Jim Rivers, an animal ecologist in the OSU College of Forestry, is among the American Ornithological Society’s 2023 honorees, receiving the Marion Jenkinson Service Award in recognition of his “sustained and generous contributions of time, energy, mentorship, and leadership in the AOS.”

The Marion Jenkinson Service Award goes to an early- or mid-career ornithologist “who has performed continued extensive service” to the society.

The award carries an honorarium of $1,000 and is expected to be formally presented in August at the society’s annual conference in London, Ontario.

Rivers has served on multiple AOS committees, including as chair of the Student Affairs Committee shortly after its establishment.

“In addition to being an enduring advocate for students and early professionals in our society, Dr. Rivers has contributed directly to several AOS conferences, has helped develop new awards to recognize significant contributions, and continues to serve as an associate editor for (the journal) Ornithology,” the society notes.

Marbled Murrelet on its nest. Photo: Brett Lovelace/OSU

It’s not easy to find a marbled murrelet’s nest in Oregon. It wasn’t until 1990 that researchers even located the first one in the state. The elusive breeding behavior of this threatened species has made it challenging to protect through conservation efforts and strategic management of coastal forests. It’s clear the population of this small seabird has declined from historic levels — but the reasons why are murky.

That’s why a team of College of Forestry researchers launched Oregon’s first large-scale, long-term study of murrelet breeding biology. This collaborative project, initiated in 2016, drew immediate support from a diverse group of stakeholders across the state.

“Murrelets are a listed species, so there’s a lot of interest in recovering this population,” said Jim Rivers, an assistant professor of wildlife ecology who’s leading the research effort. “But we haven’t had the information we need to understand what’s constraining reproductive output.”

For phase one of the project, the research team turned to existing data to better understand why the birds travel inland to nest some years, but not others. Murrelets rely on the sea for their food, including forage fish like anchovy, herring, and smelt, and commute as much as 50 miles inland to nest in old-growth and late-successional forests, where they lay a single egg. The researchers learned when it’s a bad sea year and ocean temperatures are too high, the birds forego breeding, unable to get food to feed their young.

A small radio tag is affixed to a marbled murrelet so it can be tracked to its nest site. Photo: Jaymi Heimbuch

For the next phase of research, the team studied the murrelet’s breeding behavior, tracking them from sea to nest. Venturing out on a research vessel, the team boarded inflatable boats to catch murrelets, install radio tags and release the birds back into the wild. When breeding season hit, the team patrolled the coast with airplanes, listening for beeps from radio tags to narrow down potential nesting sites for the
ground crew and tree climber to locate.

But because murrelets nest in older forests, just getting to the vicinity of a nesting tree usually involves scaling piles of blowdown and bushwhacking through thick growth for miles. And murrelets are sneaky nest-builders — and sitters. They don’t use twigs and branches to build their nests like other birds. Instead, they find a mossy branch where they lay a single egg and take turns incubating it. They trade spots once every 24 hours, sitting so still that their only movement may be just the blink of an eye.

And when they’re moving in and out of the nest, they’re really moving. Murrelets have been clocked at nearly 100 mph and their typical cruising speed is 60-70 mph. They usually fly at dawn and dusk, so it takes an eagle eye to spot these birds and find their nests, a large reason there were only 29 active nests recorded in Oregon before this project. The team of OSU researchers more than doubled that number, also installing cameras at each nest to monitor success.

“We’re learning a lot about where murrelets are nesting, how successful they are and what causes them to fail,” said Rivers. “This information has been a long time coming, and it ties back to how challenging it is to do this fieldwork.”

A version of this story appeared in the Spring 2023 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

Balancing timber production to maximize biodiversity

As the human population grows, the demand for resources is increasing. But at what cost to biodiversity? Just as the agricultural industry contends with how to sustainably feed eight billion humans, the challenge for forest managers is to find sustainable ways to meet human wood consumption needs, explains Matt Betts, Ruth H. Spaniol chair of renewable resources and professor in the department of forest ecosystems and society.

“What we consume has a huge impact on our planet’s biodiversity,” said Betts. “But very few researchers have tested approaches to minimize tradeoffs between timber production and biodiversity conservation.”
Betts explains that in agriculture, there are two main camps of thinking. The first, “land sparing” involves setting aside large portions of the landscape as unmanaged reserves, and growing crops intensively in others. The second, “land sharing” involves low-intensity “nature-friendly” agriculture. This results in lower yield, increased total area for food production and therefore few or no reserves.

In forestry, this “land sharing versus sparing” model has been expanded to a triad approach, where a given landscape may be divided into differing proportions of three distinct management groups — reserves, focused on biodiversity conservation; intensive management, focused on wood production; and ecological forestry, which is a mix of both.

To test this approach, he is collaborating with stakeholders inside and outside the College of Forestry to launch a 20-year study across 40 different sub-watersheds in the Elliott State Research Forest. The research is designed to test different proportions of all three management types across various forest landscapes (watersheds). By doing this, Betts and his team hope to learn how these management approaches affect biodiversity and wood production over time.

Before the project can begin, it must gain the approval of many stakeholder groups to be completed on the state-owned forest. In the meantime, Betts is working on a shorter-term version of this project funded by the National Institute for Food and Agriculture.

In collaboration with several CoF researchers, including Klaus Puettmann, Doug Mainwaring and John Sessions along with Taal Levi, a professor in the Department of Fisheries, Wildlife and Conservation Sciences, and doctoral student Maggie Hallerud, Betts’ team is collecting data from forests that fall under the categories of reserve, intensive management and ecological forestry. They are performing preliminary modeling about how each approach affects biodiversity. Hallerud is leading the biodiversity data collection and analysis and Levi is leading the eDNA analysis in this work.

Before and after each experiment, the team counts various species, measures vegetation and incorporates cutting-edge research methods. Researchers are identifying recorded bird sounds through machine learning, tracking wildlife with game cameras powered by artificial intelligence and using DNA barcoding (eDNA) to monitor species diversity.

This study comes with limitations, however, and Betts thinks the most meaningful insights will come from a longer-term project with more controlled experiments at landscape scales.

“That’s the real gold standard for science,” he says. “What we find in short-term studies is often overturned by what we find in long-term studies. And with how long-lived trees are, there’s certain information we could never get during a single career.”

Betts believes a long-term research project in the Elliott State Research Forest could offer critical insights into how to conserve biodiversity and sequester carbon while sustainably keeping up with society’s increasing demand for wood products.

“We don’t have enough information about this mix of forestry practices in the Pacific Northwest,” he said. “A long-term project like the one proposed for the Elliott would enable us to try to reduce the potential trade-offs between timber production and conservation — and identify an ideal mix of forestry management practices that enable production of wood while still maintaining biodiversity. If successful, this could be a fantastic example of approaches to balance human needs with biodiversity conservation, and how people can collaborate to move beyond historical conflicts about forest values.”

A version of this story appeared in the Spring 2023 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

Food-grade vacuum tubing is linked to draw sap from multiple trees.

The sugar maple has a reputation as a powerhouse for maple syrup production — but it’s not the only maple game around. An interdisciplinary team of researchers led by the College of Forestry is at the forefront of a movement to tap into Oregon’s bigleaf maple. The goal? Put the Pacific Northwest on the maple syrup map.

“This is a great economic opportunity for Oregonians to build an industry centered around the bigleaf maple, particularly in western Oregon, where the tree is especially abundant,” says Eric Jones, the principal investigator for the project and assistant professor of practice at the College of Forestry.

So why hasn’t a bigleaf maple tapping industry taken off before in the Pacific Northwest? Economics. The bigleaf maple, acer macophyllum, has less sugar in its sap — usually about one-third to one-half — than the sugar maple. So instead of needing around 40 gallons of sap to make a gallon of syrup, as is the case with sugar maple, you need 80-90 gallons of bigleaf maple sap. But technology advancements like food-grade vacuum tubing that extract higher volumes of sap from trees and commercial reverse osmosis machines which remove 75 percent of water from the sap, have resulted in a cost-effective way to turn less sugary sap into syrup.

“This technology is a gamechanger for the bigleaf maple,” says Jones. To help establish a sustainable bigleaf maple industry in Oregon, Jones assembled a diverse research team including scholars and students from anthropology, food science, extension, geography, environmental arts and humanities, economics, ethnobiology and engineering. The U.S. Department of Agriculture awarded the team $1 million in funding through a pair of multi-year awards to promote the emerging industry, provide training and educate landowners interested in developing commercial enterprises.

“I think there’s a romance and infectious nature to tapping bigleaf maples and we’re trying to help landowners find the easiest and most economic and ecologically prudent path to get into ‘sugaring,’ as they refer to it in the maple industry,” says Jones.

Bigleaf maple syrup

Besides producing maple syrup with a complex flavor profile, the bigleaf maple is the source of other products like nutritional maple water, edible flowers, honey, lumber, figured wood and firewood.

The research team is working to mitigate the risks involved with managing and sugaring bigleaf maples, including incorporating food safety standards into commercial production and investigating how wildlife, diseases and different climatic conditions affect bigleaf maple stands.

With climate change ushering in greater uncertainty about the future of Pacific Northwest forests, the team is interested in how the trees will fare under changing conditions. While hotter and drier weather in some areas will negatively impact bigleaf maple populations, the trees may prove resilient in certain microclimates. Jones is currently an advisor on a pilot project in Washington, where the group is planting thousands of bigleaf maple trees on old dairy land as part of a carbon offset program.

“The bigleaf maple is a tenacious tree, as any forester will attest to, and perhaps it has a role in helping mitigate climate change,” says Jones.

Jones hopes that a growing maple industry will invite people to develop a deeper appreciation for the land and find new ways to engage with each other and with Oregon’s biodiverse and ecologically complex environment.

“Our team of researchers is working hard to make the emerging bigleaf maple industry an inclusive and equitable economic opportunity,” Jones says. “We hope to ignite a bigleaf maple culture in the Pacific Northwest like the sugar maple culture in the Northeast.”

In May 2023, the team will hold the first bigleaf maple festival in Salem, Oregon. Learn more at www.oregontreetappers.net.

Eric Jones – CoF principal investigator
Melanie Douville + John Scheb – CoF graduate students
Barb Lachenbruch – CoF professor emeritus (tree physiology)
Ron Reuter – CoF associate professor (soil science)
Badege Bishaw – CoF courtesy faculty (agroforestry)
Tiffany Fegel – Forestry and Natural Resources, Extension coordinator
Lisa Price – OSU professor (ethnobiology)
Joy Waite-Cusic – OSU associate professor (food safety)
Ann Colonna – OSU senior faculty research assistant, (sensory testing)
Rebecca McLain – Portland State University (ethnography)

A version of this story appeared in the Spring 2023 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of

The College of Forestry is committed to integrating art and science to create and inspire sustainable solutions to climate change.

“As a mostly STEM college, it is all too easy to focus just on science, and yet, the arts help us be better scientists and citizens,” said Tom DeLuca, dean of the College of Forestry.

John Grade’s sculpture, “Emeritus”

Unveiled in October 2022, and co-presented by the College of Forestry and College of Liberal Arts, John
Grade’s sculpture, “Emeritus,” is inspired by the form of an absent tree. Suspended in the middle of OSU’s giant sequoias in the MU Quad, the 80-foot-tall sculpture invites viewers to peer vertically into the hollow, ghostly space of an imagined fourth trunk, formed of tens of thousands of cast and carved pieces that reference the species’ cones, needles and branches. The sculpture was commissioned to celebrate the opening of the Patricia Valian Reser Center for the Creative Arts.

During its 14-month stay in the sequoia grove, College of Forestry researchers will collect data about the ecological conditions of “Emeritus” using automated dendrometer readings, bio-acoustic monitoring and
rainwater DNA sequencing. College of Forestry researchers also helped install the sculpture.

“Emeritus” is open to visitors 24 hours a day and softly illuminated at night.

“The Perseverance of Decay,” by Robert Horner

Peavy Forest Science Center isn’t just a living laboratory gathering data from two hundred sensors to contribute to mass timber research. It’s also a showcase for public art, courtesy of Oregon’s “Percent for Art” legislation.

Dedicated to providing Oregonians with high-quality, accessible art in public places, the Percent for Art legislation sets aside no less than one percent of funds for the acquisition of public-facing artwork in all state building construction projects. The program has placed nearly 2,400 works of art around Oregon for the public to visit.

“The College is fortunate to host three extraordinary Percent for Art installations,” said Tom DeLuca. “These pieces of art bring life and reflection to our community and help us understand the past as we look forward.”

Reaching 22 feet in height, Robert Horner’s “The Perseverance of Decay” resides in the arboretum outside the building. This tree-like structure is built from torched ribs of wood, evoking the feeling of a burnt-out tree from a forest fire. The charred wood makes a direct connection to the fragility and impermanence of life. The inner core of the space, made of boulders and a basalt column that collects rainwater, prompts
contemplation on how humans manage the environment.

Wood figure from “Things Remembered in the Flood” by The Wakanim Collaborative

“Things Remembered in the Flood” is an interior/exterior installation by The Wakanim Collaborative: Earl Davis, Shoalwater Bay Indian Tribe; Tony “Naschio” Johnson, Chinook Indian Nation; Travis Stewart, Confederated Tribes of Grande Ronde; and Shirod Younker, Coquille Indian Tribe. It tells the first dated story of the Mary’s River Kalapuya, whose ancestral lands are what Oregon State University now occupies. Five exterior aluminum pieces illustrate lines of the Kalapuyan story, along with design elements of traditional Southern Oregon baskets. The exterior forms emerge as if from the drainage of flood waters, referencing the “Missoula Floods” (10,000–13,000 years ago). The interior figures, carved from diverse woods, represent Oregon’s nine federally recognized Tribes. The tenth figure is for the Indigenous peoples still fighting for federal recognition, as well as acknowledging unknown Tribes lost to cataclysmic events. The artists intend the work to be a visual reminder of the responsibility to cultivate friendship and collaboration between OSU and the nine federally recognized tribes of Oregon.

The inspiration for Leah Wilson’s “Listening to the Forest” came from the changing light quality and color
she noticed while climbing the Discovery Tree in the H.J. Andrews Experimental Forest. The texture and color of the panels are based on the cellular structure of woods — specifically red alder, western hemlock, pacific yew and Douglas-fir trees — and the variances of light quality from forest floor to forest canopy. Each outward-facing surface is white, but the back layer of each panel is painted, creating a reflection of color and light.

Detail from “Listening to the Forest” by Leah Wilson

Special thanks to Percent for Art committee members Seri Robinson, Mariapaola Riggio, Anthony Davis, Adrienne Wonhof, Thomas and Nicole Maness, Gail Woodside, Libby Ramirez, Bill Coslow, and Kate Ali.

A version of this story appeared in the Spring 2023 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

Cristina Eisenberg

Cristina Eisenberg, Maybelle Clark Macdonald director of Tribal initiatives in natural resources and associate dean of inclusive excellence at the College of Forestry, is committed to creating a safe space for learning where everyone thrives.

“Inclusive excellence means regardless of barriers like socioeconomic status, gender identity or if you are a first-generation student or a person of color, you will thrive because we are actively working to dismantle and remove barriers to success,” said Eisenberg. “This work is a process and involves the whole community, working together, with cultural humility.”

In her role as director of Tribal initiatives, she leads the newly formed Indigenous Natural Resource Office and within it, the Traditional Ecological Knowledge (TEK) Lab.

“Tribal initiatives have everything to do with inclusive excellence,” said Eisenberg. “My job was created to take the College of Forestry beyond the land acknowledgment, which is not just about Indigenous peoples — it’s about everybody.”

The Indigenous Natural Resource Office guides people and the institutions with whom they work to find ways to support and empower Indigenous peoples and their communities while advancing social justice. Their work braids together TEK and western science and research to find solutions to humanity’s most pressing natural resource conservation problems.

“Indigenous peoples have stewarded natural resources for millennia through their knowledge and traditional practices, and we want to decolonize and re-Indigenize the practice of science and advance holistic, systems-based thinking,” said Eisenberg.

A priority for Eisenberg is to create, facilitate and support intercultural collaborative partnerships between Indigenous peoples, OSU, Federal agencies and conservation non-profits that identify mutual research interests, determine the tools needed and then co-create solutions that honor Tribal sovereignty.

Gail Woodside, Tribal liaison for the Indigenous Natural Resource Office and TEK Lab, says it’s important that work with sovereign Tribal Nations be centered around not only decolonizing and partnering, but also following best practices and protocols.

“One way to do this, is to create a Memorandum of Understanding to lead and inform action,” said Woodside. “As binding, enforceable contracts, these MOU’s assist in protecting local knowledge, Elder interaction, and research processes in ceded lands, territories and fisheries in usual and accustomed locations.”

End of field season closing ceremony, Fort Belknap Indian Reservation; Photo by Erin LaMer.

Honoring Tribal sovereignty also means confronting the reality of what it means to be a land grant institution within an academic system founded on principles of settler colonialism.

“It means going beyond acknowledging to accepting responsibility for what was done to Indigenous communities — like forcible removal, displacement and trauma — and finding a solution,” said Eisenberg.

Eisenberg believes education can be a powerful way to heal the damage. She is working to create opportunities and pathways for Tribal youth in higher education, using her lived experience as inspiration.

“I was a first-generation college student and am Latinx and Native American, of mixed Raramuri and Western Apache heritage,” said Eisenberg. “I experienced homelessness, the farthest my parents made it was middle school, but I had a network of mentors that encouraged me to keep going. Everything I do is about paying that back.”

While the TEK Lab’s work takes place in the Western U.S., with a focus on the Pacific Northwest, the lab aspires to build allyships across cultures worldwide. Co-Principal Investigators like Tom DeLuca, dean of the College of Forestry, Tom Kaye of the Institute of Applied Ecology, and Luhui Whitebear of the Kaku-Ixt
Mana Ina-Haws, embody this type of allyship.

“There is a hunger for Tribal inclusion, Tribal sovereignty, and honoring and respecting TEK,” said Eisenberg. “And the College of Forestry is filled with changemakers, embodying inclusive excellence and allyship. From those who work within the Indigenous Natural Resource Office and participate in the
College’s Diversity, Equity and Inclusion workgroup, to those who work across the University, I have so much hope and feel so supported.”

Housed within the Indigenous Natural Resource Office, the TEK Lab includes Program Manager Holly Needham and project staff Savannah Buckman Spottedbird. Co-PI’s include Tom DeLuca, Tom Kaye, Luhui
Whitebear and Si Gao. Gail Woodside is the Tribal liaison and a postdoctoral scholar. The current graduate students are included below.

Tessa Chesonis

“My research honors multiple ways of knowing and explores the benefits of moving away from a westernized approach to ecosystem management.”





Allison Monroe

“Our research is based in reciprocity. In an increasingly challenging field, it is an honor to conduct research driven by both curiosity and care.”





Brooklyn Richards

“I am interested in working within the nexus of TEK and western science to study the relationships between pollinators and plants in forest ecosystems.”





Ashley Russell

“I am researching various vegetation treatments and reforestation methods, including my Tribe’s traditional methods, and how they affect the regeneration of culturally significant species.”





A version of this story appeared in the Spring 2023 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

Creative solutions target the housing and climate crises

What if we could accelerate the use of mass timber, restore forests, create jobs and address the housing crisis in Oregon?

The Oregon Mass Timber Coalition thinks it’s possible. In September 2022, the OMTC was awarded over $41 million by the U.S. Economic Development Build Back Better Regional Challenge, to strengthen Oregon’s national leadership in mass timber, adding new capacity to produce mass timber modular housing.

“The housing crisis in Oregon is severe, with our state ranking 49 out of 50 for housing supply relative to its population,” says Iain Macdonald, director of the TallWood Design Institute at the College of Forestry. “A thriving mass timber industry could help provide affordable housing, while also decreasing the carbon footprint of built environments, improving the resilience of forests and creating living-wage jobs.”

Oregon State University is a key leader in the OMTC, which includes Business Oregon, the Oregon Department of Forestry, and the University of Oregon.

The two universities are spearheading the research for the coalition, including the development of two new facilities: the Oregon Acoustic Research Lab at the University of Oregon, and the Oregon Fire Testing Facility at OSU.

Stewart Professor of Forest Operations Woodam Chung is leading an important pillar of the project. He aims to leverage “smart technology” to modernize the field of forestry.

Chung explains that forestry in the region — and its workforce — has suffered from a lack of innovation, jeopardizing the sector’s sustainability and global competitiveness.

Forestry is also one of the most dangerous job sectors in the country — and has a diminishing and aging workforce.

But, Chung says, “smart forestry” can help shift these trends by modernizing forest practices through innovative technologies that make forestry more efficient and safer — from harvest to mill.

One pilot project Chung will pursue through the grant is the use of smart cameras on harvesting machines. The cameras use data-driven algorithms to detect which trees to harvest in real-time, based on their species, size, straightness and knot sizes. This kind of technology will enable foresters to utilize small-diameter trees for mass timber and maximize the value recovery of forest resources.

“We can apply this system to forest restoration practices, so we can efficiently separate trees that could be utilized for mass timber at harvest. This can improve the efficiency of wood handling and supply,” he says.

He explains that this will also increase fire resilience, as it will help thin dense forests so there is less wildfire fuel left behind. This is important economically, too. Forest restoration is costly, and if the removed fiber can be gainfully used in a commercial mass timber product, the U.S. Forest Service will be able to treat more acres each year.

Chung is also working on landscape mapping, wearable devices to improve health
and safety for workers, and smart sensors.

“This kind of technology is a win for forest health, fire resilience, economic development and the environment,” says Chung.

“We’re looking at all of these interconnected issues holistically and weaving together research projects that can enhance and expand the mass timber industry,” says Macdonald. “It’s an incredible opportunity to drive real change that will result in meaningful improvements to livelihoods and our environment.”

A version of this story appeared in the Spring 2023 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

The 2022 Dean’s Award recipients and retirees were recently honored with an awards ceremony and celebration. Since 1990, the Dean’s Awards for Outstanding Achievement have recognized outstanding contributions by our community members that significantly advanced the mission of the College.

Tom DeLuca and Kerry Menn

Kerry Menn and Jim Kiser were recognized for outstanding achievement in fostering undergraduate student success. Nominators noted “Kerry takes great care to ensure that our students are well supported while they pursue international internships or opportunities to study abroad. She is always “there” for them, and this literally means, that wherever they are (or she is), she will always reach out promptly with useful information, and directly intervene to remove obstacles and streamline processes.” Collegues noted that Jim teaches a large proportion of the undergraduate forestry and forest engineering course credit hours, spanning a vast array of FERM, CoF, and university majors. During academic year 20-21, Jim taught 20% of the total FERM teaching load!

Tom DeLuca and Jim Kiser

Jessica Blunn was awarded outstanding achievement in contributions as a student worker in Jeff Hatten’s lab. Nominators noted “Jessica pursues everything she does in the lab with the same enthusiasm and focus—regardless of whether it is weighing hundreds of soil samples, to complicated and painstaking wet lab analyses. The work she produces and supports is of the highest caliber and the College has been made a much better and more supportive place because of her dedication.”

Tom DeLuca and Jessica Blunn

Mark Kerstens was recognized for outstanding achievement in graduate student leadership. Mark has been involved in FERM as a graduate student since fall 2019, when he started M.S. thesis work focused on assessing the extent to which the vital rates of the Black-backed Woodpecker differ between unburned (green) forests and recently burned forests. Despite being here for just over two years, Mark has achieved remarkable accomplishments that demonstrate his leadership, particularly in the areas of research and service.

Tom DeLuca and Mark Kerstens

The Pauline Barto Award for Commitment to Diversity, Equity and Inclusion went to the Rootstock & Food Drive Committees. Adrienne Wonhof, Allison Culver, Amy Riley, Brooke Harrington, Christina Fierro, Jessica Fitzmorris, Juliet Sutton, Madison Dudley, Nicole Kent, Terralyn Vandetta, Ann Van Zee, Cathy Knock, Hilary McMillan, Jen Elston, Misty Magers, Tunde Jordan and Jenna Baker were honored, as well as Beth Thompson, Irene Schoppy and Julia Lont for their support of the committees.

Juliet Sutton was recognized for outstanding achievement in the mentorship of graduate students. One of the 30+ nominators said “Juliet does an excellent job making graduate students feel like a significant part of the college, even though some of them are remote E-Campus students living far away. She always has each student’s best interests in mind and provides a safe, welcoming, and inclusive environment for students to thrive.”

Tom DeLuca and Juliet Sutton

Madison Dudley and Woody Chung were recognized for outstanding achievement in distinction to the college. Nominators noted that Madison is the heart and soul of the graduate degree program in FERM, and Woody’s service and groundbreaking research has brought international recognition to our college.

Tom DeLuca and Woody Chung

2022 retirees Fred Kamke, Mike Bondi, Jon Souder and Brad Withrow-Robinson, and 2023 retiree Sandy Jameson were recognized for their service to the college. Sandy started working at OSU in 1988 and for the last 10 years, she has advised students in forestry, forest engineering, and forest-civil engineering. She was instrumental in implementing the pro-school model for the FERM department. Mike Bondi retired in 2020 after a 42-year career with OSU Extension and the College of Forestry. Mike developed one of the best forestry Extension programs in the nation while advancing his academic rank to achieve full professor in the College of Forestry. Brad Withrow-Robinson worked for OSU Extension for over 20 years, most recently as the extension forester for Benton, Linn, and Polk Counties. Fred Kamke and Jon Souder were unable to attend the ceremony.

COF professor is on a mission to build better for a more sustainable future.

The building sector is a major contributor to human environmental impacts on the planet – and the College of Forestry’s Mariapaola Riggio is researching ways to mitigate that impact through more sustainable building practices. She’s currently working on projects that take a more environmentally-friendly approach to building through the use of mass timber technologies and what’s known as a “circular economy” model.

Riggio, associate professor of wood design and architecture in the department of wood science and engineering, describes the concept of “circular economy” as a necessary shift in the construction industry, which will help extend the life of buildings and promote more sustainable building practices.

“The current linear consumption model of raw material extraction, production, use, and disposal, which dominates the global economy, is no longer sustainable,” she explains. “In contrast to this model, circular economy aims to slow the consumption loop by designing products that can last longer, be reused, remanufactured or recycled. It also looks at narrowing resource flows, using for instance waste or underutilized materials.”

She describes how these approaches are applied in some of her recent projects:

The first project focuses on how to use an underutilized forest resource to construct affordable, reusable shelters. The material that Riggio’s team worked with is ponderosa pine. Specifically, ponderosa pine taken from restoration programs that harvest trees in order to prevent or mitigate wildfires. These smaller ponderosa pines are removed from forests to preserve larger trees.

Ponderosa pines harvested from restoration programs are generally not considered very marketable for construction as they’re small, knotty, and the resulting boards are often warped or twisted. Riggio wanted to investigate whether they could actually be useful building material, if they were directed at the right type of structure.

She looked into building low-rise modular homes with cross-laminated timber panels made of ponderosa pine lumber. Through working on a prototype, she found that this could be an effective way to utilize this low-value lumber. The smaller dimensions of the structure are more suitable to ponderosa pine’s characteristics and the structure itself is sustainable, as it can be broken down and reconstructed as needed.

One potential use for such structures would be to house populations displaced by disasters or conflicts, as there’s often a need to provide quick and affordable shelter in the wake of disruptive and catastrophic events. Using ponderosa pine from restoration projects adds value to costly wildfire prevention and mitigation work.

“This is a promising way to use waste to engineer wood products – and build structures with a long service life,” she said. She explains that this project is an example of what is called a “narrow-close loop” in the building process, because it optimizes use of resources and reuses materials disrupting the need to demolish and dispose of buildings.

In another project, Riggio transformed the College of Forestry’s Peavy Forest Science Center (PFSC) into a living laboratory to examine the long-term performance of mass timber buildings. She installed structural health monitoring systems around the PFSC to track different factors that could affect the life of the building, like moisture levels that could lead to rot or decay.

“This project will help us understand how a building performs over time,” she said. “And, it will help us make informed decisions about how to extend the service life of the building, through preventative or remedial actions, thus “slowing the loop” of a building life”

The monitoring project proved its usefulness already during the building construction stage, and helped the building team to make informed decisions, such as ventilating roof panels to avoid mold growth and revising the installation procedure of the building shear walls to ensure proper behavior of the structure during an earthquake. Riggio plans to continue monitoring the PFSC for issues and she plans to publish takeaways from the project that can be applied to future mass timber building projects.

Riggio also teaches the concept of a circular economy and offers students hands-on experience in this model through a collaborative course with the University of Oregon’s department of architecture. This course challenges a multi-disciplinary group of students to design small-scale timber structures using materials like recycled mass timber panels. They work together to assume the roles of manufacturer, engineer, and architect to create buildings that maximize future re-use of materials. In one recent class, students designed a Nomadic Hospitality Suite, which is a portable space that can be easily disassembled and reused.

Riggio will continue to build upon her research and academic work focusing on the circular economy and how to manufacture smarter buildings. “We hope to keep learning more and contribute to the conversation about how to build better for a more sustainable future,” she said.

College of Forestry professor Gerald Presley is working to develop a new method to clean up agricultural plastic pollution

The use of a plastic film in agriculture is increasingly being considered as an option for water conservation. The use of plastic films comes with the risk of contamination of soil with non-biodegradable plastics and threatens the long-term fertility of farmlands. College of Forestry’s Gerald Presley is investigating whether fungi could help clean up this environmental issue.

“Remediation methods must be developed to efficiently remove these materials from land and we believe fungi can help,” he said.

Presley, assistant professor in the department of wood science and engineering, just launched a new four-year project to explore the possibility of using fungi to help decompose agricultural plastics pollution. The project is a joint venture with the United States Department of Agriculture’s Natural Resources Conservation Service, which supports the development of new work that can contribute to natural resource conservation.

Presley’s lab specializes in wood durability and applied mycology and he saw this as opportunity to build on that work and explore a new use of fungi. Fungi are known for being biodegrading powerhouses. There are many different species of fungi with really diverse metabolic capabilities, so there’s a fungi available to break down most any natural, organic material, he explains.

Ph.D. student Leon Rogers working in the lab

“It’s their job in the global ecosystem to degrade stuff,” he said. “We’re always interested in looking more deeply into the capabilities of fungal metabolism and finding fungal processes that can be advantageous for human use.”

Presley has worked with fungi to break down other challenging material and he saw potential for it to be helpful with polyethylene mulch. The plastic pollution he’s working with comes from polyethylene film residue, which is getting used more and more for water conservation on agricultural lands around the globe.

Plastic is notoriously difficult to turn into biodegradable material, so cleaning it up won’t be as easy as planting some extra fungi on the land, he explains. The key will be pre-treating the plastic material with another process to help break it down into something the fungi can handle.

“We’re working to develop a one-two punch to knock out agricultural plastics pollution using ultrasonic chemistry and fungi,” he said. “The plan is to develop pre-treatments for plastics that will cook up a readily digestible snack for decay fungi, who will then turn the treated plastic into innocuous and biodegradable material.”

Presley is working with Ph.D. student Leon Rogers to experiment with different combinations of ultrasonic chemistry and fungi processes in the lab to see what works best – before testing them in the field. The researchers have partnered with landowners that have a ranch outside of Stayton, Oregon for the field work side of the project. The ranch was rented out for hemp farming a few years ago, and returned to the landowners with heavy plastic pollution that must be cleaned up if the land is going to be restored to its original productive capacity. Presley and Rogers will work with the landowners to develop tools and processes to tackle the pollution on the ranch – with the hope of being able to translate their findings into a broader application for agricultural pollution and environmental cleanup.

“Our long-term goal is to develop technology that can enable farmers to pull polyethylene contaminants out of their soil and dispose of it on-site in an environmentally friendly manner,” said Presley.