Cody Knight and crew

Renewable materials student Cody Knight is a recipient of three scholarships: the Lois & Dick Kearns Scholarship, John R. Snellstrom Scholarship and the Friends of Renewable Materials–Roseburg Forest Products Wood Science and Engineering Scholarship. Before coming to Oregon State, Knight served in the military.

The financial support he receives and his experience in the military inspired him to serve others through his work in the renewable materials program.

“My military experience left me asking a lot of questions about humanity, sustainability the western world and material possessions,” Knight says. “I want to create products from renewable materials that aid in sustainability.”

Knight, who grew up in northern Idaho, remembers spending summers at the lake, sleeping in log cabins.

“There, it was easy to appreciate the beauty of nature,” he says. “I want to preserve that beauty and those kinds of experiences for future generations.”

He’s working to reach his goals through hands-on learning activities outside the classroom. Knight has participated in undergraduate research with Arijit Sinha, associate professor of renewable materials at Oregon State. Knight is helping conduct testing on Freres Lumber’s new mass plywood panel product.

“I was also selected for the Research and Extension Experience for Undergraduates (REEU) program,” Knight says. “This is a three-month long mentored research program with students at Oregon State and from colleges across the United States.”

Knight says his research will evaluate the shear strength of plywood and oriented strand board (OSB) after it has experienced varying degrees of temperatures and cooling times to get a clear picture of the mechanical strength of both products in the event of fire and seismic activity.

“The importance of this is plywood and OSB are typically used in residential housing for the exterior sheathing, which provides lateral support and stability for the structure,” Knight says. “Little research has been done to test their behaviors under these conditions, and I’m excited to find some answers.”

leaves

To solve a large problem you often have to come at it from a different angle. It is an approach Ian Munanura, assistant professor of nature-based tourism and human well-being at Oregon State, took after starting his research in human wellness and forest landscapes.

“In my research, I explore aspects of human well-being constraints and how they influence the health of forest landscapes” Munanura says.

“I also ask questions about how forest landscapes benefit humans. For example, how can tourism on forest landscapes improve human wellness, strengthen the resilience of forest communities and reduce negative human impact on forest landscapes?”

To answer this question, Munanura conducts a series of surveys and interviews of forest adjacent communities in Oregon, Rwanda, Uganda and Indonesia. He also hopes to expand his research program to Tanzania and Malaysia. To broaden the experiential learning opportunities for College of Forestry students, Munanura will use his international research network to deliver summer study abroad classes in countries where he has active research programs.

During his research interviews, Munanura asks questions such as: What is the nature of adversity stressing the livelihoods of families in forest communities?

How do families in forest communities function during adversity? What are the strengths (or vulnerabilities) of families in forest communities that could enable (or challenge) them to cope with adversity and maintain wellbeing?

How do the vulnerabilities of forest communities negatively affect forest landscapes?; and many others. Munanura thinks the answers to these questions will contribute to the understanding of important factors responsible for human-wildlife coexistence.

“Once we unpack the complexity of human health constraints and identify the aspects of those constraints that threaten our forest landscapes the most, we can adapt nature-based tourism programs to benefit communities, people and our forests,” Munanura says.

The inspiration for looking beyond the material aspects of human well-being came from Munanura’s own life experiences and growing up with limited access to material resources. Munanura says his family’s wellbeing recovered from destitution when his mother became spiritually active.

“Her mindset and emotions changed, and it enabled us to function better as a family despite limited access to material resources,” Munanura says. “In my work over the past 15 years, I have paid more attention to material wealth as a solution to improve the wellness of humans and forest landscapes. I strongly believed that degradation of forest landscapes was caused by lack of jobs and financial resources.”

However, Munanura says that attempts to address forest degradation by providing jobs and financial resources have shown little success. His research in Rwanda confirmed forest degradation is largely influenced by the most economically empowered residents in nearby communities.

“That challenged me to look at my own personal experiences. I realized there is more to improving human and forest wellbeing than money,” Munanura says. “Perhaps, there are non-fi nancial aspects of human well-being that have the potential to strengthen forest communities and forest landscapes.”

Munanura says his research is inspiring his students and helping them understand the limitations of the poverty driven narrative of forest landscape degradation.

“I encourage my students to think broadly and consider how human adversity, emotional, social and material resource constraints could impact the health of forest landscapes,” Munanura says. “Forest managers and other natural resources professionals are better served with a nuanced understanding of human constraints, how they impact the health of forest landscapes, and the potential solutions from nature-based tourism that can improve overall human and landscape well-being.”

burned trees

Klamath County Forestry Extension Agent Daniel Leavell began his forestry and fire career in early 1973 at the Forest Fire Laboratory in Riverside, California, and continued later that year at the Oregon State campus. He earned a bachelor’s degree in 1977 from OSU, and has been working and continuing his education in both industries ever since.

Leavell, who also holds a master’s degree from OSU and a doctoral degree from the University of Montana, started his current extension position with the Oregon State College of Forestry in 2014 and hit the ground running in Klamath and Lake Counties.

“We’re all working together to reach a common goal,” Leavell says. “It’s been extremely satisfying for me to play a role in these efforts – especially to see results happening on the ground.”

 

Klamath Community College Partnership

In 2014, the main fire district in Klamath Falls and Klamath Community College (KCC) began talking about the possibility of developing a formal program and facility that could support the training and education of first responders in the fields of fire, emergency medical services, law enforcement and more.

“We all agreed it was a community need and wanted to pursue it, and I offered assistance,” Leavell says.

Leavell was involved in wildland firefighting from 1978 to 2012 and with volunteer structure fire departments from 2006 to 2016. This experience allowed him to bring together other partners including the Oregon Department of Forestry, U.S. Forest Service and the Oregon Air National Guard Fire Department at Kingsley Field in Klamath Falls.

Leavell says it is important for first responders to attain national, state and local certifications. Many in emergency services also desire academic credit, but these are not required to obtain certified skills needed for the job. However, academic credit and degrees provide a competitive edge for job searches. Skills and experience count.

“Many first responders want certifications and academic credit,” Leavell says. “So we set up an organization to do that.”

The Klamath Basin Public Safety Training Center began with the goal of offering participants a two-year degree with options in structure and wildland fire, emergency medical and law enforcement.

Oregon State and KCC signed an agreement to test the concept and designed a curriculum for a two-year program focused on the basic academies of medical and fire sufficient to obtain certificates and credits. As proof of the concept, the program organized, created and implemented a structure fire academy during winter and spring terms in 2015 and 2016. The 14-week program involved 30 future professional, structure firefighters.

“They went through live fire training, ladder training and other exercises,” Leavell says. “Practical skills, scientific education and leadership training were also implemented, and at the end of the program they earned 12 academic credits and state certificates for structural firefighting.”

Leavell says the next step is to formalize the transfer program between KCC and Oregon State.

“This was needed,” Leavell stresses. “It will really benefit small communities with busy fire stations.”

Managing landscapes

One reason Leavell came to work in Klamath County was because he knew there were forward thinking forest managers working in and near the Fremont-Winema National Forest.

“The community here really works together,” Leavell says. “And when I got here, a group of private landowners and public land managers had been meeting and agreed to start work on a very large but successful project.”

Together, Leavell and the other managers were able to create maps and make risk assessments for 30,000 acres of private forest and 110,000 acres of National Forest.

“Within a year of completing the mapping, we were awarded $4 million in grants to begin implementing the projects we found were necessary during the mapping process.”

Throughout the process, Leavell worked one-on-one with landowners to help them create and implement management plans and pick projects that would benefit each forest.

Leavell says public and private land managers were able to work together to conserve resources during thinning efforts.

“It’s a win-win situation for everyone,” he says. “If a landowner can get grant money it’s easier for everyone to get a project done, and our reward is better management for the health and safety of the forests, communities and those responding to disturbances.”

Leavell and his team hope to publish the results of the project so their strategies can be implemented statewide.

 

Making a difference

These projects and more make working for the Oregon State Forestry and Natural Resources Extension Service in Klamath and Lake Counties a fulfilling experience for Leavell. He hopes to see even more results in the future by bringing people together to make our forests and communities healthier.

“I love to sit down at the table and talk to people to see how we can overcome barriers, capitalize on our strengths, shore up our weaknesses and see how we can come together for a common goal that really gets results,” Leavell says. “Extension is in a unique position to facilitate, coordinate and bring partners together to fulfill our mission, which has no underlying agenda other than to benefit the community.”

Kevin Bladon in the field

Large wildfires can devastate the landscape, destroy structures and threaten communities. Once they’re extinguished and the direct threats are gone, the general public often moves on and breathes a little easier. However, Kevin Bladon, assistant professor of forest hydrology at Oregon State, says the effects of large wildfires on water quantity and quality can last for decades.

“Smaller, low severity fires can actually have positive outcomes for aquatic ecosystems,” Bladon says. “However, the larger fires, which we’ve seen more of in recent years, are the ones that cause us the most problems in terms of impacts on water,” Bladon says. “Fires used to be more frequent and less severe, but because of fire suppression and current forest management approaches, there are a lot more contiguous fuels in our forests. When combined with a warmer, drier climate this has increased the occurrence of large wildfires in many parts of the western U.S.”

Bladon says high-severity fire can increase annual streamflow, peak flows and shift the timing of snowmelt to streams to earlier in the year. Additionally, large fires can increase temperatures, sediment and nutrients in streams, which can negatively impact aquatic ecosystems and recreational value.

The sediment and nutrients in headwater streams can also travel downstream and into community drinking water sources.

“While our drinking water treatment plants can, and do, remove sediment, nutrients and other contaminants from our water after wildfires, the question is, ‘How much are we willing to pay for this?’ These are expensive costs that get passed to taxpayers for many years after a fire,” Bladon says.

So far, Bladon’s studies have been conducted in Oregon, California, Colorado, Tennessee and Canada. As large wildfires continue to occur in the West, he plans to keep his eyes and research on the west side of the Cascades.

“Historically, there haven’t been a lot of fires on the west side of the Cascades compared to east side forests,” he says. “But they are appearing more and more, and the potential impacts on our water supply is something researchers need to continue to investigate.”

Bladon says it’s an exciting time to be studying hydrology as it relates to wildfire because the scientific community and the public are striving to understand how large wildfires impact our water supplies.

“Oregonians tend to be very proud of our water, healthy rivers, recreational opportunities and our many breweries, to name a few things,” Bladon says. “Given that two-thirds of our water supply originates in forests, it’s critical to protect those things that make our state such a great place.”

trees

Logging on steep slopes is the most hazardous environment for a forest worker according to John Sessions, University Distinguished Professor and Strachan Chair of Forest Operations Management at Oregon State.

Sessions is part of a team of investigators researching innovative technologies to improve logger safety on steep slopes. Other research team members include Woodam Chung, Ben Leshchinsky, Francisca Belart, Tamara Cushing, John Garland, Jeff Wimer and Brett Morrissette from the College of Forestry and Laurel Kincl from the College of Public Health and Human Sciences. The three-year project is funded by the National Institute for Occupational Safety and Health.

“Logging has consistently been one of the most hazardous industries in the U.S. It has a fatality rate 30 times higher than the national occupation average,” Sessions says. “Increasing mechanization of felling and skidding has removed workers from the forest floor in flat terrain, however, workers remain on the forest floor for felling and extraction in steeper terrain.”

The study examines strategies for replacing forest workers on forest slopes with tethered and non-tethered felling, forwarding equipment and combining mechanized felling with traditional cable yarding methods. The research would improve safety in the steep forest workplace.

Preston Green, a graduate research assistant on the project, focuses specifically on harvesting productivity, cost and environmental impacts of cable-assisted harvesting systems.

“I conduct detailed time studies of harvesting, forwarding and cable yarding equipment, with and without the use of cable-assistance, to quantify the differences in harvesting system productivity and environmental impacts,” Green says.

Green says he first became interested in cable-assisted harvesting as an undergraduate forest engineering student at Oregon State. Industry internships peaked his interest in the subject, and Green decided to attend graduate school to conduct additional research.

“My family has worked in the timber industry for four generations, and I’ve seen the long-term effects that logging injuries can have on families and communities,” Green says. “We’re striving to make improvements in the industry, not just improve statistics. We are dealing with real people that live and work in our communities.”

The project has 15 collaborating companies. The research team includes forest engineers, forest operations specialists, occupational health and safety specialists and a geotechnical engineer.

“Due to the steep slopes throughout Oregon’s forests, we believe the introduction of cable-assisted harvesting equipment can be a paradigm shift that will improve safety and economic competitiveness for the industry in Oregon and beyond. It will provide the ability to implement safe forest restoration practices across the difficult terrain in many public forests,” Sessions says. “Our research results and the widespread interest about the study from forest owners, logging contractors, equipment manufacturers, and state and federal agencies suggest we are on the right track. This technology and our research will likely save lives.”

OFSC construction

The new George W. Peavy Forest Science Center will be unique, not just because of the atmosphere, but because the building will also be a living laboratory.

This living laboratory is one aspect of the SMART-CLT project, led by Mariapaola Riggio, assistant professor of wood design and architecture at Oregon State. The goal of the SMART-CLT project, which stands for “Structural Health Monitoring and Post-Occupancy Performance of Mass Timber Buildings,” is to analyze critical factors impacting the performance of cross-laminated timber during its service life, and develop protocols to monitor these factors in buildings. The SMARTCLT project will study cross-laminated timber on a small and large scale, and will be applied inside the Peavy Forest Science Center, soon to be the new home of the College of Forestry.

“Our project is looking at what is sometimes deemed as ‘serviceability of a structure,’ which includes everything from how the material vibrates, which can be a limiting factor in terms of design for long spans; deflections of the material and acoustics. We’re looking at a variety of factors,” says Evan Schmidt, outreach coordinator at the TallWood Design Institute (TDI).

Riggio says the study is multidisciplinary. The research team involves architects, engineers and industry professionals who will analyze the project from a variety of perspectives. The project is funded by TDI, a collaboration between Oregon State and the University of Oregon and the nation’s leading research collaborative focused on advancing structural wood products.

“It’s not just how the system and the building performs in terms of standard and code requirements, it’s also how it is accepted or how it contributes to the well-being and the comfort of the occupants. That’s why it’s important the project involve a number of partners,” Riggio says.

The living laboratory will provide information for many generations to come.

“Usually research is just a limited amount of time, but this project will last as long as the life of the building,” says Riggio.

The sensors used to monitor the building are a unique aspect of the project, an original idea which will help researchers see what is happening inside the materials of the building.

“We want to understand which approach can be the most effective when analyzing the overall performance while delivering meaningful and valuable information,” says Riggio.

Schmidt says the sensors outfitting the building will monitor the indoor environment, temperature of the mass timber elements, moisture content inside of the wood at various depths and locations, vibration, post-tension loss in the wall systems and more. There will be about 176 different sensor locations.

“We’re measuring a bunch of performance parameters relative to the environment,” Schmidt says. “It’s important to capture because wood is not an inert material. The way it interacts with the environment will impact the way it performs, long-term and short-term.”

While the project will last the life of the building, researchers will also monitor short-term insights during construction to understand the immediate effects.

Researchers believe this project will provide a better understanding of how best to promote the use of mass timber in construction in the U.S.

“We need flagship structures,” Schmidt says. “We need to conduct research during and after construction. The combination of the two will make the public aware and excited about the benefits of mass timber buildings.”

The College of Forestry’s world-class students and faculty conduct ground-breaking research within the subjects of forestry, natural resources, tourism and wood science and engineering. Our research happens in labs and outdoors– on public and private lands across the state and in the College’s own 15,000 acres of College Research Forests as well as around the nation and the world.

Contributing to Oregon State University’s second-best year ever in competitive grants and contracts for research, the College of Forestry received $11.04 million in new grants and awards. As Oregon’s largest comprehensive public research university, OSU earned a total of $382 million in the fiscal year ending June 30.

Industry and agency partnerships thrived via the college’s 10 research cooperatives, with more than 100 private industry and government agency members providing an additional $2.18 million to support collaborative research.

Here are some examples of newly funded research out of a portfolio of 40 new projects.

The Role of Managed Forests in Promoting Pollinator Biodiversity, Health, and Pollination Services to Wild Plants and Agricultural Crops

Jim Rivers
Awarded by: USDA National Institute of Food and Agriculture
Amount: $1,000,000

This project will provide new information on how managed forests support healthy pollinators including bees, flies, butterflies, beetles and hummingbirds. Other objectives of the project include determining how pollinator health is influenced by forest management intensity, evaluating whether management changes to pollinator communities alters pollination of wild plants and testing whether forests serve as source habitats for pollinator populations within agricultural landscapes.

CRISPR/Cas9 Mutagenesis for Genetic Containment of Forest Trees

Steve Strauss
Awarded by: USDA National Institute of Food and Agriculture
Amount: $500,000

The goal of this project is to develop and test systems to edit floral genes of poplar and eucalyptus trees.  The edited, non-functional genes should prevent the release of pollen or seeds of these species because their genetically engineered forms are considered undesirable. These trees are often propagated from cuttings, making fertile flowers unnecessary for commercial use. These tools are expected to simplify regulatory decisions, promote public acceptance, and avoid unintended effects from exotic or genetically engineered trees in wild or feral environments.

Automated Landslide “Hot Spot” Identification Tool for Optimized Climate Change and Seismic Resiliency

Ben Leshchinsky
Awarded by: Oregon Dept of Transportation
Amount: $425,090

Landslides are increasingly frequent hazards that affect the operation, maintenance, and construction of Oregon highways, resulting in negative economic, environmental and social impacts for Oregon communities. This project will develop approaches towards creating enhanced means of assessing landslide risk considering topography, rainfall, and seismicity, primarily through the creation of mapping tools. Through these endeavors, planners will be able to maintain the safest and most efficient transportation system possible.

Inventoried landslides used for future projections of landslide hazard.

Monitoring Recreation Use in the Golden Gate National Recreation Area

Troy Hall
Awarded by: USDI National Park Service
Amount: $344,078

This project is developing protocols to monitor recreation use across 21 units of Golden Gate National Recreation Area, the most heavily used National Park in the US.

Multiscale Investigation of Perennial Flow and Thermal Influence of Headwater Streams into Fish Bearing Systems

Catalina Segura
Awarded by: California Department of Forestry and Fire Protection
Amount: $221,271

The impacts of timber harvesting and other land uses on water quality have been an environmental concern for many years. This project will assess the effectiveness of the rules currently applied in California. These rules are aimed at identifying headwater streams that require special protection given their likelihood to influence stream temperature in downstream watercourses.  This project will assess the vulnerability to temperature increases after timber harvesting of fish-bearing streams draining different geologic units.

SusChEM: Naturally Produced Fungal Compounds for Sustainable (Opto)Electronics

Seri Robinson – Co-Principal Investigator
Awarded by: National Science Foundation
Amount: $190,580

The project will explore fungi-derived pigments as a sustainable optoelectronic material for organic photovoltaics.  Wood stained fungi native to the Pacific Northwest will be explored for potential incorporation into solar cells.  Fungi-derived pigments are abundant and represent a largely unexplored resource for organic electronics and renewable electricity generation.  The project is in conjunction with principal investigator Oksana Ostroverkhova in the College of Science.

Lidar- and Phodar- based modeling of stand structure attributes, biomass, and fuels

Temesgen Hailemariam
Awarded by: USDA Forest Service
Amount: $ 164,000

This project will support the growing need for land managers to fully utilize Lidar products to obtain timely and accurate information. The project integrates traditional measures of fuels with remotely-sensed point cloud data to provide estimates of pre- and post-fire fuel mass, volume, or density in physical measurement units and in 3D within the same domain as physics-based fire models, and to scale up observations from fine-scale inputs to physics-based models to coarse scale fuels characterization required by smoke models. Hierarchical sampling across a range of spatial scales will also provide an important sensitivity analysis at varying scales.

Multi-scale analysis and planning to support Forest Service fire management policy

Meg Krawchuk
Awarded by: USDA Forest Service
Amount: $146,511

The purpose of this research is to investigate management policies to address wildfire impacts to human and ecological values. Current suppression policies are not financially sustainable and not desirable from an ecological standpoint.

Towards Resilient Mass Timber Systems: Understanding Durability of Cross-Laminated Timber Connections

Arijit Sinha
Awarded by: USDA National Institute of Food and Agriculture
Amount: $489,793.00

This project will test moisture intrusion and biological decay in cross-laminated timber connection systems to help architects, contractors and product supplies understand how connections in wood buildings will fair over time.

OFSC construction

Northwest Hardwoods, Inc. (NWH), the leading manufacturer of high quality hardwood lumber in North America, donated $25,000 worth of lumber to the new Oregon Forest Science Complex. The lumber donation of alder wood will be used as cladding for the outside of the new building.

“The Oregon State University College of Forestry is an internationally-recognized leader in education, research and policy for managing and sustaining working forest ecosystems,” says Don Barton, vice president of sales and marketing for Northwest Hardwoods. “It’s a natural fit for us to be a part of the next metamorphosis of forestry management and sustainability.”

Oregon State University and the College of Forestry officially launched a $79.5 million initiative in January 2015 to build the Oregon Forest Science Complex. Once completed, the state-of-the-art facility will provide current and future students with a transformative educational experience across a full range of forestry and natural resources degree programs.

“Northwest Hardwoods’ gift and in-kind donation will enable us to build a new, engineered wood facility that will inspire students and create a beautiful, inviting and healthy space for them to learn,” says Acting Dean Anthony S. Davis. “Grown and made in Oregon, the facility will reinforce our status as a place where students go to find innovative solutions to complex challenges, so they can improve our forest landscapes, ecosystems, and communities.”

Cameron Salvitelli discovered wood science during his second year at Oregon State. He’s proud that despite the time it took for him to find his path, he will graduate in four years.

Renewable materials sounded so different and unique to me but it also sounded very versatile. There are four unique, customizable options, and I like to have options,” Salvitelli says. “It was easy for me to connect with the teachers and the people around me because we all had a passion for the outdoors and then it stemmed a little more specifically into wood specifically.”

Salvitelli’s favorite part of the program is the hands-on learning.

“You learn a lot of different options, and then you learn about the whole industry and finally you get down to the mechanics of wood and the science behind it and how it works,” he says.

Salvitelli says his senior year is challenging.

“We think about how we feed the industry and how we manufacture, and these are the opportunities on the business side of things. I feel confident in my options for the future,” he says. “Anybody can make money their own way in business but for me it was about finding a passion that I could pursue which matched those business interests.”