pandemic

We arrived on Middleton while following a carefully considered COVID-19 mitigation strategy. The plan was approved by Oregon State University, and met the requirements laid out by the State of Alaska, and the Institute for Seabird Research and Conservation (ISRC) who operates the long-term seabird studies on the island. Before traveling, our team members, two from Alaska and one from Oregon, self-quarantined for two weeks to minimize the risk of spreading the virus.

While traveling we followed all the recommended precautions to reduce risk of transmission (infection) including wearing face-masks, social distancing, and using hand sanitizer. Travel happened in a single day (even from Oregon). Upon arrival we began a second two-week quarantine period on the island. This reduced the risk to the small crew on the island. Our careful planning worked and we are beginning our fourth week on Middleton symptom free.

Blog authors and seabird field biologists in a time of Covid-19.

Middleton Island History

The first biological surveys of Middleton Island occurred in 1956. Historically, the island was used for a variety of other purposes. In the late 1800’s, arctic foxes were introduced to Middleton Island and fox farming occurred here through the 1920’s. Up to 250 foxes roamed the island and fed primarily on nesting seabirds.

During the Cold War, ownership of the island transferred to the U.S. Air Force. The Air Force constructed a dock, followed by an airstrip, expansive housing, and several different radar towers. The infrastructure was fully operational by 1958. By 1963, the Air Force was completely gone. However, the radar towers remain. The maritime climate of the island has not been kind to the Air Force buildings. Today they are well on their way to being reclaimed by the salmonberries and fireweed. Additionally, rusting fuel drums and exposed skeletons of buildings are scattered abundantly around the island. Seabirds have made themselves perfectly at home nesting among the dilapidated structures.

The wreck of the S/S Coldbrook. The ship ran aground on the reefs surrounding Middleton Island in 1942 and was subsequently raised out of the ocean during the uplift from the 1964 earthquake. It now serves as a home for hundreds of nesting pelagic cormorants and black-legged kittiwakes.

Conversion from radar to seabirds

In 1993, Dr. Scott Hatch (ISRC) began converting the largest of the radar towers into the cornerstone of a seabird research station. Today, close to 900 artificial ledges and windows allow kittiwakes, cormorants, and their nests to be directly observed and accessed in a laboratory like setting. Easy access to these cliff-nesting birds makes Middleton island an ideal place for studies like ours.

Cormorant Oceanography

Our goal is to place tags on pelagic cormorants to obtain detailed tracks of their foraging trips in the marine waters surrounding Middleton Island. Additionally, the tags collect oceanographic data. The data from the tags will be processed to provide measurements of ocean waves, seafloor bathymetry, surface currents, water temperature and salinity.

So far, we are focusing on reconnaissance and preparations for the capture and tagging effort. The bulk of our work has been setting up and testing a cellphone network booster system that will communicate with the tags. The system consists of multiple receiving and broadcasting antennas that pickup and amplify the signal coming from a tower in Prince William Sound over 50 miles away. Luckily, the network booster is working well and the tags are connecting and downloading data. Our oceanography team is monitoring the tags from Oregon. They will start processing data as it is collected!

Welcome!

By Rachael Orben

Welcome to the blog of the Seabird Oceanography Lab. We engage in seabird science research along the Oregon coast, and worldwide. This blog will be used to provide updates on fieldwork, research, and anything seabird related! We may occasionally discuss seals. Please visit us again!

Previous Blog Posts

Over the past few years, our members periodically wrote blogs about our research for other venues. Follow the links below to blog posts written by members of the Seabird Oceanography Lab.

A series of blog posts written in collaboration with the Seabird Youth Network about red-legged kittiwakes (link). Followed by updates by Seabird Youth Network interns that includes resighting banded red-legged kittiwakes (link). Our recent project with red-legged kittiwakes occurred during three years of successively worse breeding success. This blog posted in 2017, was written by Rachael Orben as she contemplated why the red-legged kittiwakes nesting on St. George Is., AK did not lay eggs.

A blog describing Stephanie Loredo’s research on common murre movements on the Oregon coast.

The common murre capture crew from 2017.

Thoughts on western gull foraging preferences by Stephanie Loredo (link), along with a summary of western gull at-sea distributions relative to coastal marine reserves authored by Rob Suryan (link).

A tagged western gull sits on its nest after eluding the noose carpets placed strategically near-by.

Midway Atoll is home to the largest albatross colony in the world. A visit there can be more than overwhelming. Here are links to two blogs written by Rachael Orben after two, two-week visits to study albatross foraging ecology. Blog one and blog two.

Midway Atoll, 2015.

For more information about these projects and much more, our lab website can be found here: https://hmsc.oregonstate.edu/seabird-oceanography-lab