Tag Archives: plant stress

Meet the Team: The Bounty of a Season

Success in Summer 2022

For the past few years we’ve limited gatherings on the farm due to COVID-19 restrictions. In the summer of 2022, however, we were finally able to welcome the public back for Nursery Program Field Days. We’d like to take this opportunity to boast about a few of our highlights from the last several months.

Sadie Keller presenting to growers
Sadie Keller discusses shade tree physiology

For the first time, the Nackley Nursery Production team was an official stop on the Oregon Association of Nurseries Farwest Innovative Production Grower Tour. Our portion of the tour at NWREC showcased sensor-controlled irrigation, heat-stress mitigation techniques, LiDAR smart-sprayer systems, and practices that can reduce boxwood blight spread, and methods of scouting and monitoring insects in nurseries and greenhouses. These projects offer a wide range of savings for growers.: up to 80% improvement in irrigation efficiency, up to 70% reduction in sprayed pesticides, and a significant reduction in boxwood blight infection.

image shows participants examining landscape plants
Stakeholders evaluating climate-readiness of various landscape ornamentals

The second big event was an open house for our Climate Ready Landscape Plant trial, the largest coordinated landscape plant irrigation trial in the Western US. Plant professionals from around the region came to rate plants and discuss how we, as a society, are going to maintain healthy landscapes while faced with increasing extreme weather.

Ongoing projects that will continue this year include, research by our graduate student Sadie Keller, who is investigating Oak and Maple drought tolerance. This summer, Sadie shared her preliminary findings with scientists at the American Society for Horticultural Science, in Chicago.

Sadie Keller and Lloyd Nackley at the ASHS Meeting in Chicago.

In addition, Dr. Melissa Scherr continues our research on the Pacific Flatheaded beetle, with the anticipation of a grower event hosted at NWREC discussing current research on Flathead Borer biology and control this coming April – 2023.

The Nursery Program Team, summer 2022.

Irrigation: Drought Physiology of Ornamental Shade Trees

Sadie Keller

Highlights:

  1. Shade tree growers need to be prepared for the effects of climate change in Oregon.
  2. In order to equip growers with the tools necessary for production success, we aim to determine critical shade tree stress thresholds, characterize plant responses to drought conditions, and correlate remotely collected spectral images with ground based plant water stress measurements.
  3. Previous studies have sought drought response measurements for Acer rubrum (Red Maple) and Quercus rubra (Red Oak), but never in a nursery production setting.
  4. We aim to disseminate this information to Oregon shade tree growers at the completion of this experiment with the hope to aid growers in making data driven irrigation decisions and demonstrate the use of these technologies in nursery production settings.
Sadie in some of the shade trees equipped with soil moisture sensors and a weather station.
Sadie Keller in the shade trees equipped with soil moisture sensors and a weather station.

The Problem:

In Oregon’s Willamette Valley, the heart of the nursery country, rainfall is scarce during the summer and humidity is low. Oregon’s dry summer conditions can lead to low moisture stress conditions for maples and oaks in normal years. Plant stress resulting from low soil moisture, high heat, and low relative humidity have been exacerbated in recent years with the increasing frequency of heatwaves and drought. Drought and heat stress scorch the maple and oak canopies, which can lead to decreased plant quality and economic losses for shade tree growers. Sensor-based technologies can be used to model plant responses to environmental gradients to develop warning systems to help growers prevent stress and bridge a knowledge gap in the nursery production industry regarding drought responses.

How are we studying plant stress responses?

Starting late June 2022, we will implement two irrigation treatments (well-watered and drought) in our shade tree planting with each row having independent irrigation control. The well-watered rows will be maintained at a soil water potential of  >-1.0 mPa. The drought treatment rows will be allowed to naturally dry down to a soil water potential of -4 mPa. If during the experiment, our metrics (stomatal conductance and stem water potential) do not show considerable responses at -4 mPa tension, we will allow the drought treatment to continue to dry down progressively (-1 mPa) until stress is evident.

Why and how do we measure stem water potential?

Plant water status is commonly defined in terms of water potential or the ability of the water to do work. In most cases, well watered plants have “high” water status and drought conditions lead to a “low” water status (Levin and Nackley 2021). Using the pressure chamber, we will take midday stem water potential measurements twice weekly from 12pm-3pm. This time frame is important because it represents the time of day where leaf transpiration is at its maximum.

The pressure chamber
The pressure chamber (https://www.pmsinstrument.com/)

First, we will cover the leaf and stems to be measured with an opaque bag for at least 10 minutes before pressurization to allow the plant to stop transpiring. Once we excise the sample from the tree it should be placed into the pressure chamber or “pressure bomb” within 30 seconds (Levin 2019). Once the stem is placed into the chamber and pressure is applied, the amount of pressure that it takes to cause water to appear at the cut surface tells us how much tension the stem is experiencing.

Why and how do we measure stomatal conductance?

We measure stomatal conductance using a porometer that measures the degree of stomatal openness and the number of stomata (Licor.com). This indicates the plant’s physiological response to its current environment. If a plant is stressed, it will tend to close its stomata and lower the stomatal conductance rate. We will be using a combination of the LI-6800 Portable Photosynthesis System and the LI-600 Porometer/Fluorometer to make our measurements twice a week from 12pm-3pm.

For more information:

Please stay tuned in the coming months for more blog posts about how we will find plant stress thresholds by measuring the hydraulic conductivity of these shade trees. We will also correlate remotely collected spectral and thermal images with our ground based plant stress measurements to demonstrate how implementing a UAS equipped with a multispectral and thermal camera can be used to detect water stress in nursery production.