Notes from the Field: Ross Island, Antarctica

By Suzanne Winquist

Have you ever wished you could see what the world was like before humans?

Living in a penguin colony in Antarctica as part of the Penguin Science team is the closest I have come to getting that experience. My first season “on ice” felt like stepping out of a time machine straight into this other, animal world.

A group of Adélies standing on the sea ice at the Cape Crozier colony. Ross Island, Antarctica.

Many seabird colonies buzz with activity in the breeding season, but an Adélie penguin colony has a unique bustle filled with outsized personalities and industrious swaggers. When you multiply this by 500,000 (roughly the breeding population of the Cape Crozier colony) it is easy to be swept up by the drama and dazzle of a big penguin city.

I’ve recently arrived back from my third season studying Adélie penguins for my graduate research with OSU’s Dugger and Seabird Oceanography Labs. I spent most of this past season at Cape Royds, a much smaller colony with ~4,000 breeding adults. Any Antarctic history buffs reading this might recognize this as the site where the explorer Sir Ernest Shackleton and his crew made their home during their 1907-1909 Nimrod Expedition.

Shackleton’s hut, built for his Nimrod expedition 1907-1909.

I felt a camaraderie with Sir Ernest Shackleton and his men each time I passed by their snug cabin on my short walk from camp to the penguin colony. Despite Shackleton’s crew being some of the earliest humans to set foot on Ross Island, our rustic camp life echoed the ways they lived – no running water, eating the same canned and dried foods, journaling about the same surreal landscape, and wearing enough wool to prompt thoughts of needing a personal flock of sheep. Unlike Shackleton and crew, I could pick up my satellite phone and call any corner of the planet. McMurdo Station, the US’s largest Antarctic science base, is now just a 20-minute helicopter ride away – assuming the weather is good.

My yellow Scott tent at Cape Royds. We sleep in these sturdy canvas tents and use a larger RAC tent for cooking, data management, and warming up by the propane heater. In the background is Mt. Erebus, a 12,448 ft active volcano. At 77° S, it is the southernmost active volcano in the world.
An Adélie penguin equipped with a video logger and dive tracking device ready to head out to sea.

Advances in technology in the past century mean it is much easier to explore and measure changes in this harsh and remote environment. The navigation, motion sensing, and image capture technology that has become small enough to fit in our pockets is, as it turns out, also small enough to be carried by a penguin.

For my research, I am using miniature video loggers and dive tracking devices to get a new perspective into how penguins use their underwater habitat. These devices are taped to the feathers of breeding birds for a single foraging trip, lasting from 1-5 days. These birds are recaptured when they return to their nest to feed their chicks and the devices and the data they carry are retrieved.

With the addition of this past season, our project will have foraging video from over 60 penguins collected across three years and at two different colonies. We have already learned a lot from these videos. We have observed penguins perusing the seafloor for amphipods, snatching up bioluminescent krill in the dark of their deeper dives, and encountering dense swarms of krill, fish, and squid in extremely shallow water when foraging along the underside of the ice. Now that I am back in our human world, I will combine all this video with diving and movement data to answer more specific questions about how penguins use sea ice while foraging, the number and types of prey they capture in different underwater habitats, and the energetic costs of different foraging strategies.

Penguins diving in a crack that formed in the sea ice near the Cape Royds colony, Dec 2023.
Penguins foraging together.
Penguin catching a fish.
A krill about to be captured.

Through changing climates and extractive fisheries, our human societies are increasingly connected to even the most remote corners of our planet, like the Ross Sea. It is too late to find out what this ocean looked like before the first whalers arrived. With the tools we have now, the penguins are able to aid us in exploring their underwater home, refining our understanding of what exists today so that we can be better advocates for the protections they will need to continue thriving in the future.

Adélies returning with full bellies from a foraging trip in the Ross Sea. Ross Island, Antarctica, Dec 2023

Notes from the Field: Columbia River Estuary, Oregon, USA


In early July, the Cormorant Oceanography Project seabird team, myself (Alexa Piggott), Adam Peck-Richardson, and Rachael Orben, traveled to the Columbia River Estuary, at the border of Oregon and Washington, to capture and tag adult Brandt’s cormorants. Our goal was to test the performance our latest GPS/GSM biologging tags made by Ornitela.

Brandt’s cormorants’ nest, roost, and forage near the mouth of the Columbia River. We were specifically targeting cormorants roosting on estuary channel markers, as these can be relatively easy locations to catch birds during the day. Over two days, we successfully deployed 6 biologging tags. Preliminary data, shows the cormorants moving and foraging near the mouth of the estuary and spending time at Cape Disappointment, WA.

We also spotted one of our newly tagged birds on the second day, resting on pilings with other cormorants and close to actively foraging Brandt’s and double-crested cormorants.

These tagged cormorants will collect detailed location and movement data, along with high quality profiles of water temperature, bottom soundings, surface currents (based on bird drift), and IMU data used to recover wave statistics. The data collected by these cormorants will be used to estimate bathymetry and circulation in the estuary and help calibrate and improve nearshore modeling.

Visualizations of these and previous tag deployments on cormorants in the Columbia River can be found on the Animal Telemetry network’s data portal.

The Cormorant Oceanography project is based at Oregon State University and funded by the Office of Naval Research.

The Astoira-Megler bridge and view towards the mouth of the Columbia River Estuary

Notes from the Field: Hawar Islands, Bahrain

By Adam Peck-Richardson

The Cormorant Oceanography Project made its first visit to the Hawar Islands, in the northern Arabian Gulf, in early December 2021. Myself (Adam Peck-Richardson) and collaborator Dr. Sabir Bin Muzaffar (United Arab Emirates University) spent four days visiting the Socotra cormorant colony at Rubd Al Shariqiya, a 1.5 km wide desert island surrounded by expansive shallow seagrass beds (and the world’s largest dugong aggregation). Unfortunately, the timing of our visit was later than originally planned and most of the cormorant chicks (10s of thousands) were very large and very mobile. This made it difficult to capture and tag adults at nests, but we were able to deploy four tags and gained valuable insights for further tagging work in 2022.

Two adult Socotra cormorants attend their nests at the Hawar Islands colony as large juvenile cormorants mass in distance (photo: Adam Peck-Richardson).

Data from the four tags immediately began streaming back to us (data are transmitted through cell phone network connections) and we are using this preliminary deployment to further improve tag design and performance. These GPS/GSM biologging tags, made by Ornitela (Vilnius, Lithuania), collect location and movement data and take detailed water temperature and depth measurements when the cormorants dive. Meanwhile, our oceanographer teammates at Oregon State University, led by Dr. Doruk Ardağ, have been spinning up a model of water temperature and circulation in the Arabian Gulf. The oceanographic data collected by cormorants are now being used to help calibrate and improve these complex regional models.

In 2022, we are planning to deploy additional oceanographic tags on Socotra cormorants at several colony sites throughout the region. These deployments will provide valuable data on population movements of Socotra cormorants and improve oceanographic modelling in the Arabian Gulf.

Juvenile Socotra cormorants gather and wait for adults to return from foraging in the northern Arabian Gulf (photo: Adam Peck-Richardson).

The Cormorant Oceanography project is based at Oregon State University and funded by the Office of Naval Research. Our work in Bahrain is made possible by logistical support from Dr. Abdulqader Khamis (University of Barcelona) and Dr. Humood Nasser (University of Bahrain), and administrative support from H. E. Sh. Ebrahim Alkhalifa and Rawan Suleiman (UNESCO – Arab Regional Centre for World Heritage). Local travel and logistics were coordinated with Sam Rowley and Nick Green (BBC – Natural History Unit) who are scouting for an upcoming project, Asia. Check out the brief clip below, from BBC’s Planet Earth, for an overview of how the Hawar Socotra cormorant colony fits into the Arabian Gulf’s desert-marine ecosystem.

Notes from the Field: Midway Atoll (Pihemanu)

By Scott Shaffer

This was the rainiest and windiest conditions we’ve experienced at Midway over the years. Despite the weather, the albatross field crew of myself (Scott Shaffer), Henri Weimerskirch, Sarah Youngren, and Dan Rapp deployed nearly 80 data logging devices on Laysan and black-footed albatrosses over two weeks during the last half of January 2022. Our primary goal was to record albatross and fishing vessel interactions using GPS loggers enabled with radar detection sensors.

A Laysan albatross pair. The bird on the right is carrying at GPS data logger enabled with marine radar detection. The tags are taped to the feathers with a water-proof tape and are easily removed when the bird is recaptured.

Preliminary data show one Laysan albatross passing within range (but not interacting) of a fishing vessel upon its return to Midway after 10 days at sea. Stay tuned for more updates as we start analyzing the rest of the dataset. We plan to cross-reference the vessel detections with the AIS dataset amassed by Global Fishing Watch to better understand when and where albatrosses are encountering fishing vessels.

Sunset on Midway Atoll (Pihemanu).

A few images from Midway in January. We were incredibly lucky to be able to get a field team out to the island!

This project is funded by the National Fish and Wildlife Foundation (PI – R.A. Orben) to support the mission of conserving natural resources of the Papahānaumokuākea Marine National Monument, Northwest Hawaiian Islands. Photos were taken under permit: PMNM-2021-012. All field personnel were vaccinated against covid-19 and underwent a period of quarantine on arrival to Midway.