Though she be but little: How the smallest stages of fishes can determine the success of the United States’ economy.

by Laura Vary, Master’s student, Marine Resource Management

Take a moment to consider the factors that allow you to read this article as an adult today. You (hopefully) have sufficient food and water to power your cells, which work tirelessly to flood your brain with enough glucose to retain an understanding of sentences. You have enough time and attention to focus on these words. In one way or another, you obtained a device with which to view this article, and viable internet connection to load materials. To be in the position of reading this article, many moments had to happen in precisely the right way.

Now, imagine you’re a tiny larval fish, smaller than ball bearing, in the middle of an ocean thousands of miles wide. The fate of your population rests on your poorly developed spine and you are experiencing your environment for the very first time. You lack developed eyes but can recognize light, you can swim (barely), but have no chance of fighting against the strong currents that push you across space. Yet, somehow, you must find food and a comfortable area where you can grow. Somewhere warm enough, as your growth will stop if the water is too cold. Somewhere calm enough, where you can have a chance of not only finding prey but capturing it.

The number of factors that must go right in order for these nearly microscopic creatures to mature into adults is almost incomprehensible. They do, though, and mature adults support a sector of the United States’ economy worth nearly $5.5 billion1.

In the United States, fisheries are extremely important to coastal communities’ cultures and our national economy. If you’ve eaten U.S. seafood recently, chances are that it came from Alaskan waters: 60% of all U.S. fish landings occur in Alaska, primarily in the Bering Sea1. Over $500 million is contributed to the U.S. economy from Alaska alone, and 1.2 million jobs stem from Alaska fisheries2.

The Bering Sea, a region of exceptional fishery productivity off Alaska’s west coast. The Bering Sea supports many fisheries worth millions of dollars. Notably, the Bering Sea is home to walleye pollock, a groundfish worth $420 million in 2020.

Alaska fisheries are booming, but the environment is changing rapidly. The Bering Sea is experiencing a swift onset of climate change with notable decreases to the sea ice that is vital for a functioning ecosystem3. It is very possible that those little larvae we imagined earlier will have a harder time finding adequate areas to grow up, areas with proper food and comfortable thermal conditions. If larvae are unable to find these preferred areas, the population that supports valuable fisheries is likely to drop in numbers4. Poor larval survival has been observed to cause fishery closures and population declines globally, which cost coastal communities and the U.S. economy millions of dollars5. To improve the health of larvae and secure the health of our fisheries upon which the national economy depends, we must continue supporting fishery sustainability into the future.

Media coverage of the oceans frequently adopts a “doom and gloom” lens, with typical news articles focusing on rapid glacial melt, population crashes, hurricanes, plastic pollution, and a myriad of other threats facing our oceans and coastal communities6,7. While these articles are addressing very real problems, successes in the marine world are often glossed over. Fishery sustainability, for example, is an area in which the U.S. and specifically Alaska have performed quite well.

Historically, fisheries management has been narrow in scope, establishing policies for the uses and protection of single species or even age groups within a species. Fisheries managers tended to imagine the ecosystem as a set of isolated ecological islands rather than dynamic and interwoven facets of the same community8. Alaska, alternatively, has maintained sustainable fisheries through a different approach: ecosystem-based management, or ecosystem-based fisheries management (EBM/EBFM). EBFM acknowledges the interconnected nature of ecosystems and elucidates connections among ecosystem components to promote long-term sustainability of natural resources. EBFM is a management framework in which all components of a healthy ecosystem, including humans and the use of natural resources by humans, are considered8–10. Simply put, EBFM is a way of managing human interactions with natural resources that emphasizes connections within the ecosystem and society and is adaptive across time and space9. In places where it has been implemented, like in Alaska, long-term sustainability of fisheries has been observed which is a testament to the importance of holistic management11,12.

EBFM can be thought of as treating the source of an illness rather than its symptoms. A patient complaining of chronic nausea, for example, will likely have a better health outcome if a doctor considers their diet, environment, stress levels, and exercise routine rather than simply prescribing anti-nausea medications. In Alaska, fisheries have been managed following this  holistic EBFM framework for decades11,12. Researchers and managers work tirelessly to understand the internal connections among organisms, the drivers of change, and the most important threats, much like a doctor trained in comprehensive medicine. Nationally, the U.S. has made strides in implementing EBM principles in fisheries management and scientists recommend the integration of EBM principles to other marine industries, like the development of renewable energy10,13. Now, perhaps you’re wondering why we should still be concerned about the fate of those larvae, and ultimately our fisheries, if EBFM is making such improvements nationwide. This question harkens back to a key concept of EBFM: it is adaptive and iterative in nature, requiring updates and modifications as the environment and human society change over time9. Further, status evaluations across vulnerable life stages of important fisheries (e.g., larvae) are required to improve EBFM implementation5.

A collection of larval fishes, captured by the Alaska Fisheries Science Center ecosystems and fisheries coordinated investigations team.
Credit: NOAA Fisheries, Alaska Fisheries Science Center, 12/30/2021.

To better inform EBFM, it is extremely important to understand what may happen to fish larvae if the Bering Sea warms dramatically or experiences more storms, or demands on fisheries increase to support a growing human population. I spend a lot of my time thinking about larval fishes in the pursuit of a better understanding of the factors that drive survival and successful maturation into juvenile fishes and eventual adults. Specifically, I investigate how the reproductive behavior of larval fishes in the Bering Sea may change in the future, and how anticipated changes could impact the survival of larvae. Through my research, I found that walleye pollock exhibit flexibility in where they spawn. This suggests that in warm years, aggregations of walleye pollock spawning adults may occur in regions different from historic population tendencies (note: these results are unpublished and thus have not been peer-reviewed yet).

            To promote adaptive management, many possible ecosystem states, relating to differing climate states, should be considered10. In the case of pollock, managers need to know that spawning aggregations may shift geographically in warm conditions for many reasons. Pollock eggs (roe) are harvested and so the lucrative roe fishery may need to move locations in the future. A movement of spawning adults could cause larvae to hatch in unfavorable areas, increasing larval mortality and leading to closures of the adult fisheries. Adult pollock could also move outside of U.S. fishing jurisdictions as the region warms, potentially warranting new international fishing agreements or modifications to established fishing areas14. My research therefore supports EBFM approaches by elucidating drivers of change which managers can then integrate within adaptive management strategies. At the end of the day, a failure to acknowledge different survival rates and environmental pressures across life stages in fisheries management could seriously impact the U.S. economy.

            Any U.S. community member is connected to the marine environment through the impact that fisheries and marine industries have on our economy. This economic connection between societies and their ecosystems is a fundamental driver of EBM, and underscores why even individuals living in landlocked states hundreds of miles from a large water body rely on a functioning marine ecosystem. The need for EBM, though, extends beyond fisheries management. Currently, global powers are developing “blue economy” initiatives which seek to improve the financial gains nations can receive from marine and coastal activities15. The blue economy includes any industry that occurs in marine or coastal areas, including power generation, fishing, tourism, and shipping16. The EBM framework should be integrated at every level of blue economy initiatives to prevent follies we’ve experienced in the past (e.g., overfishing, uncontrollable oil spills, plastic pollution, etc.)15. The EBM framework can also promote the development of even more jobs, as collaboration and a diverse team structure are central components of the EBM approach15. Recently, the National Oceanic and Atmospheric Administration released a Blue Economy Strategic Plan that works to enhance emergent marine industries and protect their sustainability into the future16.   

            Yesterday, you may not have ever thought of larval fishes. After reading this article, I hope you understand the importance of their survival to the success of the U.S. economy. Millions of livelihoods and hundreds of coastal communities directly rely upon the commercial harvest of fisheries, but all U.S. citizens indirectly benefit from these marine ventures. At the heart of this industry are the tiny, frequently forgotten young fishes that must fight battles worthy of a Homeric epic: They avoid relatively monstrous predators and capture microscopic prey, all while being swept along by powerful currents. The sustainability of marine fisheries in the U.S. hinges on the implementation of EBFM in management and EBM in emergent blue economy ventures. More specifically, though, it hinges on the ability of scientists and managers to elucidate the drivers of mortality in the most vulnerable life stages of these organisms.


References

1.         Cody, R. Fisheries of the United States, 2019. 167 (2021).

2.         Fisheries, N. The Economic Importance of Seafood | NOAA Fisheries. NOAA https://www.fisheries.noaa.gov/feature-story/economic-importance-seafood (2020).

3.         Stabeno, P. J. & Bell, S. W. Extreme Conditions in the Bering Sea (2017–2018): Record-Breaking Low Sea-Ice Extent. Geophysical Research Letters 46, 8952–8959 (2019).

4.         Hjort, J. Fluctuations in the great fisheries of northern Europe, viewed in the light of biological research. (1914).

5.         Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Progress in Oceanography 193, 102555 (2021).

6.         Oceans. The New York Times.

7.         Oceans. HuffPost https://www.huffpost.com/impact/topic/oceans.

8.         Lester, S. E. et al. Science in support of ecosystem-based management for the US West Coast and beyond. Biological Conservation 143, 576–587 (2010).

9.         McLeod, K. & Leslie, H. Why Ecosystem-Based Management? in Ecosystem-Based Management for the Oceans 10 (Island Press, 2009).

10.       Leslie, H. M. & McLeod, K. L. Confronting the challenges of implementing marine ecosystem-based management. Frontiers in Ecology and the Environment 5, 540–548 (2007).

11.       Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nature Communications 11, 4579 (2020).

12.       Fisheries, N. Ecosystem-Based Fisheries Management Strengthens Resilience to Climate Change | NOAA Fisheries. NOAA https://www.fisheries.noaa.gov/feature-story/ecosystem-based-fisheries-management-strengthens-resilience-climate-change (2020).

13.       Copping, A. E. et al. Enabling Renewable Energy While Protecting Wildlife: An Ecological Risk-Based Approach to Wind Energy Development Using Ecosystem-Based Management Values. Sustainability 12, 9352 (2020).

14.       Baker, M. R. Contrast of warm and cold phases in the Bering Sea to understand spatial distributions of Arctic and sub-Arctic gadids. Polar Biol 44, 1083–1105 (2021).

15.       Wenhai, L. et al. Successful Blue Economy Examples With an Emphasis on International Perspectives. Frontiers in Marine Science 6, (2019).

16.       NOAA Finalizes Strategy to Enhance Growth of American Blue Economy. U.S. Department of Commerce https://www.commerce.gov/news/blog/2021/01/noaa-finalizes-strategy-enhance-growth-american-blue-economy (2021).

Building Community

by Ashley Peiffer, M.S. student in Marine Resource Management

In the foreground, a school garden built by my community counterpart and fellow science teacher, Iddi. My tin-roofed house is in the background and Mshangai village lies in the valley below.

Upendo is the Swahili word for “love” and the name of one of my best friends in the Mshangai village of Tanzania where I lived as a Peace Corps volunteer from 2017-19. When I first arrived in Tanzania, I thought I knew what the village needed. It was only after getting to know my neighbors, like Upendo and her daughter, Rosie, that I realized my role as a volunteer was to drop all my preconceived notions and become part of the community first. Over the two years I spent in Mshangai, Upendo and Rosie taught me how much time and upendo it takes to build relationships and a sense of community. When I came back home to start my master’s degree at Oregon State University, I used those lessons, discovering that even without being physically present in a community, it’s still possible to maintain meaningful relationships with people across the globe.

Upendo, Rosie and I dressed up in our best batik (a hand-dyed fabric) for a local wedding.

One of the first moments I recognized that working in the village had nothing to do with imposing ideas of what “should” be and everything to do with building relationships was when Upendo started asking me to babysit Rosie. The simple gesture of asking me to fill a role that was normally taken by other women in the community brought me the humbling, heart-opening feeling of belonging. I found a deep sense of joy through the connections I made while taking on tasks such as babysitting, washing dishes with other women at local events, and chatting with village Bibi’s (“grandmas”) in an attempt to learn the three local dialects in my area that were often meshed with Swahili. Staying present in these day-to-day activities helped me to build meaningful relationships and listen to the concerns of my friends.

I often carried Rosie around the village center so she could avoid the mud with her bare feet.
One of my favorite pastimes: Chatting with my neighbor, Mama Sophia, and her sister near a shop in the village.

Without taking the time to get to know my neighbors, I would have never discovered that a major concern of the community was the amount of time girls and women missed out on their daily activities due to a lack of menstrual hygiene products. Nearing the end of my time as a volunteer, I found myself knee-deep in grant writing and event planning to host health seminars for hundreds of students and women in the community with my friend and fellow teacher, Rachel. We planned three seminars to teach about sexual and reproductive health and give away reusable menstrual pad kits from the HURU (“Freedom”) International program.

Rachel and I often wore matching khangas (colorful cloth printed with Swahili idioms) for community events.

On the last day of the event, my friends from Mshangai and nearby villages came to receive their HURU kits, some walking over 5 miles one way just to reach the event. I was moved to tears by the community of women gathered with me. I held Rosie as Rachel gave the health lectures and all of the women, including my dear friend Upendo, took notes and asked questions. After the seminar, girls and women from the community paraded around the village with their colorful HURU kits, and Rachel saved the extras and all the education materials for incoming classes of students in future years.

Secondary school girls jotting down notes during a HURU seminar. Rachel and I hand-made the educational posters on the walls around the classroom.
Keeping one eye on Rosie while Rachel explains what would be found inside each HURU kit: reusable menstrual pads, underwear, and soap.
Secondary school girls proudly showing off their new HURU kits! 

The importance of community remains a focus of my life and a source of inspiration for my master’s thesis. Through the Marine Resource Management program and my advisor, Dr. Michael Harte, I was connected with the non-profit Secure Fisheries, a program of One Earth Future focused on empowering coastal communities in the Somali region to sustain and manage their fisheries resources and promote peace-building. Their work includes developing cooperative fisheries management in coastal communities, creating a system of region-wide catch data collection in partnership with universities and governments, and enhancing fisheries value chains to ensure communities derive as much value as possible from their fisheries resources. With staff located in both the Somali region and the United States, Secure Fisheries uses both community knowledge and scientific research to boost local capacity for fisheries management.

Photo from a Secure Fisheries’ hosted oceanographic mapping exercise in a Somali coastal community.

The COVID-19 pandemic brought my initial research plans– a gender and small-scale fisheries project in the Somali region–to a standstill. While in quarantine, I realized much of Secure Fisheries’ field work was significantly delayed because of the pandemic. Even so, staff members on both sides of the globe found creative ways to continue and even improve ongoing projects by switching to remote communication with communities and collecting GPS fisheries data. I was inspired by how the organization maintained strong relationships within communities, even with our new norm of social distancing. This inspiration led me to change my thesis research. I wanted to understand how Secure Fisheries and similar organizations adapted to extraordinary circumstances alongside the communities they work in, sustaining relationships with communities they could no longer visit in-person. 

Living and working in Tanzania allowed me to learn first-hand how building trust and relationships can lead to great things. Through my research so far, I have seen how Secure Fisheries exemplifies those same values. Without community relationships and an appreciation for local knowledge, Secure Fisheries may not have been able to identify means of adapting their work to the pandemic, like seeking alternatives to data collection or communication.

As I wrap up my research, I find myself reflecting back to my days in Mshangai, remembering what it was like to hand HURU kits to my neighbors and friends, knowing that they were receiving sorely-needed supplies. I have found a sense of belonging here in Oregon with the Marine Resource Management program and with Secure Fisheries (through Zoom!), and I feel overwhelmed with gratitude for Upendo and Rosie, who opened up their homes and hearts to me and who patiently taught me what it means to build community. 

From Owl Pellets to Pacific Fisheries

Laura Vary, M.S. student in Marine Resource Management  

Laura Vary with her father, who introduced her to science at a young age.
Beginnings of a scientist

I first became a scientist when I was four years old. I was crouching beneath a large pine tree in the woods of my backyard with my father standing beside me. We were inspecting an oblong, dark brown conglomeration. My dad explained that this mysterious thing was an owl pellet, likely excreted by one of the screech owls inhabiting our property. He palmed the pellet and we walked back to my house along the wooded path, my mind expanding as he described all that the little pellet could contain. 

Back in our garage, my father showed me how to carefully break apart the pellet using tweezers. He pulled out small rodent bones, teeth, and other unidentifiable fragments tangled in the coarse hair that held the pellet together. We dissected many of these in the months that followed, transforming my backyard into my first field site. My interest in ecology grew as I watched the dynamics of robins, cardinals, foxes, and chipmunks in those woods. They introduced me to basic biology as I found treasures including a complete, bleached possum skeleton and an intact still-born coyote pup. My biochemist father taught me all he knew about our woods during frequent walks in the evenings, stoking my enthusiasm and helping me to learn that the world of science could be mine. 

Though I lived inland near lakes and rivers teeming with small spotted sunfish and bass, I was drawn to the craggy granite shoreline of Maine’s coast. I would rock-hop away from my mother as she read to seek out hidden tide pools that burst with barnacles and mussels and small periwinkles. By sixth grade I was determined to become a marine biologist. 

to another coast, far away

My mission to become a marine biologist led me, surprisingly, to the drought-stricken Central Valley of California where I studied marine and coastal science at the University of California at Davis. I was immediately drawn to the school after learning about UC Davis’ Bodega Marine Laboratory. Strategically located at the site of one of the most productive areas of the California coast, Bodega Marine Lab houses all varieties of innovative University of California undergraduate and graduate marine ecosystem research. With urging from my father to “follow the research” and extensive emotional support from my mother, I moved 3,300 miles away from my family. 

I joined my first undergraduate research project in the spring of my freshman year in the Ecology and Evolution Department with the Wainwright Lab studying the morphological evolution of teleost fishes. I traveled to the Smithsonian Museum’s Collections Facility in Maryland with a small group of my peers, and together we measured preserved specimens of Teleostei fishes. These measurements, and others taken by more undergraduates in following years, produced one of the largest public databases of linear measurements of fishes available today. This work resulted in the presentation of my first research project utilizing a subset of these data at the 28th Annual Undergraduate Research Conference. 

Studying morphological evolution at the Smithsonian

Then, after a year-long digression in terrestrial plant ecology, my first significant experimental failure, and the completion of physically exhaustive biology courses, I finally arrived at Bodega Marine Lab in August of 2018. I studied coastal and biological oceanography and assisted with research in Steve Morgan’s planktonic fisheries ecology lab. I counted fish larvae and eggs and became endlessly fascinated with the expansive world that fit within the view of my microscope. I returned to this lab after graduation in 2019 to become a paid research technician. In this dream role I learned identification of invertebrate larvae, how to distinguish one species of krill from another, and organized a science crew and team of volunteers to evaluate marine protected areas off the Sonoma Coast. The Morgan Lab became my second home; I understood my priorities as a researcher and progressive member of a new wave of scientists and determined what my future after graduation would look like.

Searching for fish larvae and eggs in plankton samples

From marine biologist to marine resource manager

Upon reflection of my undergraduate education, I realized that solving complex matters like sustainable ocean management and climate change requires an interdisciplinary framework. Furthermore, I learned that the waves of change I wanted to make would be more difficult to achieve with my Bachelor’s degree alone. The recognition of these goals led me to Oregon State’s research-focused yet extremely interdisciplinary marine resource management program. In the College of Earth, Ocean, and Atmospheric Sciences I will work with Dr. Lorenzo Ciannelli in his fisheries oceanography lab. Using fish plankton data, I plan to research the ability of fishes like halibut, cod, and pollock to alter the timing (phenology) and location (geography) at which they spawn. I strive to understand the biological flexibility of these species and how it relates to the future of their populations, reliant commercial and Indigenous fisheries, and the larger marine ecosystem. I am driven by the need to understand what confers resilience in fish populations, and how we – as stewards – can learn from traditional native practices, historical environmental dynamics, and robust predictive models to create sustainable ecosystems and restore balance in the ocean.

Researching Marine Protected Areas (and Olive Rockfish) off the California Coast.

My path in science has always been driven by a clear goal to promote sustainability and revitalization within our global ecosystems. I hope that more people find room for research and science in their daily lives as this goal intersects so many fundamental aspects of human life. A common misconception for many is that scientists are highly trained individuals that dedicate their lives to research… we are not. We are inquisitive people that look at our world, make observations, and ask questions, just as I did when I was young. I want more people to understand that their voices and actions are deeply influential in the scientific world, and I will dedicate my future in research to ensuring the inclusivity of academia, management, and conservation. Science needs everyone!

Follow Laura on Twitter @resultscan_Vary