The Technology Association of Oregon (TAO) sponsored an Education Roadshow at Oregon State on May 28 to help students tailor their education to match industry needs. Representatives from AKQA, Columbia Sportswear, Hewlett-Packard, Tripwire and Vadio answered questions about what to expect when entering the workforce and how best to prepare. The event drew 250 students which was beyond the expectations of Danny Dig, assistant professor of computer science, who facilitated and moderated the event.

Maria Powell, who attended the event, said, “Being able to get first hand advice from professionals in the industry is invaluable to me. It not only gives me ideas of what I would like my goals to be beyond college but it helps me to be pro-active about my future right now.” Powell is a senior in computer science who will be graduating this August.

Nicholas Nelson, came to the event with more experience than most students since he worked in industry before returning to school in 2012 to finish his degree. “Our industry operates at such a fast pace, things that seemed common place three years ago when I was still working are likely to have changed. I wanted to be aware of the latest and greatest, and this industry panel did not disappoint. The diversity of panelists provided an excellent glimpse into both the start-up world and the established giants of industry,” Nelson said.

To make the time with the panelists the most effective, Dig polled students ahead of time to find out what questions they most wanted answered. The top two questions were: What questions should a prospective candidate ask during an interview? What kind of coursework and/or research projects are valued by industry? All the questions and answers are available on the EECS website.

“The students loved the event and many commented that these kinds of events make them feel lucky to be at Oregon State. Several of them have continuing discussions with the panelists about jobs and interviewing,” Dig said.

The event fits with the mission of the TAO to grow the technology economy in the region by providing programs and initiatives that support industry promotion, advocacy, professional networks, and talent development.

Dig acknowledged the help of the panelists: Bryce Clemmer (Vadio), Andy Neville (Columbia Sportswear), Andy Doan (AKQA), David Whitlock (Tripwire), Shelly Reasoner (HP) who volunteered their time to answer questions; Tina Batten who helped organize the event; Kevin McGrath, instructor for Operating Systems who gave up a class period for the event; all the students who helped generate questions and took notes during the event; TAO, which started the Education Roadshow; and Chris Scaffidi, associate professor of computer science, who had the vision of bringing the Education Roadshow to Oregon State.

Tanner Cecchetti, Eta Kappa Nu 2015 Sophomore of the Year.
Tanner Cecchetti, Eta Kappa Nu 2015 Sophomore of the Year.

Tanner Cecchetti has always been a tinkerer, even as a child. His first experiments used simple technology such as tissue and corks to create tiny parachutes. Now, an electrical and computer engineering student at Oregon State, his focus is on mobile technology, and especially jailbroken iPhones.

His interest was encouraged by his mother who initially started her degree in computer science before switching to accounting. She bought him video editing software in fifth grade when Cecchetti was part of a video editing team at school, and she made sure he had a cell phone when he was 10 years old because she wanted him to start playing with that technology. The many hours he spent tinkering with technology lead to success when in high school he earned second place for three years in a row at a state-wide team-based programming competition.

“The coolest thing I’ve ever done with programming was to write a program that got a couple million downloads, which was super exciting,” Ceccetti said. The program was part of a business to create game cheats for Runescape that he and partners ran for a year in high school.

Also in high school he volunteered to manage the website for Relay for Life of Sherwood, Oregon. It was a project he initially viewed as a way to get some practical experience, but it became more than that.

“It felt good to be involved with that cause, raising money for cancer research, because cancer is what took my dad, so it was personally significant to me,” Cecchetti said. His father passed away when he was in fourth grade.

Although Cecchetti has less time for tinkering as a college student, he found time to create a tweak for jailbroken iPhones that has over 10,000 downloads, and an app that turns an iPhone into a mouse and keyboard for any device. He also designed and built an inexpensive sound effects system using a Raspberry Pi for the submarine at the Oregon Museum of Science and Technology.

In his first two years at Oregon State, Cecchetti earned scholarships for academic achievement including making the Dean’s list and receiving a scholarship from Pacific Power.  “I have to pay for school on my own, so scholarships certainly make it easier for me financially but it also makes my decision to stay in school a lot easier knowing my burden of debt will be less,” he said.

Perhaps it is not surprising that Cecchetti won the 2015 Eta Kappa Nu Sophomore of the Year Award at Oregon State. “Tanner stood out for his commitment to service, academic excellence and passion for problem solving. His impressive personal projects showed he was going above and beyond what was being done in the classroom,” said Oregon State Eta Kappa Nu president, Tanner Fiez.

Although Cecchetti’s experience has mostly been in computer programming, he chose to major in electrical and computer engineering because he was interested in learning about hardware which would be more difficult to learn on his own. He initially thought he would pursue a career in designing cell phones but his experiences at Oregon State have opened up more options for him and he is not yet settled on a career path. For now he is content to continue to learn and tinker with technology.

-by Rachel Robertson

Amber Horvath, computer science
Amber Horvath, computer science

Amber Horvath, computer science student, received honorable mention for the Undergraduate Research Student of the Year Award at Celebrating Undergraduate Excellence (CUE) 2015. Students from all majors presented posters of their research or creative work.

Horvath, advised by Dr. Margaret Burnett, presented a research study entitled, “Principles of a Debugging-First Puzzle Game for Computing Education.”

Abstract: Although there are many systems designed to engage people in programming, few explicitly teach the subject, expecting learners to acquire the necessary skills on their own as they create programs from scratch. We present a principled approach to teach programming using a debugging game called Gidget, which was created using a unique set of seven design principles.  A total of 44 teens played it via a lab study and two summer camps. Principle by principle, the results revealed strengths, problems, and open questions for the seven principles. Taken together, the results were very encouraging: learners were able to program with conditionals, loops, and other programming concepts after using the game for just 5 hours.

Students in the School of Electrical Engineering and Computer Science (EECS) won three of the four overall awards at the Engineering Expo 2015. Additionally, the Industry Advisory Board for EECS recognized six other outstanding projects.

Boeing Engineering Excellence Award

The Boeing Engineering Excellence Award distinguishes a project team that delivers a robust and innovative solution with a clear focus on enabling potential customers to excel in their markets and missions.

Amber Hartman, Benjamin Narin and Kai Ovesen win the Boeing Engineering Excellence Award.
Amber Hartman, Benjamin Narin and Kai Ovesen win the Boeing Engineering Excellence Award at OSU’s Engineering Expo. Photo by Gale Sumida.

Winner: EyeRobot. Team: Amber Hartman, Benjamin Narin and Kai Ovesen.

This project aims to help people with ALS (Amyotrophic Lateral Sclerosis) or similar diseases in which people lose motor control. Using eye gaze, the Electrooculography (EOG) headset provides an emergency stop for those who cannot physically hit a button. The project is in collaboration with researchers at the Personal Robotics Lab at Oregon State University who are developing a wheelchair that can drive itself using way points set by eye-tracking equipment. The head set measures electric potential across the eyes from two sensors placed on the temples.

Tektronix Commercialization Award

The Tektronix Commercialization Award winners will be evaluated based on the level of innovation and potential impact in the market.

Trevor Buys, Megan Kamiya and Jordan Belisle win at Expo.
Trevor Buys, Megan Kamiya and Jordan Belisle win the Tektronix Commercialization Award at OSU’s Engineering Expo. Photo by Gale Sumida.

Winner: Custom Car Head Unit. Team: Jordan Belisle, Megan Kamiya, and Trevor Buys

This custom car head unit for controlling the car stereo is a low-cost upgrade that has multiple audio input options and other connection capabilities including WiFi. The system also collects car data and generates web displayed reports on driving patterns.

People’s Choice Award

Video of Eye Gaze project.
Video of Eye Gaze System.

The People’s choice award was voted on by attendees to the Engineering Expo.

Winner: Eye Gaze System. Team: Sultan Alyamani, Trevor Fiez and George Vartanov.

This device is designed for individuals who have motor restrictions. Our goal for this project is to create an inexpensive eye gaze directional detector. Current eye-gaze systems use expensive technologies that are limited in their utility.

Electrical and Computer Engineering Industry Award Winners:

First place: OSU Rocketry – Payload Electronics. Team: Elliott Fudim, Tyler Giddings and Sagar Rotithor.
The OSU Rocketry team has built a rocket capable of ascending a 10 pound payload to 25,000 feet for the 2014 Experimental Sounding Rocketry Association (ESRA) intercollegiate competition. The Payload Electronics Team designed a payload that will conduct experiments and collect data during the rocket launch.

Second place: Persistence of Vision Globe. Team: Harry Bloom, Matthew Eilertson and Masa Kawaharada.
This functional persistence of vision (POV) globe utilizes LEDs spinning on a spherical frame in order to create a three-dimensional optical illusion of the Earth. The human eye can only retain an image for one twenty-fifth of a second. By flashing LEDs at precise increments as they rotate at a rapid speed, we can trick the human mind into seeing continuous lines of light, which will project an image. POV Globe video.

Third place: Smart Disk Wireless Switching Device. Team: Rachael Carlson, Alan Huang and Keith Kostol.
Is your light switch in the wrong place? The Smart Disk operates lights wirelessly so you put your light switch anywhere. Smart Disk video.

Computer Science Industry Award Winners:

First place: V2x Systems and Integration. Team: Stephen Austin, Ashley Greenacre, Chris Harper, Faith Steltzer, and Sam Quinn. V2x Systems video.
If cars could talk roads would be safer. This project combines sensors, networking, and an in-vehicle display to make driving safer by sensing when accidents occur and communicating the crash information to emergency responders and other vehicles on the road.

Second place: Camera Test Drone. Team: Loren Brown, Justin Cheng and Ken Hafdahl.
Vibration can be a big problem for cameras mounted on a moving vehicle. This anti-vibration system combines mechanical, electrical, and computer science elements to record and process flight video from a variety of cameras mounted to a quadcopter. Camera Test Drone video.

Third place: World of Fitcraft. Team: Nick Bristow, Tracie Lee and Vedanth Narayanan.
Having trouble getting fit? This app makes a game of exercise; users earn rewards and “level up” on their way to better health. World of Fitcraft video.

Auto Safe team at Kennedy Space Center
Auto Safe team at Kennedy Space Center from left to right: Ashley Greenacre, Stephen Austin, Sam Quinn, Chris Harper and Faith Stelzer.

An Oregon State University team of computer science and electrical and computer engineering students earned third place at the Intel-Cornell Cup on May 1-2 at the Kennedy Space Center Visitor Complex in Cape Canaveral, Fla.

The purpose of the embedded design competition is to inspire student innovation. Entry into the event is competitive; only 22 teams from across the country were selected to attend. The chosen teams were provided with $1,500 in funding and the latest Intel Atom board which they incorporated into their project.

Auto Safe, the Oregon State team, designed a system to send information about car accidents to other cars in the area. The device includes sensors to detect crashes and rollovers, and a wireless mesh network to transmit information between vehicles. The device can be plugged in to any car 1996 or newer via the OBD II port. (See video below for a demonstration.)

The event was open to the public, so in addition to presenting to the judges, the team explained their project to crowds of elementary students who were visiting the Kennedy Space Center.

“Our project was really fun for the kids because they could drive the simulator. One girl, who had never played a driving game before, stayed for a really long time,” said Ashley Greenacre, senior in electrical and computer engineering.

Meeting students from other universities and seeing their projects was one of the best parts of the event for the team. Chris Harper, senior in electrical and computer engineering said, “We were all using the same hardware, so it was really interesting to see everyone’s different take on it.”

It was the first time Sam Quinn, senior in computer science, had participated in a competitive event. “It was eye-opening to see the troubles that go on behind the scenes,” he said. The team had to deal with last minute networking problems, but rather than be upset by it, Quinn said that he really enjoyed high pressure problem solving.

The hands-on experiences that the students receive by working as a team to design a product is why Kevin McGrath, computer science instructor and advisor to the team, recruits students to participate in the event every year. “There will always be challenges, and how you overcome those challenges dictates the kind of engineer you are,” he said.

The Auto Safe project, called V2X, will be on display at the Oregon State Engineering Expo on May 15.

– by Rachel Robertson

Photo of Ben McCamish, Eduardo Cotilla-Sanchez, and Ziwei Ke
Ben McCamish, Eduardo Cotilla-Sanchez, and Ziwei Ke demonstrate the synchrophasor in the Wallace Energy Systems and Renewables Facility. Photo by Gale Sumida.

Oregon State press release posted 5/7/2015.

A new energy test bed using cutting-edge sensor technology has been located at Oregon State University, designed to gain a better understanding of the local electric grid.

The Bonneville Power Administration awarded a $350,000 grant to develop a system that will provide a detailed analysis of load composition and power use. The project should help accommodate new types of load demands and new sources of renewable energy, such as wind and wave energy, while averting blackouts.

The sensors, called phasor measurement units or “synchrophasors,” can take voltage and current measurements 60 times a second, compared to standard sensors that take measurements every two to four seconds. All data will be time-stamped and synchronized with a common clock, allowing researchers to track electrical spikes and other anomalies throughout the grid.

A better understanding of these anomalies could eventually lead to a “smart grid” that can automatically detect blackout warning signs and disconnect portions of the grid to protect critical loads.

“These synchrophasors will allow us to develop better load models,” said Eduardo Cotilla-Sanchez, an OSU assistant professor of electrical and computer engineering and leader of this project. “Currently, our cascading power outage analysis assumes the campus load to be like a giant toaster – a big resistor that doesn’t change over time – but reality is much more complex.

“We won’t be able to have accurate models until we have a better understanding of the load composition and time-varying demands.”

Three of the synchrophasors have already been installed, and a total of seven will measure a variety of load types. The campus locations for the sensors include the Energy Center, the Salmon Disease Lab, Snell Hall, the photovoltaic array on Campus Way, and the Wallace Energy Systems and Renewables Facility. Two off-campus locations include a platinum foundry in Albany, and one near Newport at the future wave energy testing center, in collaboration with Consumers Power and Central Lincoln PUD.

In addition to the research benefits, the project will allow OSU students to learn about the advanced technology. Graduate students involved in the installation and management of the system are getting hands-on experiences with the all the steps in the chain, from connecting the current transformer to data management and machine learning, which incorporates both electrical engineering and computer science.

“Our students will really have an advantage by being exposed to this technology and having the opportunity to work directly with the local utility companies,” Cotilla-Sanchez said.

In addition to the local utilities, the project involves collaborators from the BPA, OSU Facilities Services, OSU Information Services, and the College of Engineering information technology department.

– by Rachel Robertson

Ryan Green and Keaton Scheible demonstrate their project, "Go Go Gadget Claw," while teammate, Rattanai Sawaspanich takes a video.
Ryan Green and Keaton Scheible demonstrate the remote controlled arm they built during OSU’s HWeekend, while their teammate, Rattanai Sawaspanich takes a video.

In just 30 hours, Oregon State University students created wearable technology projects at HWeekend on April 10-12, sponsored by the School of Electrical Engineering and Computer Science. Thirty-five students spanning several areas of engineering formed seven teams and built projects that ranged from a remote controlled arm to a video game.

The event was organized by Don Heer, instructor in the School of Electrical Engineering and Computer Science, who wanted to provide students an event similar to a start-up weekend or app hackathon, but for hardware. It was the fourth event for Heer who values real-world experiences that augment the student’s classroom experiences.

To build their projects the students had a variety of components available to them including tiny computers, NVIDIA Jetsons, motion sensors and motors, and as access to 3D printers.

“It’s surprising how much this relates to my classwork, but also how much fun I had with it,” said Mark Andrews, student of electrical and computer engineering and math. It was the second HWeekend for Andrews.

About half of the students at the spring HWeekend had participated in one of the previous three HWeekend events that were sponsored by Eaton, Rockwell Collins and Micron.

Two projects: The Hand of Glory by Mark Andrews, Paul Lantow, and Conner Yates; and Go Go Gadget Claw by Tyler Gilbert, Ryan Green, Rattanai Sawaspanich, and Keaton Scheible are featured in videos below. The Go Go Gadget team won the Most Innovative award and tied for the Most Helpful award with the Mechanical Calf Assisting Device team.

-by Rachel Robertson

 

 

 

David Piorkowski
David Piorkowski

Graduate student David Piorkowski received an IBM Ph.D. Fellowship Award in March 2015. The fellowship is an intensely competitive worldwide program, which honors exceptional Ph.D. students who have an interest in solving problems that are important to IBM and fundamental to innovation in many academic disciplines and areas of study.

Piorkowski’s research is in the area of software engineering, and aims to create better tools to help software developers debug code.

Margaret Burnett, professor of computer science, and Piorkowski’s Ph.D. advisor said, “David is a rising star. His research stands to fundamentally impact software engineering, and this award recognizes its importance. The computer science research community’s recognition of its importance also shows in David’s academic successes along the way.

“In the five years past his B.S., David won four research internships, and published six ACM/IEEE papers with more in the pipeline. His papers are significant, building a foundation for practical support of software developers’ information seeking. He also “gives back,” mentoring younger graduate students, undergraduates, and even highschoolers.  I am extremely proud of his achievements.”

Description of his Ph.D. dissertation from his award nomination:

“Information foraging theory (IFT) has explained and predicted how people seek information, but IFT does not explicitly account for how people forage when simultaneously “fixing” information in the environment. This gap may limit IFT’s applicability to programming.

Informed by prior research in IFT and Minimalist Learning Theory, my research investigates how programmers forage differently when debugging (fixing) versus understanding (learning) code — via empirical studies and constructing computational models — and how software tools can capitalize upon these differences. The results will contribute new, evidence-based theoretical foundations for understanding software developers’ information seeking behaviors, and how tools can support them.”

claudia-mini editClaudia Mini’s passion for technology was sparked by watching her aunt play Nintendo NES, although it was not until college that she decided to pursue it as a career. Now an Oregon State computer science student, Mini has found a way to combine her creative side with computer science.

Of those early days hanging out with her aunt, Mini said, “I just loved watching her play and would root for her, but when I would play I’d always lose.” Not deterred, she later became the computer expert of the household she shared with her grandmother, mother and aunt, who were originally from Nicaragua.

In third grade, Mini won a computer in a raffle which gave her the chance to start exploring all the possibilities that computers offered. But she didn’t try programming beyond learning enough html to improve her Myspace page. In a high school class on Adobe Illustrator and Photoshop, Mini’s teacher noticed she liked to help others out and asked her to be a be a teaching assistant in a computer science class. So, although she never took a programming class in high school she had the opportunity to learn more about all the options computer science had to offer through the class she assisted with.

“I thought it was just really cool that there was so much versatility, and you could show your creativity through computer science,” she said.

But Mini had planned to follow in the footsteps of her mother and aunt who were both in medical professions. She applied to Oregon State as a pharmacy major, but switched her major before taking classes when she realized that she fit better into computer science.

“I feel like when you’re in the right major you definitely know it because you’re surrounded by people that have the same common interests as you, and you get along with them,” she said.

To get through her first year of computer science courses, Mini said she was at her teaching assistant’s office hours every day. The strategy not only helped her to be successful, but she also made a close friend.

“She helped me so much, because it was intimidating at first and she helped me get through it. She is definitely my mentor,” Mini said of Sneha Krishna.

Mini not only mastered the material, but she started teaching it herself when she became a teaching assistant the following year for the introductory classes. “I really like seeing the progress in the students. At the beginning I was explaining to people what a function was, and by the end they were learning linked lists,” she said, beaming with pride.

Although she enjoyed computer science, Mini initially didn’t have a plan for her career until she discovered she could combine computer science with psychology, and pursue a career in human-computer interaction (HCI).

“I really like to communicate with people and make software that’s helpful to people, and HCI involves a lot of talking with the user to find out what they want incorporated into the product,” Mini said.

Mini has quickly grown from a nervous freshman learning to code for the first time to a leader for her peers. In addition to being a teaching assistant she serves on the board of the OSU ACM Club as the secretary. She has also gotten much better at computer games, but she still likes to watch others play and root them on.

Story by Rachel Robertson

John Conley working in his lab.
Professor John Conley and Ph.D. student Dustin Austin use a technique called atomic layer deposition (ALD) to synthesize a nanolaminate dielectric film.

John F. Conley, Jr., professor of electrical engineering at Oregon State, has been named the only 2015 IEEE Fellow in Oregon. He is being recognized for “contributions to semiconductor process technology to improve radiation hardening of MOS devices,” according to the IEEE awards committee. Conley’s work has had direct impact on earth orbiting satellites, military applications, and the robotic exploration of deep space, as well as the reliability and lifetime of everyday electronic devices.

“I have been a member of IEEE since I was a student at Penn State and I feel greatly honored and humbled to have achieved this level of distinction within this organization,” Conley said.

The IEEE Grade of Fellow is conferred by the IEEE Board of Directors upon a person with an outstanding record of accomplishments in any of the IEEE fields of interest. The total number selected in any one year cannot exceed one-tenth of one- percent of the total voting membership. IEEE Fellow is the highest grade of membership and is recognized by the technical community as a prestigious honor and an important career achievement.

One of Conley’s key contributions to improve the radiation hardening of CMOS devices was to the understanding of the reactions between hydrogen and radiation damage centers in MOS devices (with Patrick Lenahan). Another was the first experimental confirmation of the Lelis Model for switching (border) traps (with Lenahan, Aivars Lelis, and Tim Oldham). This work provided fundamental insight into the way in which oxygen vacancy defects, the most important oxide traps, change structure and electronic properties in response to charge capture. Although this work dealt specifically with radiation damage problems near Si/SiO2 interface, the experimentally demonstrated Lelis model now forms the basis for understanding of the negative bias temperature instability (NBTI) — one of the most important MOS reliability problems.

Conley has also made significant contributions to the atomic layer deposition (ALD) of dielectrics and nanotechnology (the selective growth of nanowires). His research group at Oregon State is focused on materials development using ALD, metal/insulator/metal devices, internal photoemission, and thin film transistors.

Conley’s career includes positions at Dynamics Research Corporation, the Jet Propulsion Laboratory (JPL), and Sharp Laboratories of America (SLA). Since 2007 he has been at Oregon State where he is a professor in the School of Electrical Engineering and Computer Science, and the Intercollege Materials Science Program. He is an ONAMI Signature Faculty Fellow, and co-director of the Materials Synthesis and Characterization (MASC) facility.

Conley has authored or co-authored over 120 technical papers, over 130 additional conference presentations (including tutorial short courses on high-k dielectrics and 15 invited talks), and 20 U.S. patents.