Climate change is increasing pressure on the built environment and building sector to transform from a major contributor of greenhouse gas emissions to a central solution. The development of mass timber technology and the use of wood to construct mid to high-rise buildings can serve as a pathway to a more sustainable future, meeting a rapidly growing global urban population while decreasing carbon emissions and increasing human health benefits.

International networking and collaboration with researchers at the cutting-edge of mass timber technology, wood science and data-driven infrastructure safety is key to achieving the much-needed breakthroughs to advance innovative mass-timber buildings.

The College of Forestry at Oregon State University is partnering with researchers at InnoRenew CoE, faculty of mathematics, natural sciences and information technologies at the University of Primorska and faculty of agriculture and forestry at the University of Helsinki to create an international, informal alliance to share mass timber technology data related to structural health monitoring. Structural health monitoring refers to analyses of data generated from sensors and information technologies that observe and monitor changes over time in buildings.

For a wide and systematic use of data from mass timber buildings, there remains a need for standardization and collaboration among researchers. The alliance will utilize first-hand data from three mass-timber projects, the George W. Peavy Forest Science Center (PFSC) in Corvallis, Oregon, USA, InnoRenew CoE in Slovenia, and the Hyytiälä forest station in Finland (University of Helsinki), to help create standards for structural health monitoring. The alliance will collect unique and innovative structural systems data, develop benchmark data for further applications, and cross-reference with other projects.

Peavy Forest Science Center, College of Forestry, Corvallis, OR, USA

The PFSC is a three-story building completed in 2019 at Oregon State University and utilizes mass-timber structural elements. These include self-centering, rocking, cross-laminated timber (CLT) shear walls, CLT-concrete composite floor systems, a mass plywood panel roof system, and glulam beams and columns. To determine if the building is performing under static, dynamic, and environmental loads as expected, the PFSC serves as a full-scale living laboratory equipped with sensors. The sensors monitor outdoor and indoor climate conditions, heat and moisture transfer in CLT assemblies, moisture content of structural elements, movement of CLT floor and wall panels, tension losses in CLT shear walls, and global dynamic behavior of the structure.

InnoRenew CoE’s building, Slovenia

The InnoRenew CoE’s building, the biggest wooden building in Slovenia, is a hybrid combination of timber, concrete and steel. It was designed according to state-of- the-art principles of contemporary sustainable construction following the principles of REED (Restorative Environmental and Ergonomic Design) based on research outputs from the InnoRenew CoE.

Hyytiälä forest station, Finland

In Finland, four new mass timber buildings at the Hyytiälä forest station, faculty of agriculture and forestry of the University of Helsinki, are under construction and will be completed in 2022. The structures and walls are CLT, while flooring and roofs are laminated veneer lumber (LVL) based. The buildings are 1-2 story comprising a large catering and studying/conference hall and three accommodation buildings with studio-type rooms. Wooden (walking) bridges and platforms connect the facilities. Two of the buildings will be used to collect data, research structure and material characteristics, and monitor indoor air quality. The buildings offer an opportunity to research human health and well-being, both perceived and experimentally measured.

The academic partners agree to cooperate in exchange for the mutual advancement, support and development of joint projects, publications and scholarship opportunities. Partners will develop standard practices for future structural health monitoring projects by creating standardized data collection, processing and management protocols, and establishing a common methodology for reporting project outputs. To inform transparent governance, ownership and regulation, the network will develop a repository and website with information about projects, data and outputs.

The alliance aims to further expand by attracting researchers from around the world to contribute to new knowledge and future developments in the field of built environment.

For more information about joining the alliance, contact:

Oregon State University: Mariapaola Riggio

InnoRenew COE and University of Primorska: Andreja Kutnar

University of Helsinki: Ritva Toivonen, Laura Alakukku

The Western Wood Preservers Institute (WWPI) donated $100,000 to support the construction of a pressure treating facility in Richardson Hall on the Oregon State University campus. The lab will be utilized by the Utility Pole Research Cooperative and the Environmental Performance of Treated Wood Research Cooperative, two preservative-treated wood cooperatives housed in the College of Forestry.  Stella-Jones Inc. will be donating an experimental treating cylinder once the facility is ready, saving the cooperatives about $300,000 in equipment costs.

The repurposed facility will enable more versatile treated wood research, particularly into how to improve the treatment and durability of large wood commodities such as utility poles, railroad ties, and marine pilings. In addition, the facility will function as an educational resource, allowing students in wood science to gain hands-on experience with the process of wood treating.

Representatives of WWPI and Stella-Jones visited the Oregon Forest Science Center to deliver the donation, met with Tom DeLuca, Cheryl Ramberg-Ford and Allyn C. Ford Dean of the College of Forestry, and toured the new Peavy Forest Science Center, A.A. “Red” Emmerson Advanced Wood Products Lab, and the Peavy Arboretum. They also visited the lab spaces used by Gerald Presley, assistant professor in wood science and engineering, and his team.

“This donation enables us to advance science related to pressure treated wood and wood products,” said Gerald Presley, director of the two research cooperatives. “Pressure treatment enables wood to perform well in applications that would otherwise only be occupied by steel, concrete and plastics and OSU is now well-equipped to improve preserved wood products for better performance. This donation also helps us equip the next generation of leaders in wood science and engineering.”

Eric Hansen, department head of the department of wood science and engineering; Dean Tom DeLuca; Gerald Presley; Kyle Cassidy, President of Western Wood Preservers Institute and Director of Quality Assurance & Technical Services at Stella-Jones; Phil Schumock, Director of Sales for Residential Products at Stella-Jones; Dallin Brooks, Executive Director of Western Wood Preservers Institute. Not pictured, but in attendance were Butch Bernhardt, Senior Program Manager at Western Wood Preservers Institute; Mark Clark, Senior Technical Manager-Fire Safety with Hexion and Roy Hultberg, RJH Enterprises.

During the summer of 2021, the OSU Mechanized Harvesting Laboratory hosted a Career and Technology Education (CTE) workshop to explore opportunities for experiential learning in forestry using the harvesting simulator system. The laboratory is directed by Kevin Lyons, the Wes Lematta Professor in Forest Engineering.

Lyons and his team introduced participants to the John Deere forest harvesting simulator system. This system, which includes a terrain editor and a forest harvesting simulator, allows for virtual and experiential learning. It empowers users to begin learning about machine operation, silviculture and harvesting system planning, and mapping topography and forest cover.  It also explores ecology and non-timber values using gaming techniques.

Figure 1. Areas where harvesting simulators can contribute to CTE programs in high schools

Workshop participants included instructors from Oregon high school CTE programs and the executive director and a student officer of the Future Natural Resource Leaders. 

John Deere forest harvesting simulator

“There was unanimous agreement from the instructors that the simulator system provides unique opportunities for a range of natural resource management topics in addition to machine operator training, “ Lyons said. “The Mechanized Harvesting Laboratory is currently collaborating with the Future Natural Resources Leaders and CTE instructors on a program to bring the simulator systems to participating high schools.”

For more information, please contact Kevin Lyons, Wes Lematta Professor in Forest Engineering and director of the OSU Mechanized Harvesting Laboratory.

To ensure thoughtful and sustainable management of the McDonald and Dunn research forests, the Oregon State University Research Forests uses a combination of techniques to design and simulate harvests and other silvicultural treatments before cutting to ensure the harvest meets objectives, particularly from a viewshed perspective.

“One reason our neighbors live near the forest and in the Vineyard Mountain neighborhood is that it is beautiful up here,” says Stephen Fitzgerald, director of the OSU Research Forests. “We wanted to maintain the surrounding aesthetics as much as possible with this harvest so that it is less noticeable from afar. We also have high-use recreation trails in the harvest unit we had to consider. To design this harvest with aesthetics in mind, we used innovative techniques to design the pattern of leave trees in this highly visible area.”  

In 2020, Fitzgerald, forest manager Brent Klumph, associate professor of forest engineering Bogdan Strimbu, graduate student Bryan Begay, and forestry student workers employed a three-phase technique to plan harvests when there are potential viewshed impacts. This project was part of Begay’s larger master’s research project exploring aesthetic silviculture. This three-phase technique includes using GPS to pinpoint tree location followed by LIDAR, which stands for Light Detection and Ranging and is a remote sensing method that uses light in the form of a pulsed laser to reconstruct a digital version of the forest or area in question. The final phase involves walking the forest floor. The team first employed this process within the Davie Crocket II forest, a “variable retention harvest” located near the top of Vineyard Mountain in Corvallis.

“The Davie Crocket II  harvest area encompasses the well-used Vineyard Mountain recreation trail, which we wanted to protect,” explains Fitzgerald. “First, we identified and GPS’d trees along and adjacent to the trail that we wanted to retain. Second, we marked and GPS’d additional trees to be retained either singularly or in clumps across the rest of the harvest area while also creating gaps and openings. Then all of the GPS’d trees were put into LIDAR so that we could see where they were and could then look up at the harvest area (as if it was harvested showing the retained trees) from distant viewpoints around Corvallis.”

LIDAR image before cut

Being able to view what the harvest might look like before it is harvested from different vantage points from afar allows Fitzgerald and his team to add or subtract trees within the harvest area. For example, Fitzgerald explains, the proposed harvest area was evident from Highway 99 near Lewisburg, and they did not want the harvest to stand out from an aesthetic perspective. 

Before harvest looking from Hwy 99 at Lewisburg up to Vineyard Mt.

The final step of walking the forest floor with boots on the ground and eyes on the trees and their spatial arrangement allows Fitzgerald and his team to view the tree canopy and make any final adjustments.

LIDAR image after cut
After harvest looking from Hwy 99 at Lewisburg up to Vineyard Mt.

“By walking within and along the 500 Road, which borders the harvest unit, we were able to determine, mark and GPS additional trees to leave from a view and aesthetic perspective as you were hiking or biking by,” Fitzgerald says.

A view of the Davy Crockett II harvest area during the logging stage. Note the varied retention pattern of mature trees. OSU Research Forest personnel will reforest the openings. The Vineyard Mountain trail runs beneath and through these trees.

The logging contractor, Drew Marshall, recently received the 2021 Certificate of Merit through the Oregon Department of Forestry (ODF) for his excellent work and eye for detail. The award recognizes those forest practices operators that ‘go the extra mile’ for protecting Oregon’s natural resources while working in the forest.

A three-story mass timber building has been designed and constructed for structural testing at College of Forestry’s A.A. “Red” Emmerson Advanced Wood Products Lab, the home of the TallWood Design Institute.

This project, funded by the USDA Agricultural Research Service and led by associate professor of wood science and engineering Arijit Sinha, is testing innovative lateral force resisting systems (LFRS) comprised of newer mass timber products and different energy dissipation mechanisms. These LFRS represent a suite of resilient design techniques that can localize damage in special hardware designed to dissipate energy during an earthquake or similar disturbance. The end product is a building that is potentially more resilient to natural disasters than conventional construction.

The mass timber building, constructed by Fortis Construction Inc. and spanning 40’-x-40′ will be tested in multiple phases, with each stage utilizing different LFRS in terms of design and materials:

  1. Phase 1: The first phase will involve testing a 30-foot post-tensioned self-centering shear wall made from a mass plywood panel (MPP) with U-shaped flexural plates (UFP) as the special energy dissipating hardware. 
  2. The project’s second phase will involve testing an MPP rocking “spine” with buckling restrained braces (BRBs) used for energy dissipation.
  3. Phase 3 will introduce a new mass timber panel product, yet to hit the market, as part of post-tensioned, self-centering shear walls with UFP.

All mass timber products used in the building are manufactured in Oregon with Oregon fiber. Beams and columns are Laminated Veneer Lumber (LVL) manufactured by Boise Cascade, while the floors and walls are Mass Plywood Panels (MPP) manufactured by Freres Lumber. Both these products are made with Douglas-fir. Simpson StrongTie provided a majority of the connections in the building.

This project is a collaboration between research faculty in the OSU department of wood science and engineering, OSU School of Civil and Construction Engineering, and TallWood Design Institute.

For more information about this project, visit the Innovative Lateral Systems website, or contact the principal investigator Arijit Sinha at arijit.sinha@oregonstate.edu, or TDI’s outreach coordinator, Evan Schmidt, at evan.schmidt@oregonstate.edu.

The National Science Foundation awarded assistant professor Reem Hajjar $1.6 million through the DISES (Dynamics of Integrated Socio-Environmental Systems) program to research community forestry in Southeast Asia.

Hajjar, with a team of researchers, will study the impacts that community forestry has had on preventing deforestation while enhancing local livelihoods dependent on those forests. Researchers include professor Matt Betts, associate professors Robert Kennedy and Jamon Van Den Hoek from Geography, and assistant professor Samuel Bell from Applied Economics, as well as participating organizations the Spatial Informatics Group and the Center for People and Forests (RECOFTC).

“Scholars and practitioners have long sought answers to the question: what institutional arrangements -such as particular policies, organizational structures, informal norms and rules- are the best way to balance the two, often competing, objectives of rural development and forest conservation?” Hajjar says.

Case studies show that community forest management, where some degree of forest rights and responsibilities is transferred to local communities, can be an effective form of decentralized forest governance but long-term success and sustainability is variable.

“Our project will identify the conditions that lead to positive community forest management outcomes, like increased forest cover, biodiversity, or local incomes, and the contexts and arrangements that lead to substantial trade-offs across Vietnam, Laos and Cambodia,” Hajjar says.

In an unprecedented scale of analysis, this project will investigate and model the impacts of changes in community forest management institutional arrangements on forest conditions and livelihoods.

Using spatial datasets, researchers will test the hypotheses that community forest management is more likely to maintain and restore forest cover and biodiversity and enhance community livelihoods relative to forests that national governments manage. However, they expect that the magnitude of these impacts will be affected by the types of rights that communities can exercise over their forests and how secure those rights are. They also expect that impacts will be affected by baseline social conditions, like poverty levels and distance to markets, and baseline ecological conditions, like forest degradation and agricultural suitability. The researchers are hoping to additionally uncover the feedback mechanisms that drive this social-ecological system towards positive outcomes.

“With our research design, we can test to see if a positive feedback loop is driving social-ecological outcomes. Since communities now have some rights over those forests, we can see if communities are benefiting from more forest products and services associated with improving forest condition,” Hajjar says. “That, in turn, could incentivize them to continue to manage the forest sustainably and lead to better forest conditions.”

The result will be generalizable models that recognize feedbacks between forest conditions and livelihoods under community forest management. The goal is to produce models capable of predicting landscape and livelihood changes at various spatial and temporal scales under changing institutional drivers and ecological conditions.

The project will also train two PhD students, a master’s student and a postdoctoral fellow, in data science, qualitative methods and modeling. Course materials will be developed to bring socio-environmental modeling exercises into the classroom at Oregon State and at partner universities in Cambodia. Open access user-friendly datasets, maps and models will be available for scholars and practitioners working on environmental governance systems in the U.S. and beyond. Finally, policy briefs will be produced to inform ongoing debates about community forestry in SE Asia.

“This work will be of interest to governments and organizations promoting local governance of natural resources, including in the U.S., where forests under community management are increasing in number, and in low- and middle-income countries where communities manage over 25% of forests,” Hajjar says.

Alumna Balkis Bakar, an Oregon State University graduate who received her PhD in wood science in 2019, is adapting wood-based composite manufacturing technology to create a new kind of composite material made from grape cane fibers.

Bakar came to OSU as a sponsored student from the Ministry of Higher Education Malaysia and Universiti Putra Malaysia. She had a general idea of what she wanted to research, but it wasn’t until a service project with a local Oregon vineyard that she found a suitable material to work with. The company wanted to do something with their agricultural waste, which triggered an interest for Bakar.

“We often see the commercial product produced from the crop or plantation such as wine or cotton fibers. But what happens to the necessary byproduct produced from activities like pruning or harvesting?” asks Bakar.

Bakar says some byproduct is used for fuel, as mulch, left in the field or burned. But there is a growing interest and effort in many countries to use underutilized fibers or non-wood fibers.

“Balkis saw an opportunity to study the resource and then create a product,” says Professor Fred Kamke, the JELD-WEN Chair of Wood-based Composites Science and leader of the wood-based composites center at OSU. “Her greatest contribution is a thorough analysis of the raw material, including anatomical characteristics, cell wall structure, and chemistry.”

Based on her analysis, Bakar devised a process to extract the usable fibers and manufacture a composite using 40% grape cane fiber and 60% polyester.

“No one had done that with grape cane before,” says Kamke. “Grape cane is typically burned as waste.”

“Adapting underutilized fibers like agricultural waste as an alternative material for wood in certain applications can have many benefits,” says Bakar. “It can reduce the demand burden for wood, and growers can benefit if the plantation byproduct has some economic value.”

Bakar, who obtained her bachelor’s degree in bio-composite technology at Universiti Teknologi Mara Shah Alam and master’s degree in the same field at Universiti Putra Malaysia, explains that bio-based composites are not limited to wood fiber and include all plant materials. Previously she studied agricultural waste and byproducts from palm oil plantations.

Bakar sees potential for future grape fiber research, saying that some vineyard owners are already trying to utilize this material. Examples include weaving the cane into containers, creating decorations or converting the fiber into boards.

The Wood and Fiber Science Journal published Bakar’s research in 2020 and the International Society of Wood Science and Technology (SWST) awarded Bakar and Kamke the 2021 George Marra first place award for excellence in writing.

Bakar currently works at Universiti Putra Malaysia as a lecturer in the Department of Natural Resource Industry at Faculty of Forestry and Environment.

Bakar chose OSU because of its reputation in the forestry field and the reputation of Dr. Kamke.

Dr. Kamke has led the Wood-Based Composites Center (WBC) for over 17 years. The WBC is an NSF Industry/University Cooperative Research Center with two main university sites, Oregon State University and Virginia Tech. Partner institutions North Carolina State University, Michigan State University, Auburn University and the University of Nevada Reno also conduct WBC research.

As head of the center, Kamke leads research involving the design, manufacture and performance of wood-based composites. His research group also explores the interaction of adhesives with wood and modified wood in composite applications.

Kamke says many people think of particle board when they hear the phrase wood-based composite, but it is so much more than that. Wood-based composites can be manufactured in various shapes and sizes and include composite lumber, structural panels, and 3D molded parts.

“Even cross laminated timber (CLT) is considered a composite and architects are now designing skyscrapers using CLT,” says Kamke. “CLT is made from lumber, but a companion product called mass plywood panels (MPP) is made from veneer by the Freres Lumber Company. I predict that we will see other types of wood composites used in the mass timber products market.”

There are many advantages to wood-based composites. They are highly uniform in their properties, whereas solid wood varies from piece to piece. Pound for pound, a structural wood composite will have greater strength and stiffness than a solid-sawn beam or column. Perhaps the best advantage of composites is the ability to use nearly 100% of the log (excluding bark) while solid-sawn lumber has a yield of about 50%. In addition, producers cannot create another solid piece of lumber with recycled wood and sawmill residues, but producers can utilize the materials to create a composite.

Both Bakar and Kamke see massive opportunities in the broader field of bio-based composites, adhesives and modified wood composites.

“Wood-based composites and modified wood products can compete against synthetic composites like glass fiber composites, and also with streel and concrete,” says Kamke.

A version of this story appeared in the Fall 2021 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

Lara Jacobs is bringing into focus the ecological and pathogenic impacts of outdoor recreation using a cultural impact lens.

Jacobs, who is pursuing her PhD in forest ecosystems and society, works collaboratively with a Tribe in Washington to examine how fecal matter from outdoor recreationists may create issues to the Tribe’s food supply.

Jacobs says that most people do not understand that when they deposit fecal matter in parks and protected areas, it may pose issues to watersheds, soils, and animals, including humans.

“We’ve been taught for years just to dig a hole and bury fecal matter,” says Jacobs. “However, this contrasts with the scientific literature that shows how bacteria survive in great abundance across seasons, and depth of burial doesn’t seem to matter. The best practice isn’t to bury your fecal matter unless you plan to put in a lot of work to completely compost it with soil. Outdoor recreationists should be packing out their fecal waste whenever possible.”

This research is vital for multiple reasons, including the Treaty obligations that the U.S. government holds to manage the Tribe’s non-reservation lands in manners that maintain their natural resources, including subsistence foods.

“This research is also critical because the field of recreation ecology has yet to bring in a cultural impact lens,” says Jacobs.

As a citizen of the Muscogee (Creek) Nation of Oklahoma who also has Choctaw heritage, Jacobs graduated magna cum laude from Oregon State University with a bachelor of science degree in women studies. The degree combined her interests in environmental issues with topics about systems of oppression and privilege. She also holds a master’s degree in environmental studies from Prescott College, focusing on environmental education, conservation science, and sustainability.

After completing her master’s degree, Jacobs wanted to continue researching outdoor recreation science but was more interested in the ecological impacts of outdoor recreation.

“There are five recreation ecology lab groups at universities worldwide, four of which are in the U.S., and one at OSU,” says Jacobs. “Dr. Ashley D’Antonio’s recreation ecology lab group is where the best GIS work is coming from in this field. So, it was a natural choice for me to apply to be in her lab group.”

Her doctoral research centers on the spatial mapping of outdoor recreationists’ behaviors and their associated environmental ecological and pathogenic impacts on Native lands managed by the National Park Service. Jacob’s main objective is to bring an inclusive lens to academia and help transform the academic landscape into a better and brighter place for everyone. While at OSU, she’s worked to build bridges across the college to create spaces for Indigenous students to connect on various topics.

She co-founded the Traditional Ecological Knowledge club and is the current chair and graduate student representative. Jacobs reestablished an OSU chapter of the American Indian Science and Engineering Society and currently serves as president. She is secretary of the Indigenous Grad Student Alliance, and for the past year, she served as a member of the Indigenous Involvement Work Group for the George Wright Society. Jacobs is also a Ford Foundation Predoctoral Fellow, ARCS Scholar, Cobell Scholar, Native Nations Institute Awardee, Helen J. Harold Gilman Smith Scholar and Thurgood Marshall Scholar.

Jacobs says one of the best things about her graduate program has been working with her advisor, Dr. D’Antonio.

“She provides an excellent example for how mentorship of graduate students can occur through positive and supportive interactions,” says Jacobs. “I model my mentoring of students based on her actions.”

During her spare time, Jacobs loves to hike, backpack, kayak, and explore different ecosystems. She also enjoys time with family.

“Family means so much to me, and so does my culture,” says Jacobs. “I work with a cultural guide to connect with my Tribe and spend time learning our Mvskoke language and histories. I also love to create beadwork that is inspired by my people and our connections with the land. In the summer, I spend my time gardening and harvesting foods and medicines. In fall, I spend countless hours canning, drying, and preparing food for my family and Tribal Elders.”

The College of Forestry has supported Jacobs’ education through multiple scholarships, including covering equipment costs for her research.

After finishing her degree, Jacobs aspires to continue working in academia as a professor.

“My dream is to continue building knowledge about how outdoor recreation impacts Tribal Communities and generate more information about recreation impacts in marine systems,” says Jacobs. “I plan to establish a lab group where I can dedicate space and time to mentoring Indigenous students and others from marginalized communities, including allies.”

Indigenous women make up the smallest percentage of assistant, associate, and full professors nationwide (less than one-half of one percent). Jacobs hopes to use her position to show other Indigenous and marginalized people that they, too, belong in the academy and help them realize their potential and achieve their dreams.

A version of this story appeared in the Fall 2021 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

For Skye Greenler, a fire ecologist and PhD candidate, fire management has been part of her life from a very young age.

“I grew up on a family farm in Wisconsin that was half organic cropland and half restored tall-grass prairie,” says Greenler. “Conducting prescribed prairie burns was a celebration of the changing seasons, and balancing production with sustainability and conservation was an integral part of working on the land.”

Her family’s prairie management emulated that of upper Midwest and great plains tribes, which instilled a deep interest in the practices of Indigenous fire managers. The farm also taught Greenler to think critically about sustainably using the land, building healthy ecosystems to buffer resources through bad years, and balancing a range of seemingly contradictory objectives— the questions she’s still thinking about today.

Greenler is at the forefront of a more holistic perspective in scientific inquiry. She is working to understand how systemically entrenched bureaucracy, patriarchal mindsets of command and control and injustices to underrepresented communities inhibit adaptation to our current fire challenge.

She arrived at OSU excited about the opportunity to study wildfires in one of the most fire-prone landscapes in the nation, where science, management and policy decisions often drive changes in the region and across the country.

Her dissertation focuses on identifying when wildfires can help restore historical and healthy forest conditions in eastern Oregon and northern California. A major part of her dissertation focuses on developing landscape-scale fire models for northern California that incorporate Indigenous fire management practices into cutting-edge fire modeling and management tools.

“This work is a collaboration with Karuk tribal experts, resource managers and scientists. Working together, we will better understand historical forest conditions, implications of different management decisions, and the changes necessary to build future climate and wildfire resilient ecosystems and communities,” says Greenler.

Greenler says there is an urgent need to reassess how we manage and live with fire in Oregon and many places across the globe.

“Understanding when, where, and how fire is beneficial on landscapes is critical for us to work towards promoting good fire and coexisting with fire rather than needing to fight and fear all fire,” says Greenler.

There is also increasing recognition of the importance of Indigenous fire management in restoring landscape resilience, reducing risk to communities and promoting critical first foods and medicines.

“This work is very place-based and needs to be led by local tribes, not Western scientists, but I see a lot of hope in collaborative work that centers Indigenous fire stewardship and land management,” says Greenler.

Greenler hopes that fire scientists can transition to uplifting Indigenous fire management in the following decade and collaboratively create a tangible and substantial space for cultural burning within fire management and landscape restoration.

“In the western United States, wildfire is a natural process that is foundational to maintaining ecosystem health but is increasingly a destructive event that can result in loss of life, property, and valued natural resources,” says Greenler. “Science, management, and policy that together can reduce the risk of uncharacteristic, destructive fires, while promoting natural fire and forest processes is critical to restore forest resilience and reduce risk.”

Greenler’s major professor John Bailey, professor of silviculture and fire management, says she exemplifies the combination of intellectual ability, talent, drive and heart to advance the College of Forestry’s mission for research, teaching and outreach.

After receiving a Provost Fellowship, Greenler helped found the Traditional Ecological Knowledge Club, which supports Tribal rights and inclusion in natural resource stewardship, including hosting a recurring conference on Traditional Ecological Knowledge in ecosystem sustainability. She served as the President of the Student Association for Fire Ecology and is one of 100 doctoral students in the U.S. and Canada selected to receive the Scholar Award from the P.E.O. Sisterhood.

Greenler received a master of science degree from Purdue University in 2018 and a bachelor of arts degree in ecology from Colorado College in 2014.

A version of this story appeared in the Fall 2021 issue of Focus on Forestry, the alumni magazine of the Oregon State University College of Forestry.

photo courtesy of Starker Forests

A group of scientists and forest managers at OSU and the US Forest Service are asking community members who experienced the June 2021 Pacific Northwest heat wave event to participate in foliage scorch research. Community members are invited to observe the heat impacts to foliage and report their observations using a website created by the Oregon Department of Forestry to survey drought impacts on forests.

Following two years of drought, many areas of the Pacific Northwest and British Columbia experienced unprecedented air temperatures during an extreme heat wave in late June and early July of 2021. 

This event led to numerous reports of foliage scorch and leaf drop in westside forests of the Oregon coast range and the Cascades mountain range. Western hemlock (Tsuga heterophylla) and Western Red Cedar (Thuja plicata) seem to have been the most impacted tree species, but Douglas fir (Pseudotsuga menziesii) and various alder and maple species were also affected. Notably, trees and saplings with direct solar exposure and on south-facing slopes seemed to suffer the worst foliage scorch. 

Researchers do not know what the near- and long-term physiological causes and consequences of foliage scorch and heat stress will be, at either leaf or tree scales. The impacts could range from impaired metabolism on surviving leaves to reduced stem diameter growth to eventual tree mortality. This event provides a unique opportunity to probe the physiological and ecological responses to an extreme heat wave in important tree species of the Pacific Northwest.

Researchers ask that anyone participating in the research please note in the “Description and/or caption information” of the survey that participants are reporting ‘impacts of the June 2021 heat wave‘ and also use the phrase ‘foliage scorch‘ so researchers can retrieve these observations later for mapping and analysis of this extreme event.

https://tinyurl.com/heat-wave-foliage-scorch