Is Crop Estimation More Challenging in a Poor Fruit Set Year?

Every summer, vineyard staff spend days to weeks gathering data from field counts and weights to obtain harvest yield estimates. Getting as close to harvest estimates as possible is a primary goal of many producers. It is critical to make cluster thinning decisions to meet contract stipulations, purchase enough winery supplies, and ensure sufficient space is available at the winery for processing.

Over the past six or seven years, Oregon has had some of the highest and lowest wine grape yields. Vine yield was at a record low in 2020 due to poor climatic conditions during bloom. Crop estimation is challenging in a typical year, but it is especially challenging in poor fruit set years. This is due to the greater berry and cluster weight variability that requires more attention to detail in sample collection.

My lab has been working on ways to improve crop estimation for Pinot noir growers for a decade. This work was done to improve our current methods of estimating crop, and I have shared some of that work with the industry over the years (see Additional Information below). By using day count since bud break and bloom, and heat units (growing degree-days in Fahrenheit, GDD50) accumulated after those phenological stages, we found the berry development curve was tightly related to both day count and thermal time. These relationships allowed us to develop equations for cluster weight increase factors that would help growers estimate crop yields. I had many questions come in last year about how crop estimation methods would change due to the poor fruit set, so we took advantage of the year to understand how well our model works.

In 2020, we began monitoring berry development in a new project to quantify vine physiology and growth amongst different soil types. Within that project, we monitor berry development in the same way we did in our prior work from 2011-2016, starting with cluster sampling from ~20 days post-bloom and continuing until harvest. We collected 60 Pinot noir clusters once or twice weekly. Each cluster was measured for cluster weight, berry count, berry weight, rachis weight, rachis length, berry diameter, and seed hardness.

The findings. Berry size was smaller than normal, reaching an average size of 0.85 g (+0.2 g) at harvest (Figure 1). The typical Pinot noir berry is 1.0 g at harvest. There was also more variability in berry size with many “hens and chicks” throughout the entire season. Many small berries persisted with fewer larger berries. Clusters had substantial weight variation (Figure 2) due to varying berry count and berry size per cluster. By harvest, clusters ranged from 21 berries to as many as 186 berries, with the mean size of 81 berries per cluster. Mean cluster weight was under 80 g per cluster. A few veteran grape growers and winemakers comment that small berries do not double in size, so increase factors during lag phase crop estimation need to be lower than normal. We tested this question with our data in 2020, and we found that berries still double in size from lag to harvest (Figure 1). Cluster weight also increased as usual. Berry weight plateaued at 50-60 days post 50% bloom (lag phase), and this related to a cluster weight increase factor of 1.9 by harvest. This matched our prior study findings. The increase factor refers to the number used to multiply the mean cluster weight at sampling to obtain the final cluster weight for harvest. Berries reached their full size by 90 days post-bloom, about 5-10 days later than for berries in our model from 2011-2016.

Figure 1. Pinot noir berry mass increase based on day count post mid-bloom through harvest in 2020. Data points represent berry mass from 60 clusters, and error bars are standard deviations of the mean. The error bars are difficult to see given the small berry weight in the first six sample dates.
Figure 2. Pinot noir cluster mass increase based on day count post mid-bloom through harvest in 2020. Data points represent means from 60 clusters, and error bars are standard deviations of the mean.

When the cluster weight increase factors for 2020 were compared with the model, there was strong agreement at and after 30 days (Figure 3). The one sample date at 23 days post 50% bloom was higher than the model. However, the model matched precisely for 30 days post-bloom, and all other dates had agreement at 90% or better except for the two dates closest to harvest that underestimated cluster weight by 20-30%. Often the pre-harvest cluster weights may be variable due to berry desiccation with warm weather or extended hang time. These results show that the standard procedures for increase factor determination would apply for clusters with variable set.

Figure 3. Increase factors for cluster weights at day count post 50% bloom. The 2020 data points represent the increase factor mean of 60 clusters sampled at each date compared to the mean weight at harvest on 13 Sept 2020 (n=54 clusters). The calculated values are based on an increase factor model developed by Skinkis and McLaughlin (in progress).

How to estimate yield in poor set years. An essential part of crop estimation is obtaining a representative cluster sample that represents the vineyard spatially. Good vine and cluster counts are also needed. How the cluster sample is obtained is important in any year but particularly critical to do well in a poor set year where there is more variability than normal in berries per cluster and berry weight. To ensure the best crop estimates, employ sound sampling protocols to get cluster counts per vine and cluster weights from representative vines spatially distributed throughout the vineyard block and use appropriate increase factors. If you have inadequate sampling procedures (not enough clusters and not well distributed spatially), you can expect that your estimations will be even more variable and likely less accurate. I do not recommend a certain number of clusters, as it will vary by your vineyard size and level of variability. However, it should be a large enough sample to explain variability across the vineyard block accurately. Keep notes on your methods and be sure to train those who are sampling to follow those methods.

If you wish to use the OSU increase factor equations this year, contact Dr. Patty Skinkis, Professor and Viticulture Extension Specialist, OSU at patricia.skinkis@oregonstate.edu.

Additional Information

Skinkis, P. 2017. Crop Estimation: It’s all about timing and good data. Oregon Wine Research Institute Vine to Wine Newsletter, July 2017.

Skinkis, P. 2019. Improved Crop Estimation Methods for Oregon Pinot Noir. Oregon Wine Symposium, Portland, OR (seminar video).

Developing a new methodology for marker-free gene editing in grapevine

Dr. Laurent Deluc, Associate Professor, Department of Horticulture, Oregon State University

In March 2018, the U.S. Department of Agriculture (USDA) released a statement that they will not regulate plants modified through genome editing. Gene editing, the most popular being the CRISPR/Cas9 system, holds enormous promise for the development of accelerated breeding programs focused on the release of improved plant materials. A current significant focus is to identify grapevine material resistant or tolerant to extreme environmental conditions like drought, cold, and heat. Another research avenue is to generate new material resistant to major pests and diseases like Powdery and Downy Mildew and Botrytis. The wine grape industry may benefit from this federal decision to breed future elite cultivars more amenable to abiotic and biotic stresses. Unfortunately, the generation of transgenic plants is, in most cases, necessary to conduct the gene editing. This results in integrating bacterial-related sequences in the plant genome, making the engineered materials labeled Genetically Modified Organisms. Because of the GMO’s poor acceptance, there is a need to identify new methods to deliver gene-editing components to the plants without inserting “foreign DNA” in the targeted plant genome. The grapevine commodity will then fully benefit from the outstanding potential of gene-editing technology for genetic improvement.

Delivering a Ribonucleoprotein (RNP) like the protein Cas9 complexed to an RNA molecule to intact plant cells could be a very innovative solution for accepting the gene-editing technology for many crops. The RNP delivery has been tested for years in animal cells (Ramakrishna et al. 2014). In grapevine, initial studies to deliver the RNP are to date mostly limited to “naked” plant cells (protoplasts) (Malnoy et al. 2016). Unfortunately, grapevine plant regeneration from protoplasts has yet to be optimized. The physical delivery of the RNP to regenerable plant tissue (material from which you can regenerate a plant) will be significant to fully maximize gene editing applications for the grapevine. Though, the RNP complex will have to deal with a substantial barrier, the cell wall. The cell wall is an integral component of plant cells. It performs many essential functions, including, but not limited to, the shape and strength of cells, the protection against physical shocks, the control of cell expansion, the transport of substances between and across the cell, and a barrier between the interior cellular components and the external environment. A plant cell wall’s structure and composition are complex, tissue-specific, and vary over time, making a pretty complicated structure to be crossed. Nanoparticles were shown to deliver different molecules (DNA, RNA, and protein) in mammalian cells. In plant cells, their use in agriculture begins to gain more attention with relative success to deliver different molecules in normal plant cells containing cell walls.

The scientific community currently pays much attention to a particular class of nanoparticles, the Cell-wall Penetrating Peptide (CPP). Compared to other nanoparticles like gold or silicone particles, they tend to be much less cytotoxic to the plants. They can help deliver large cargo molecules like protein, DNA, and RNA (Numata et al. 2018). It consists of short peptide sequences (5 to 30 amino acid residues) that facilitate the cargo’s penetration through the cell membrane. Recent studies have demonstrated CPP’s efficacy to penetrate intact plant cells (Numata et al. 2018). The development of methodology for CPP-mediated delivery of a CRISPR/CAs9 system to a regenerable grapevine plant material will then be a game-changer because it will align with the pursuit of generating edited grapevine material that is GMO-free.

In our lab, we have developed two research projects to examine the efficacy of several CPPs to deliver the CRISPR/Cas9 complex. In our lab, we have generated transgenic lines that express the Green Fluorescent Protein (GFP) ectopically. As proof of concept, we tested the penetration efficiency of various CPPs to deliver a RNP to knock out the GFP gene expression. Preliminary results are promising, but they need reproducibility. We are currently designing experiments to improve the penetration efficiency rate of several tested CPPs.

Consideration and conclusions:
The discovery of CRISPR/Cas9 for more than ten years has dramatically opened new perspectives for advancing fundamental knowledge and genetic improvement in plant sciences and breeding. As a major crop in the U.S., Grapevine will benefit from its technology tool to develop innovative and accelerated breeding programs. Introducing new performance traits into existing cultivars is a major quest for the grapevine industry. The resistance to major fungal and bacterial pathogens is often cited as essential traits for which conventional breeding and traditional biotechnology (genetic transformation) may not be suitable. The development of a new methodology to create gene-edited material that is marker-free is an attractive alternative to time-consuming breeding programs. Likewise, the application of synthetic biology via precise gene editing is of particular value for crop production. One significant example for synthetic biology is the editing of DNA regions involved in inducing or repressing gene expression, the promoter region. Gene editing of promoter regions can generate plant materials for which the expression of multiple genes associated with a particular cellular process and/or a trait could be modulated at a given time. Chemically inducible systems are fundamental tools in modern agriculture with many potential uses to control plant growth. For better public acceptance, this will require the generation of scarless precise genome-edited material of the promoter regions. The public will likely accept an editing process that is transgene-free and does not affect plant proteins’ integrity.

This work is currently funded by the Oregon Wine Board, the Erath Family Foundation, and a forthcoming USDA-National Institute of Food and Agriculture award.

Literature Cited

Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C. 2016. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front Plant Sci 7:1904. DOI: 10.3389/fpls.2016.01904

Numata K, Horii Y, Oikawa K, Miyagi Y, Demura T, Ohtani M. 2018. Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Scientific Reports 8:10966. DOI: 10.1038/s41598-018-29298-6

Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-K, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:1020-1027. DOI: 10.1101/gr.171264.113

Can Altering Canopy Shape Increase Productivity of Pinot noir: a new experiment at OSU’s Research Vineyard

Dr. R. Paul Schreiner, Research Plant Physiologist, USDA-ARS, Corvallis, OR

The newest block at Woodhall Research Vineyard is now six years old, and we will begin work in earnest next growing season to ask some fundamental production questions for Pinot noir. The key question is whether opening the top of a standard VSP training system (resulting in a Y-shaped canopy) will increase Pinot noir productivity without sacrificing quality (Figure 1). A second question is whether planting vines at a higher density impacts vine productivity or fruit quality. These questions are being addressed using a factorial experiment where two trellis treatments (traditional VSP & wide VSP) and two vine density treatments (3-foot and 6-foot in-row spacing) are applied in a randomized block design with five blocks. Each experimental plot has five continuous rows of vines about 100 feet long. Data will be collected from the middle three rows, allowing a border row of identical treatment on each side. Different crop levels will be applied to each of the trellis × density treatments by randomly assigning the north or south half of each plot to either low or high crop levels. The trellis and vine density treatments have been in place since 2015, and crop load will be manipulated for the first time next year. The vines were established using industry-standard practices (irrigation, fertilization, no crop in first two years, slowly increasing crop levels thereafter). In the last two years, vines were irrigated only twice each summer, when leaf water potential values reached about -1.4 MPa.

Why this design? Pinot noir producers in western Oregon use a VSP trellis system nearly exclusively where the shoots exist in a tight vertical plane that exposes only a small fraction of leaves to sunlight at midday when solar radiation is maximal. Opening the top of the trellis using a wide VSP system should increase net vine photosynthesis and the vine’s overall carbon budget, allowing more fruit to be produced per acre compared to a traditional VSP. This change can be implemented without removing the existing trellis, keeping costs low for this modification. A similar trellis design was shown to increase yield without compromising quality in Riesling vineyards (Reynolds et al. 1996). Pinot noir producers still thin crop to low levels, leaving 25-40% of their fruit on the vineyard floor. If opening up the canopy can allow Pinot noir producers to ripen more fruit per acre without negatively affecting quality, this approach can increase profits and sustainable production. Vine density per acre may also impact vine productivity or quality directly or by interacting with the altered trellis system. Still, such impacts cannot be predicted based on current knowledge. Since grafted grapevines cost about $5 each, reducing the number of plants needed per acre will significantly reduce establishment costs.

We have collected baseline data from the past five years. The block produced 2.2 US tons per acre in 2019 when the fruit was thinned to one cluster per shoot. Yield in 2020 was 2.5 tons per acre when no fruit thinning was applied due to low set in 2020. Thus far, yield has not been altered by the trellis or vine density treatments. However, vine vegetative growth based on pruning weights was altered for the first time in 2019. The high-density vines produced more shoot biomass in the wide VSP than the traditional VSP, but the low-density vines did not. Thus, the wide VSP appeared to capture more carbon than the traditional VSP in 2019, but only in high-density vines. We do not yet know if a similar response occurred in 2020 since pruning weights have not been obtained yet. Treatments have not altered yield parameters such as cluster weight and berry weight. Fruit composition based on must soluble solids, pH, titratable acids, and mineral nutrient concentrations has not been altered either. The application of different crop levels next year will result in a different yield, and this will begin to provide the true test of this experiment. I am excited to test these ideas on a large scale.

This research addresses improving vineyard production efficiency by altering the most common Pinot noir training system. If our hypothesis is correct, this research will improve Pinot noir wine grape growers’ profitability by increasing yield per acre, thus improving overall land and resource use efficiency.

Figure 1. Pinot noir in the Trellis Experiment at Woodhall Research Vineyard near midday on August 26, 2020. Top panel: Standard VSP. Bottom panel: Wide VSP. Note: larger shadow under Wide VSP vines.

Literature Cited

Reynolds AG, Wardle DA and Naylor AP. 1996. Impact of training system, vine spacing, and basal leaf removal on Riesling. Vine performance, berry composition, canopy microclimate, and vineyard labor requirements. Am J Enol Vitic 47:63-76.

Avoid mixing biologicals with antimicrobials

Dr. Jay W. Pscheidt and Lisa Jones, Dept. of Botany and Plant Pathology, Oregon State University

Actinovate AG (Streptomyces lydicus WYEC 108) and many other biological products are used in the management of organic grapes. Tank mixing more than one product is both economical and time-saving but tank mix compatibilities with biological control products such as Actinovate have not been thoroughly evaluated. In 2016, we examined the tank mix compatibility of Actinovate AG with commonly used organic products.

Actinovate AG was prepared at a concentration of 0.1g/ml. A 300 ml solution of Actinovate was prepared in a 500 ml beaker then mixed with each material and allowed to stand for 30 minutes. The mixture was then plated onto agar and incubated for 7 days at room temperature. The number of colony-forming units (CFU) of S. lydicus exposed in each mix was assessed daily and compared to an Actinovate plus water only control. The percentage of S. lydicus CFU in each tank mix compared to the CFU in the Actinovate control was calculated.

An average of 3.2×105 S. lydicus CFU developed after 7 days incubation on the various media when Actinovate was just mixed with water. Several products inhibited the growth of S. lydicus when prepared in as a mixture in the laboratory. No growth of S. lydicus was observed on plates when Actinovate was mixed with Horticultural Vinegar, a high rate of Regalia, Rex Lime Sulfur, Serenade Optimum, or Solubor DF. Less than 10% of the S. lydicus CFU grew when Actinovate was mixed with Biomin Calcium, Botector, Neptune’s Harvest 2-4-1 fish fertilizer, or Thuricide. Significantly fewer S. lydicus CFU grew when Double Nickel, the low rate of Regalia, Serenade Max, the high rate of Stimplex or Toggle were mix with Actinovate. There was no significant difference in the number of S. lydicus CFU that grew when Zen-O-Spore was mixed with Actinovate. The number of S. lydicus CFU was greater than double (219%) or quadruple (482%) that of the Actinovate control when mixed with Nitrozyme or the low rate of Stimplex, respectively.

Many of the biological products in this study grew quicker than S. lydicus under laboratory conditions. These fungi or bacteria generally outcompeted S. lydicus for space and resources on the agar plates. The fungus found in Zen-O-Spore was slower to grow and did not outcompete S. lydicus during the 7-day incubation.

This data does not imply a lack of or enhanced disease control in the field. For example, blueberry field trials over a 2-year period where Actinovate was mixed with Simplex did not result in disease control that was different than when either product was used alone. The data does indicate incompatibility between various products used in organic production.

For a complete data set please visit: http://sites.science.oregonstate.edu/bpp/Plant_Clinic/Fungicidebooklet/2016/Blueberry3.pdf

Vole Damage in Vineyards

Dr. Patty Skinkis, Associate Professor and Viticulture Extension Specialist, OSU 

I received a number of reports of vole damage in vineyards throughout the Willamette Valley this season. Evidence of their presence became visible in August with feeding damage to trunks (Figure 1) and within the canopy, including damage to shoots and rachises of grape clusters (Figure 2). Voles eat vegetation and typically feed on roots or the base of trunks. Voles do not typically cause issues until a population peak and/or environmental conditions allow for habitation. They may reach epidemic-level populations every ten to 12 years, but these population surges are not predictable and last for one year (Gunn et al. 2011). The Willamette Valley’s last reported vineyard infestation occurred in 2005, and some vineyards lost vines due to the damage.

Preventing and eradicating voles.  Our best suggestions to growers who have been observing vole presence in vineyards has been to encourage eradication. Trapping or baiting voles may not be practical on large acreage or advised with certain farming certifications. For example, zinc phosphide is not allowed in organic production. However, soil tillage or mowing may provide some level of prevention and control. Research in field crops show that tilling the soil is the most effective method of reducing vole populations (Jacob 2003), by disturbing their burrows and causing movement to other vegetated areas. Voles avoid bare ground, so tillage can prevent habitation altogether. In the Jacob (2003) study, they found voles disappeared altogether after disking to a depth of 19 inches. Mowing vegetation was found less effective than tillage, as the mulch from mowing allowed sufficient cover for the voles and did not encourage movement away from the cropped areas. Avoiding mulch layers or vegetation growth under-vine will prevent voles from inhabiting the areas near grapevine trunks and feeding on roots and trunks when food sources are limited.

Scouting for damage. Voles tend to feed on vine roots and at the base of trunks. Look for feeding damage at and just below the soil surface. Since the feeding typically occurs through the phloem and vascular cambium, the cell layers that lie between the phloem to the exterior and xylem to the interior, the vascular system is compromised. As a result, affected vines may turn color abruptly (yellow or red, Figure 3), as they have limited ability to move photosynthates (sugars) and mineral nutrients through the vines to the roots once the phloem and cambium are damaged. Roots are actively acquiring carbohydrates and mineral nutrients from the canopy during late season in preparation for the next year. Having this connection severed is a major issue.

Can anything be done to repair damaged vines? Vines with girdled trunks and root damage may not survive if the damage is done to the circumference of the vine. This is due to the lack of vascular cambium to grow new phloem tissue and “heal” the wound. The best thing to do at this time is flag vines with damage now and check back later in winter during pruning and early spring. If damage was only apparent in the canopy (rachises, berries, and shoots), vines may be able to be pruned to healthy tissue in winter. However, also be sure to flag these vines for follow-up.

Because voles do not hibernate, high populations this winter may pose a threat to vines if they continue feeding in areas where they were observed this season. It will be important to remove vegetation by way of tilling soil or removing mulch layers or vegetation under-vine to avoid any further damage.

Literature Cited

Gunn D, Hirnyck R, Shewmaker G, Takatori S, and Ellis L. 2011. Meadow voles and pocket gophers: Management in lawns, gardens, and cropland. University of Idaho, PNW 627.

Jacob J. 2003. Short-term effects of farming practices on populations of common voles. Ag Ecosyst Environ 95:321-325.

 

Figure 1. Vole damage to the base of a trunk on a mature grapevine. Photo courtesy of Ryan Wilkinson.

 

Figure 2. Feeding damage is apparent on the top of the grape cluster’s rachis (peduncle) and the lower portions of the shoot from which it originates. Photo courtesy of Ryan Wilkinson.

 

Figure 3. Vines with vole damage to the trunk show almost complete reddening of the canopy in Pinot noir vines. Photo courtesy of Ryan Wilkinson.