Ethnobotany of Oregon Wildflowers

As many of you may know at this point, Aaron Anderson and Jen Hayes are conducting some amazing research regarding Oregon native plants and their pollinator attractiveness. If you haven’t had the chance to read about their research yet, check out Aaron’s here and Jens here. While those two are producing data to determine the ecological benefits derived from some of our wildflowers, I chose to go down a more selfish route and see what our native plants can do for me. . .forget the bees. Below I have compiled a list of ethnobotanical uses for 6 of the 23 Willamette Valley wildflowers included in Aarons research – California Poppy, Camas, Pearly Everlasting, Oregon Iris, Western Red Columbine, and Goldenrod (my favorite). 

Before you read any further, be aware that I am not an expert in wildcraft, ethnobotany, or herbalism. Never ingest the parts of any plant without being absolutely sure of its effects on the human body. Think of this more as a jumping-off point for your own research rather than any sort of guide or expert recommendation. 

California Poppy – Escholzia californica

Courtesy of Decker Seeds

The California Poppy – the ubiquitous orange herald of summer can do significantly more for you than just adding a pop of color to your yard or garden. E. californica can also be used as a medicine or candy! The flower itself is high in carotenoids and slightly sweet, the whole thing can be eaten raw as a candy-like treat. The ground roots and sap of the plant can be made into tinctures or infusions and be taken as a sedative, pain reliever, and muscle relaxer. California Poppy has been used by herbal practitioners as a “safe and gentle sedative for hyperactive children”. Maybe because they had too much poppy candy earlier in the day.

CamasCamassia leichtlinii:  

Courtesy of Euro Bulb
Courtesy of Honest Food

Camas is perhaps one of the best known plants on this list for its very popular edible bulb. The bulb is the most useful part of the plant and can be prepared in a few different ways. The two most popular are roasting and steaming. The roasted bulb gives off a flavor similar to a potato with a little hint of sweetness. Frying or mashing the bulb after the roasting are also common options to expand the flavor. Steaming camas bulbs is another popular practice which results in a food not unlike an onion. They are gelatinous and rich in complex carbohydrates, a fully browned camas bulb is just as delicious as any caramelized onion. 

Pearly EverlastingAnaphalis margaritacea

Courtesy of Southern Living

Pearly Everlasting, a sweet little flower that has always reminded me a bit of a brilliant white star with a bright yellow center. These little flowers could also be a star of your ethnobotanical handbook considering how useful they are! The slender green leaves can be eaten as a normal green once they have been cooked a bit, perhaps by way of steaming or sautéing. A. margaritacea also offers a whole pallet of dyes all from one plant, depending on the concentration of each, it can provide shades of yellow, green, and brown. Pearly Everlasting can be employed as treatment for a whole range of ailments. The whole plant is filled with metabolites which can act as an anodyne, antiseptic, and sedative. Internally, it can also be used to treat diarrhea, dysentery, and some pulmonary affiliations. Externally, a poultice of the whole plant can be used to alleviate pain from burns, sores, ulcers, and bruises. 

Oregon IrisIris tenax:

Courtesy of Katen Fahey
Courtesy of Mt. Pisgah Arboretum

Oregon Iris is well known and celebrated for its floral beauty, but its grass-like leaves are often overlooked despite their usefulness. The long and immensely durable leaves can be used to make ropes or baskets. The 19th century botanist David Douglas once described Iris tenax’s leaves as “. . .in point of strength it will hold the strongest bullock and is not thicker than the little finger”. Like any craft, basket-weaving requires practice and learning, however the unique texture and color of the leaves are bound to make the product stand out among the rest. 

Courtesy of East Tennessee Wildflowers

Western Red ColumbineAquilegia formosa

The number of uses associated with Aquilegia formosa practically matches the number of bright red petals surrounding its cascading stamens. In terms of edibility, Western Red Columbine boasts edible leaves when boiled and a sweet nectary treat from the flowers themselves, but you have to share with the hummingbirds. Medicinally, treatments can be found from the roots, seeds, and leaves. The mashed roots can be used to relieve aching pains, for diarrhea, to counteract dizziness, and stomachaches. The chewed leaves can be used to alleviate sore throats and calm and upset stomach. Finally, a paste made from mashed seeds can be applied to the scalp to kill lice! 

Goldenrod Solidago canadensis:

Courtesy of USDA Plant Guide

Although sometimes considered cumbersome due to its amazing ability to spread, Goldenrod is one of the Pacific Northwest’s most diversely useful plants. It offers medicinal properties from its internal metabolites, edible roots and seeds, and of course Goldenrod’s signature pigmentation can be harnessed for dying. Infusions made from the flowers can offer relief from a variety of ailments, fever, flu, diarrhea, and sore throats are just some. Roots are commonly eaten smoked and seeds can be eaten roasted or raw. Finally, the flowers can bring a beautiful golden hue to any natural fiber that needs dying, just with a simple soak in warm water.

Further reading – 

California Poppy: 

https://plants.usda.gov/plantguide/pdf/pg_esca2.pdf

https://ethnobotany.csusm.edu/search_details.php?plant_id=9

Camas:

http://naeb.brit.org/uses/species/699/ http://arcadianabe.blogspot.com/2012/06/how-to-cook-camas.html

https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/orpmcpg13213.pdf

https://honest-food.net/cooking-blue-camas/

Pearly Everlasting: 

https://practicalplants.org/wiki/Anaphalis_margaritacea

Oregon Iris: 

https://www.mountpisgaharboretum.com/habitats-and-ecology/plant-list-at-mount-pisgah-arboretum/iris-tenax/

http://naeb.brit.org/uses/18060/

Western Red Columbine: 

http://naeb.brit.org/uses/species/303/

https://www.sutrostewards.org/single-post/2017/07/25/Columbine-A-Flower-of-Meanings

Goldenrod: 

http://naeb.brit.org/uses/species/3734/

https://plants.usda.gov/plantguide/pdf/pg_soca6.pdf

A Primer on Parasitoids

You know about butterflies, about bees, beetles, and ladybugs, all of our favorite garden critters – but do you know about the parasitic wasp? Alias: The Parasitoid. Not quite a parasite and not quite a predator, they are the zombie-creating hymenopterans that make your garden their home and hunting ground. Unlike a true parasite, the parasitoid will eventually kill its host, but unlike a true predator, there is a gap between parasitism and host death. The Parasitoid is truly one of a kind, but with thousands of species in over 40 families, there are many of that kind. They prey by laying their eggs in or on the bodies and eggs of other arthropods, growing, aging, and getting stronger as their unknowing host provides their executioner food and shelter until the parasitoid is ready to attack. 

A Trissolcus japonicus parasitoid wasp lays eggs inside brown marmorated stink bug eggs at the USDA-APHIS Quarantine Facility in Corvallis, Oregon. Photo courtesy of Christopher Hedstrom
Parasitoid laying eggs in stink bug eggs. Photo Courtesy of Christopher Hedstrom

 As menacing as their way of life may seem, parasitic wasps are actually one of the most effective biological pest control agents available to home gardeners, and can be an excellent indicator of habitat health for ecologists. As biocontrol agents, parasitoids can effectively manage a very wide variety of pests from aphids and sawflies to weevils and mites, along with many more. They occur naturally if their hosts/prey and habitable conditions are present and it costs little to nothing to maintain their populations. If pest outbreaks are not completely out of control and the site is habitable, parasitoids can safely, easily, cost-effectively, and naturally bring pest populations below economic injury thresholds. Know any pesticides that check all those boxes? In terms of habitat health, parasitoids can drive biodiversity and positively influence ecosystem functions. As such, their diversity and abundance can act as an indicator for the overall health and functionality of an ecosystem – such as your home garden. 

Is it starting to seem like parasitic wasps could be an area of research for say. . .a garden

A Parasitoid collected from a Portland Garden in 2017 during the Garden Pollinator study

ecology lab? Certainly seems like that to me. That’s why this upcoming year I will be taking on an undergraduate research project to assess the parasitoid populations present in the Portland home gardens Gail and I have collected bees from for the last 3 years. Thanks to our sampling methods, we already have lots of parasitoid data to perform this analysis with, so there won’t be any more soapy bowls in your gardens this summer. This is the first of hopefully many blog posts that will accompany this research, so stay tuned as the year progresses to learn more about your new flying friends!

Further Reading and References: 

https://www.cell.com/trends/ecology-evolution/comments/S0169-5347(06)00152-2

http://publications.gc.ca/collections/collection_2015/aac-aafc/A59-23-2015-eng.pdf

http://ipm.ucanr.edu/PMG/PESTNOTES/pn74140.html

Video showing some parasitoid activity:

Pollinator of the Week: The Mining Bee

The Mining Bee

This entry is from Isabella Messer, an undergraduate horticulture student at Oregon State University. It highlights a common Oregon pollinator.

Halictus ligatus covered in pollen from the Morris Arboretum.

Halictus ligatus(Say, 1837), otherwise known as the Mining Bee and which can be classified as a Sweat Bee, are charming little(7-10mm) pollinators who are essential to our success as gardeners and farmers. These little generalists can be found worldwide in temperate climates with over 330 species recorded, so it would be no surprise if also you see them in your garden(1).

Halictus as a genus is very diverse in appearance with colors ranging from metallic greens, blues and sometimes even purple(2). Mining bees on the other hand, can be identified by their small dark brown or black bodies with well-defined yellow or black bands around their abdomens(3). Many of the females but no males will have scopa, which are long dense hairs on their hind tibia for carrying pollen(2). While they may not be the most flamboyant in their genera, their bodies are metallic and sparkle in the sun, giving them an understated but undeniable charm.

H. ligatus on an unidentified flower.

As their name suggests, Mining Bees build their nests underground and the Halictus gendera can demonstrate a very diverse gradation of social organizations within their nests(4). These organizations can range from solitary, communal, semi-social or eusocial(4).

If you are looking to attract some of these lovely and helpful pollinators to your gardens, be sure to leave a sunny and loose patch of soil close to some of your flowers available. Seeing as Mining Bees are broad generalists, there is no need to plant specific flowers or herbs to attract them. They will be beneficial for all of your flowering plants.

 

Sources

  1. Buckley, K., Nalen, C. Z., & Ellis, J. (2011, August). Featured Creatures: Sweat or Halictid Bees. Retrieved April 30, 2018, from http://entnemdept.ufl.edu/creatures/misc/bees/halictid_bees.htm
  2. Elliot, L. (2005, April 8). Species Halictus ligatus – Ligated Furrow Bee, Halictus (Odontalictus) ligatus. Retrieved April 30, 2018, from https://bugguide.net/node/view/14566
  3. Potts, S., & Willmer, P. (1997). Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecological Entomology,22(3), 319-328. doi:10.1046/j.1365-2311.1997.00071.x
  4. Rehan, S. M., Rotella, A., Onuferko, T. M., & Richards, M. H. (2013). Colony disturbance and solitary nest initiation by workers in the obligately eusocial sweat bee, Halictus ligatus. Insectes Sociaux,60(3), 389-392. doi:10.1007/s00040-013-0304-8

Pollinator of the Week: Woodland Skipper

This entry is from Isabella Messer, and undergraduate horticulture student at Oregon State University. It highlights a common Oregon pollinator.

Photo by Marc Kummel

As winter starts to wind down, daffodils and crocuses begin to emerge, and butterfly enthusiasts start looking forward to another season of spotting some of my favorite pollinators, the Lepidoptera. While peak butterfly season still may be a ways off(5), there is no reason to delay in learning about and exploring the world of butterflies, as I have been doing these last few days with Ochlodes sylvanoides(Boisduval, 1852), or the Woodland Skipper.

These little beauties can be identified by their tawny upperwings which sport a black border and large red patches on their underside(1,2). The hindwings of the Woodland Skipper can vary greatly from being unmarked to being yellow or even showing a chevron pattern(1, 2).

Woodland Skippers are native to Oregon and in fact, are native to most of the western United States. With a range that stretches from South Dakota to Oregon and from Vancouver, BC to San Diego, CA, Skippers are one of the most abundant butterfly genera in the US(6,2). The preferred habitats of Woodland Skippers include grassy areas in chaparral, mountain meadows, and hillsides(1). For those of you living among

Photo by Claire Christensen

With Portland’s many hills, it seems likely that your garden would be an appealing place for these butterflies to make their home. If you are looking to attract some Woodland Skippers to your garden, this may not be terribly hard as O. sylvanoides are generalists. Larval food plants consist largely of common grasses such as bermuda, wildrye, wheatgrass, and canary(1,2). Adult food plants can vary widely, from Oregon natives such as yarrow, sweet pea, and willowherb to others such as catmint, tansy, and zinnia(1). If you are having a slow start to your gardening season and have lots of patches of exposed dirt, that is okay seeing as adult Woodland Skippers will also sip salts from mud puddles(1).

Keep the hope of summer and Woodland Skippers in your garden alive, as this winter season begins to come to an excruciating close, and when August(3,4) finally rolls around, keep your eyes open for these tawny beauties.    

References

  1. Lotts, Kelly and Thomas Naberhaus, et al. “Woodland Skipper”. Butterflies and Moths of North America. 2017. Butterflies and Moths of North America. http://www.butterfliesandmoths.org/
  2. Woodland Skipper — Ochlodes sylvanoides.  Montana Field Guide.  Montana Natural Heritage Program.  Retrieved on February 22, 2018, from http://FieldGuide.mt.gov/speciesDetail.aspx?elcode=IILEP72010
  3. Allen, Nancy., et al. “Create a Butterfly Garden”. 2002.  http://ir.library.oregonstate.edu/concern/administrative_report_or_publications/kd17ct04f
  4. Chu, Janet R.. “Butterflies A Continuing Study of Species and Populations In Boulder County Open Space Properties – 2011 Inventory and 2007-2011 Analyses”. Boulder County Parks and Open Space and Boulder County Nature Association. Dec. 2011. https://assets.bouldercounty.org/wp-content/uploads/2017/03/research-report-2011Chu.pdf.
  5. Kaufman, Kenn. “Year-round Guide to Butterflies”. Birds and Blooms. 2016.http://www.birdsandblooms.com/gardening/attracting-butterflies/year-round-guide-butterflies/
  6. Department of Systematic Biology, Entomology Section, National Museum of Natural History, in cooperation with Public Inquiry Services Information Sheet Number 189. “Butterflies in the United States”. Smithsonian. https://www.si.edu/spotlight/buginfo/butterflyus

Pollinator of the Week: California Tortoiseshell Butterfly

 

This entry is from Isabella Messer, an undergraduate horticulture student at Oregon State University. It highlights a common Oregon pollinator.

 

Despite the misleading name, we have unfortunately not discovered a new cross species between California butterflies and tortoiseshell cats. Even though this butterfly has a larval stage instead of a kitten stage, the California Tortoiseshell Butterfly is still a beautiful representative of the Lepidoptera. 

A California Tortoiseshell flashes its bright upperwing. Photo by Doug Backlund

As you may be able to guess, the largest populations of the California Tortoiseshell (Nymphalis californica (Boisduval, 1852)) are located across California(1). While the majority may be in California, the California Tortoiseshell habitat range stretches south from British Columbia to Mexico and east from California to Wyoming(1). When the California Tortoiseshells experience a population explosion in the summer(1), some populations have been known to travel as far east as Vermont, New York and Pennsylvania(2). 

These lovely butterflies can be identified by their bright orange upperwing which features black spots and black border(1). Their underwings are mottled brown and gray and resemble dead leaves(2). When in larval(caterpillar) form, N. californica can be identified by its all-black appearance with the exception of a white line running down its back and the slight blue at the base of its black spines(2).

The cleverly disguised underwings of the California Tortoiseshell. Photo by Doug Blackbund

Unlike some of the other pollinators that we have discussed over the months, the California Tortoiseshell Butterfly is somewhat picky when it comes to choice of host plant for the immature and habitat mature butterflies. Adults will oviposit (lay eggs) only on various species of wild lilac (Ceanothus) where the immature butterflies will be hosted until they reach maturity(3). Adult N. californica are less specific about their habitats by the time the reach maturity. They can generally be found in mountainous regions in chaparral, woodland and brush areas(1). 

While these charming butterflies may not be extremely common in the Portland area due to its low elevation, if you take a trip up to Mount Hood this coming summer, it is more than likely you will run into one of these beauties.

Sources:

  1. Lotts, Kelly and Thomas Naberhaus, et al. “California Tortoiseshell”. Butterflies and Moths of North America. 2017. Butterflies and Moths of North America. http://www.butterfliesandmoths.org/
  2. Ross A. Layberry, Peter W. Hall, and J. Donald Lafontaine. “California Tortoiseshell”. Canadian Biodiversity Information Facility. 9 Jul. 2014. http://www.cbif.gc.ca/eng/species-bank/butterflies-of-canada/california-tortoiseshell/?id=1370403265564
  3. Art Shapiro. “Nymphalis californica”. Art Shapiro’s Butterfly Site. http://butterfly.ucdavis.edu/butterfly/Nymphalis/californica