In April 2016, Oregon State University engineering doctoral students Dylan Jones and Seth McCammon deploy a Seabotix remotely operated vehicle to perform an autonomous underwater survey at the North Energy Test Site off the coast of Newport, OR.
In April 2016, Oregon State University engineering doctoral students Dylan Jones and Seth McCammon deploy a Seabotix remotely operated vehicle to perform an autonomous underwater survey at the North Energy Test Site off the coast of Newport, OR.

The U.S. Department of Energy’s Water Power Technologies Office recently announced support of up to $22 million for 10 marine energy research projects, including three represented by researchers from Oregon State University’s College of Engineering. (The award amounts for each project are under negotiation.) 

“For industry to move toward commercialization, we need to utilize all of our available resources,” said  Daniel R. Simmons, assistant secretary for energy efficiency and renewable energy, in a Dec. 22 article on the DOE website. “With this funding opportunity, we addressed several critical gaps in the marine energy industry to advance early-stage R&D and build testing infrastructure, as well as foster collaboration among non-federal research entities.”

One of the proposed projects, led by Oregon State, will consider the co-design of marine energy converters for autonomous underwater vehicle docking and recharging. Two partner institutions, the University of Washington and the University of Hawaii at Manoa, will play supporting roles. 

“No one has been able to design a system to reliably dock an autonomous underwater vehicle with a marine energy converter in energetic ocean conditions,” said Geoff Hollinger, associate professor of mechanical engineering and robotics and Oregon State’s principal investigator for the energy converter project. “We would be the first to do that. It would open up a huge new market for inspection, monitoring, and repairs in marine energy systems without relying on expensive ship support.”

Testing will be conducted in the O.H. Hinsdale Wave Lab at Oregon State.

In a second project, researchers will test models for integrating marine energy into microgrids. Oregon State will support the work, which will be led by the University of Alaska Fairbanks.

Microgrids are local energy grids that can be connected to the main energy grid or operated independently.

“Over the past few years, there’s been agreement on what are good models for wind generation and other renewable energy sources, but models for marine hydrokinetic converters need further validation and benchmarking,” said Eduardo Cotilla-Sanchez, associate professor of electrical and computer engineering and Oregon State’s principal investigator for the microgrid project. “I’m most excited about bringing together the marine microgrid environment and the expertise of on-shore power engineers to leverage their historical knowledge of how to run power systems efficiently and safely, while advancing new forms of clean energy that the ocean provides.”

For the third project involving the College of Engineering, researchers will pursue the development of modeling methods that facilitate the design of wave energy converters. The venture will be led by the University of Washington and supported by Oregon State and the University of Alaska Fairbanks.

Members of the Energy Systems Group inspect microgrid electrical equipment in at the Wallace Energy Systems & Renewables facility at Oregon State, February 2019. From left: College of Engineering graduate Marissa Kwon; Eduardo Cotilla-Sanchez; Yue Cao, assistant professor of electrical & computer engineering; Ted Brekken; and doctoral student Ali Haider.

Wave energy converters transform the kinetic and potential energy of ocean waves into mechanical or electrical energy.

“Our objective is to develop models for wave energy converters that bring electrical, hydrodynamic, and mechanical domains under one framework and that lead to improved simulation speed, flexibility, and design,” said Ted Brekken, professor of electrical and computer engineering at Oregon State and one of the researchers representing the team focused on the model’s electrical components.

Bryson Robertson, associate professor of coastal and ocean engineering at Oregon State and principal investigator for the wave energy modeling project, offered a broader context about the potential impact of all three endeavors: “The work will help to fill fundamental gaps in our knowledge of marine energy sources and to overcome barriers to the development of emerging technologies,” he said. “Ultimately we hope it leads to reduced costs and improved performance of renewable marine energy.” The projects will also offer cross-disciplinary research experiences for College of Engineering students.

— By Steve Frandzel

Photo of Yue Cao

Yue Cao, assistant professor of electrical and computer engineering in the College of Engineering, will play a significant role in a new $1.5M U.S. Department of Energy ARPA-E award on LOCOMOTIVES – Lowering CO2: Models to Optimize Train Infrastructure, Vehicles, and Energy Storage. Cao will help develop electric propulsion and grid/charging infrastructure models. The project will deliver an open-source tool for futuristic (20-30 years) railroad planning that involves electrified locomotives operating from multi-physics energy storage. This is a collaborative effort with North Carolina State University.

Anita Sarma
Anita Sarma, associate professor

“Open source software is changing the technology and workforce landscape. Our work will help open source software tools and technology support diverse cognitive styles that will help bring diversity in thought by enabling diversity in open source contributors.”

 – Anita Sarma, associate professor of computer science in the College of Engineering at Oregon State.

Principal investigators:

  • Lead PI: Anita Sarma, associate professor of computer science, Oregon State University
  • Co-PI: Margaret Burnett, Distinguished Professor of computer science, Oregon State University

In collaboration with:

  • PI: Igor Steinmacher, assistant professor, Northern Arizona University
  • Co-PI: Marco Gerosa, associate professor, Northern Arizona University

Agency:

National Science Foundation

Award amount:

$1.4 million between the two universities, $870,773 to Oregon State.

Research objectives:

This research will investigate whether and how open source software tools and technologies have gender biases tied with diverse problem-solving styles, and how to remove any such biases.

This work will harness foundational gender research to provide theory-based yet practical solutions and redesigns of open source software projects to address the underrepresentation of women.

The redesigns and the process of creating inclusive tools will be empirically evaluated to create a compendium of “best practices” for fixing gender-bias bugs, in both products (what suitable fixes are to such bugs) and processes (how open source software teams can work together to fix gender-bias bugs).

Broader impacts:

Open source is having a significant impact on society, in the products it produces and the career paths that it facilitates. However, women are vastly underrepresented among open source developers. This is a significant concern to these communities because it prevents them from receiving the benefits of a larger talent pool and of team diversity. The problem is perpetuated when women developers miss the learning and professional growth opportunities that open source software projects provide, and are overlooked when open source contributions are used to make hiring decisions. Our work will help break down these gender-bias barriers in tools and technology used in open source software.

More information is on the NSF website.

Yue CaoYue Cao, assistant professor of electrical and computer engineering in the College of Engineering, is collaborating with Amazon Prime Air to make UAV (unmanned aerial vehicle) delivery a reality. Prime Air promises to deliver a package to the customer within 30 minutes after receiving the order.  Cao will help develop an advanced propulsion system that is more reliable and efficient. This all-electric flying vehicle will have to address multi-disciplinary challenges in the areas of power electronics, motor drives, energy storage, and cooling.

The delivery  program was featured in the article,  “Amazon expects ‘Prime Air’ drone delivery ‘within months’” by ABC News.

Stephen Ramsey
Stephen Ramsey

In August, Stephen Ramsey, assistant professor of computer science in the College of Engineering, along with his collaborators, received an additional $351,443 in funding to develop a biomedical data translator, bringing the total funds this year to $788,443.

The award is part of a program by the National Institutes of Health (NIH) to  build a tool that brings together medical data from various sources to better understand health and disease and, ultimately, to diagnose and treat patients more quickly.

Ten teams across the country are working on the biomedical data translator, in what started out as a competition, but is now a collaborative effort.

The unusual program required the teams to first solve a series of puzzles before they could view the RFA (request for application). The funding is not a grant, but instead called an “other transaction” award. The National Center for Advancing Translational Sciences (NCATS), the branch of NIH that is running the program, continually assesses the progress of the teams and doles out funding for short periods of time based on the progress of the teams.

“It’s a very flexible model which enables us to be nimble,” Ramsey said. “They can make adjustments to the deliverables to focus resources on things that are working, and not dedicate resources to approaches that aren’t working.”

Read the full story.

Photo of Spencer Liverman and Thinh Nguyen.
Spencer Liverman (left) and Thinh Nguyen (right) are co-principal investigators with Arun Natarajan on a Navy contract.

E-Lambda LLC, an Oregon State University spin-off, was just awarded a Navy Small Business Innovation Research contract for $225,000 to develop a high-speed, secure, wireless communication system for underwater platforms.

Alan Wang, associate professor of electrical and computer science in the College of Engineering, co-founded E-Lambda LLC with his graduate student, Jyotindra Shakya, to commercialize research from the Engineering Photonic Research Laboratory.

The Navy contract is the first project for E-Lambda. The principal investigator for this Navy SBIR project is Spencer Liverman, a Ph.D. student in in Dr. Wang’s group. Thinh Nguyen, professor of electrical and computer engineering, and Arun Natarajan, associate professor of electrical and computer engineering serve as co-principal investigators.

For the network they will be developing free space optical technologies, using lasers to transmit high-speed data. Potential commercial applications include an alternative to Wi-Fi, smart-home technology, and secure communication infrastructure for governmental agencies such as FBI and CIA.

photo of Danny Dig

Danny Dig and his colleagues discovered widespread problems in mobile app development that can cause applications to be unresponsive and “freeze.” After looking at over 1,000 open-source mobile apps, they found two main problems — underuse and misuse of asynchronous programming.

“It’s very easy, if you are not careful, to write a mobile app that is unresponsive,” Dig says. “The number one culprit for a frozen app is that a programmer has written a blocking call, such as accessing the cloud, on the main thread that processes other user-interface events and actions.”

The solution is to move the blocking calls into the background with asynchronous programming. Dig’s team has sent out hundreds of patches to developers to fix the problems in their code, and they have created tools that developers can use to find and fix asynchrony errors. Their webpages LearnAsync.NET and refactoring.info/tools give many examples of asynchronous programming and access to the tools.

“Now what I want to do is help people avoid making those mistakes in the first place,” Dig said.

As part of his educational efforts, Dig will be presenting in Portland, Oregon for the Technology Association of Oregon in June. The cost is $25 for members and $45 for non-members.

The presentation will be a technical overview of why asynchrony is important, it will include descriptions of the common pitfalls and best practices, and he will also demonstrate the tools he has developed.

“I see this as a way of transferring knowledge from research into practice, but it’s also important for me to have a dialog with programmers. I bring back their feedback to the research,” Dig said. “So, this is a fabulous event for me to establish those connections.”

Story by Rachel Robertson

Photo of Ben McCamish, Eduardo Cotilla-Sanchez, and Ziwei Ke
Ben McCamish, Eduardo Cotilla-Sanchez, and Ziwei Ke demonstrate the synchrophasor in the Wallace Energy Systems and Renewables Facility. Photo by Gale Sumida.

Oregon State press release posted 5/7/2015.

A new energy test bed using cutting-edge sensor technology has been located at Oregon State University, designed to gain a better understanding of the local electric grid.

The Bonneville Power Administration awarded a $350,000 grant to develop a system that will provide a detailed analysis of load composition and power use. The project should help accommodate new types of load demands and new sources of renewable energy, such as wind and wave energy, while averting blackouts.

The sensors, called phasor measurement units or “synchrophasors,” can take voltage and current measurements 60 times a second, compared to standard sensors that take measurements every two to four seconds. All data will be time-stamped and synchronized with a common clock, allowing researchers to track electrical spikes and other anomalies throughout the grid.

A better understanding of these anomalies could eventually lead to a “smart grid” that can automatically detect blackout warning signs and disconnect portions of the grid to protect critical loads.

“These synchrophasors will allow us to develop better load models,” said Eduardo Cotilla-Sanchez, an OSU assistant professor of electrical and computer engineering and leader of this project. “Currently, our cascading power outage analysis assumes the campus load to be like a giant toaster – a big resistor that doesn’t change over time – but reality is much more complex.

“We won’t be able to have accurate models until we have a better understanding of the load composition and time-varying demands.”

Three of the synchrophasors have already been installed, and a total of seven will measure a variety of load types. The campus locations for the sensors include the Energy Center, the Salmon Disease Lab, Snell Hall, the photovoltaic array on Campus Way, and the Wallace Energy Systems and Renewables Facility. Two off-campus locations include a platinum foundry in Albany, and one near Newport at the future wave energy testing center, in collaboration with Consumers Power and Central Lincoln PUD.

In addition to the research benefits, the project will allow OSU students to learn about the advanced technology. Graduate students involved in the installation and management of the system are getting hands-on experiences with the all the steps in the chain, from connecting the current transformer to data management and machine learning, which incorporates both electrical engineering and computer science.

“Our students will really have an advantage by being exposed to this technology and having the opportunity to work directly with the local utility companies,” Cotilla-Sanchez said.

In addition to the local utilities, the project involves collaborators from the BPA, OSU Facilities Services, OSU Information Services, and the College of Engineering information technology department.

– by Rachel Robertson