My Year as a Malouf Scholar Coming to a Close

My year as an Oregon Sea Grant Malouf Scholar has been truly a year of growth. Going into the fall of 2018, I had little to no outreach experience. During the last year, I learned about the process of developing, funding/supporting, delivering, evaluating, and reporting outreach activities. My experience as a graduate teaching assistant and completing the course requirements for the OSU GCCUT (Graduate Certificate in College and University Teaching) program proved useful in designing my activities. For instance, I utilized my knowledge of backward course design, which is a technique for designing course content by starting with outcomes in mind. When choosing content and creating my lesson plan for the SMILE events, I based all decisions on my desired learning objectives for students. In addition to learning how to apply my formal teaching skills to outreach education, I learned skills specific to engaging with the public. I did this by reading materials provided by OSG and SERC (the Science Education Resource Center at Carleton College), but I also sought advice and guidance from others along the way. I talked with graduate students in my program who have extensive experience developing K-12 educational products and outreach activities (Sophie Wensman, Dani Miller, and Ian Black), I spoke with outreach coordinators from my college (Abby Metzger and Nancy Steinberg) and from the Marine Geology Repository (Cara Fritz and Maziet Cheseby), and I asked for advice from a number of OSU outreach organizations (Precollege Programs and the Center for Research on Lifelong STEM learning). However, no matter how much I prepared for my activities through reading and reflecting, I needed the actual experiences of delivering my sediment core activities and displays in a number of formats – to coastal community members at Hatfield Marine Science Day, to the middle and high school students in the OSU SMILE program, and to Corvallis community members at da Vinci Days. These experiential learning opportunities taught me what works, what doesn’t, and how to quickly assess and adapt as the situation required. Just like being a research scientist and college and university teacher, being a member of the STEM community who effectively delivers outreach activities requires passion, practice, and a lot of self-assessment. I’m so thankful for Oregon Sea Grant’s support at the beginning of my outreach and engagement career!     

Me showing off my sediment core display at Corvallis da Vinci Days.

So, what does the next year hold for me?

I will be a fellow in OSU’s Risk and Uncertainty Quantification in Marine Science National Science Foundation Research Traineeship (NRT) program. In association with this program, I will be working with a transdisciplinary group of graduate students from different STEM backgrounds to assess the health of Oregon’s coastal sediment routing system. Specifically, we will work to better understand the connectivity between freshwater and saltwater systems by combining knowledge of hydrologic landscape classification schemes with estuarine morphology. This topic is of extreme importance for assessing the vulnerability of these systems to climate and land-use change. My experience as a Malouf Scholar will certainly provide useful in this project as much of the project will focus on the human dimension – both how Oregon coastal communities are influencing these systems through land-use change and also how Oregon coastal communities will be impacted by degradation and loss of coastal ecosystem services. The NRT program incorporates a significant professional development aspect, and I hope to further develop my newfound community engagement skills through collaboration with Oregon marine resource stakeholders, development of outreach products, and delivery of public presentations of our results.  

Additionally, over the next year, I will be starting a new project with funding from the Geological Society of America to determine the recovery times of Oregon’s salt marshes following the 1700 Cascadia Subduction Zone earthquake. I hope to disseminate the results of this project at the end of next summer. I also look forward to presenting my OSG-funded research at the CERF (Coastal & Estuarine Research Federation) 2019 conference in Mobil, AL this fall and continuing to attend OSG sponsored events, such as the State of the Coast conference and OSG Site Review.

Signing off for now!


Reflections and Take-Aways on My Outreach Experience

Earlier this spring, I delivered my activity for the spring Challenge Events, hosted by OSU’s SMILE (Science & Math Investigative Learning Experiences) program, at the Marine Geology Repository (MGR). Over the course of two days, I guided ~60 high school students, ~100 elementary school students, and ~25 K-12 teachers through my hour-long lesson.

When students first arrived, I introduced them to the MGR and talked briefly about my experience as a woman in geoscience. I encouraged them to stick with STEM and pursue their dream careers. I then began the demonstration with a ~10-minute presentation about Oregon salt marshes, ecosystem services, threats to coastal areas, and how salt marshes record history. I then broke the students up into three groups of ~7 at three different tables, each with similar materials. Each table had a sediment core from a different Oregon salt marsh that displayed a 1700 Earthquake tsunami deposit (Picture 1). The students were able to touch the cores and look at samples under microscopes. After walking the students through a few lines of reasoning about where they observe the tsunami deposit based on visual changes, differences in grain size, and what they could observe on the microscopes, I led an experiment to compare carbon content within the sediment core. First, I had students predict which parts of the core had the most carbon, and which parts had the least amount of carbon. They then took three samples from the core and placed them into beakers. I placed these beakers on a hotplate and added hydrogen peroxide. After a few seconds, the samples began to bubble. We then debriefed the experiment, assessing whether their hypotheses were correct and why that was (or was not) the case. If there was time left, I encouraged the students to walk around the classroom and see the other cores for comparison to their own (they varied quite a lot). After each group had finished the experiment, we came back together as a whole group and I asked them a couple of questions: What was something cool that you saw? Did everyone find that you had a tsunami deposit? What did you predict would happen in your experiment? What did you actually see? Why do you think that was the case? Following this, the remainder of the time (~5 – 15 min) was spent touring the core lab facility, until they were transported to their next activity.

Picture 1. Activity set up.

I wanted to highlight some of my takeaways from the demonstrations in no particular order.

First, I learned that I have to be flexible and capable of altering my lesson plan in the moment. This requires constant assessment of how my audience is receiving information. If the material is too confusing or jargon-heavy, I need to slow down, simplify, and explain. Some of the groups found certain aspects of the demonstrations more interesting than others and so I was constantly altering the activity. I was really glad that I scheduled the tour at the end because we were able to extend this portion if we had finished earlier than expected or cut this portion short if we were running low on time.

Picture 2. Two students excited about touching 300-year-old, tsunami sand.

This may seem trivial, but the time of day really affects engagement. Perhaps unsurprisingly, I found that both students and teachers were the least engaged directly after lunch and at the very end of the day. I would watch people’s eyes glaze over if I spoke for too long or attempted to engage them in a difficult subject. During these times, I also noticed that the students were more poorly behaved – distracting other students or engaging a bit too roughly with the demonstration materials. I was also much more energetic and enthusiastic in the middle of the day. In the mornings I was nervous and a little out of practice. By the end of the day, I was tired and ready for dinner.

Everyone loves looking under microscopes. Even though I rarely look under the microscope for my own research, I will always incorporate microscopes into future demonstrations. The MGR has a number of very simple stereoscopes that were perfect for students to see the sediment up close. Some of the students were able to find foraminifera and Radiolaria (Picture 3). One student got so excited by it, that we preserved his Radiolaria between two pieces of packing tape so he could keep it.

Picture 3. Students trying to find Radiolaria and foraminifera.

It seemed like students were unfamiliar with salt marshes in their state, or the fact that Oregon is an active subduction zone that experiences large earthquakes. Despite this, they picked up the information quickly and I was constantly pleasantly surprised with their depth of questioning. Multiple students came up to me and said they wanted to become geologists when they were older – these were certainly the most rewarding experiences.

So, I think I was able to accomplish my goals:

✓ describe how sediment cores are collected in marine environments and how these samples are stored and processed at the MGR

✓ discuss the unique features of Oregon’s estuaries, the services they provide, and the threats they face

✓ visually analyze and compare salt marsh stratigraphy

✓ identify tsunami sand layers and place them within the context of Cascadia seismic history

I won’t know whether I’ve achieved my broader goal of influencing kids to pursue careers in STEM; however, I feel confident that I piqued their interest in geosciences.

Moving forward with my OSG Malouf Scholarship, I plan to present at Corvallis’s Di Vinci Days. Also, I will submit my lesson plan and materials to the MGR so that they are able to continue using my outreach activity. I’ll also be looking into ways to share my lesson plan with a broader audience, such as Carleton College’s SERC (the Science Education Resource Center at Carleton College) program.

Getting My Hands Dirty ~ Designing a Series of Interactive Experiences Using Sediment Cores

Every spring, Oregon State University’s SMILE (Science & Math Investigative Learning Experiences) program, which is part of the Office of Precollege Programs, hosts Challenge events for high school, middle school, and elementary school students. These K-12 students are involved in SMILE clubs all over the state of Oregon. SMILE’s mission is to “increase underrepresented students’ success in STEM degree programs and careers and deliver high-quality teacher professional development” [1].

I am designing an activity for the spring Challenge Events at OSU’s new Marine Geology Repository (MGR) for elementary students (4th and 5th grade) and high school students (9th through 12th grade). Each group of ~25 students will visit the MGR for 1 hour.

I have designed each event with the Next Generation Science Standards (NGSS) in mind. For the high school students, I’ve drawn from HS-ESS2-6, which strives to, “develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [emphasis is on modelling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil and biosphere (including humans), providing that foundation for living organisms]” [2]. For the elementary students, I’ve drawn from the disciplinary core ideas for 4th graders related to understanding the history of the Earth and how living things affect the physical characteristics of their regions. For all K-12 students, the NGSS seeks to instil an enduring understanding of the scientific method. Thus, my broad objective is for learners to have an enduring understanding of estuarine habitats and their ecosystem services (especially carbon burial) so they can rationally use and advocate for conservation of coastal resources. Another important goal is for students to see themselves as scientists. I will therefore both speak about my pathway into science and also set up the activities to follow hypothesis-based lines of reasoning.

This is a lot to accomplish in only one hour! I’ve been working to design a lesson plan that covers all of these topics in hands-on activities that fit into my limited timeframe. I plan to allocate 10 minutes to welcoming the students to the core lab, describing the MGR, and talking about my path into science. We’ll then have a 10-minute discussion about the carbon cycle, why it’s important for global climate, and where carbon gets stored. I’ll also play our video of how we collect sediment cores.



Students will then be divided into groups of three and the next twenty minutes will be devoted to a hands-on activity assessing carbon concentrations within a sediment core. The cores I’ve chosen for each group will have obvious stratigraphy, with many different layers of sand, silt, and clay (below is an example). Along the length of the core, I will have a timeline so the students can get a sense of the timeframe over which salt marshes record environmental history. Samples from the core that vary in terms of organic matter content will also be set up under stereoscopes for students to look at the core material in detail. The students will have the ability to feel the sediment and look at it using hand lenses, as well. After the students have been able to observe the core, the aid at the table will ask the students to formulate a hypothesis about what kind of sediment from the core will have the highest carbon content. They will then take small samples (~3) and put them in beakers on a hot plate. A little bit of hydrogen peroxide will then be poured over the samples and the ones that bubble the most will have the highest organic matter content. They will then assess their hypothesis and the aid will lead them through a series of follow up questions. For instance, what kind of sediment (mud or sand) stores the most carbon? What other kinds of factors might influence the amount of carbon buried in salt marshes?

CT scan of an example sediment core used in the activities. The lighter portions of the image are more dense, sandy material. Darker portions of the image are less dense, organic-rich sediment. The left side of the core is the top, which is present day.

Following the activity, we’ll all come back together for a short, ~10-min discussion of what they learned, and I will answer final questions from students. In the remaining time, students will be led on a short tour of the MGR.

Throughout this process, I’ve received a lot of helpful advice and support from friends and colleagues. Members of the College of Earth, Ocean, and Atmospheric Sciences (CEOAS) Science Communication group, including Abby Metzger (the Communication Manager in CEOAS), have provided me with advice along the way and have donated their time to a mock demonstration at the MGR. At the OSU MGR, the education and outreach coordinator, Cara Fritz, and other staff (Maziet Cheseby, Coquille Rex, and Valerie Stanley) have been wonderful sources of knowledge. Cara has additionally graciously agreed to help during the Challenge Events. Additionally, I’m very grateful to the staff at Precollege Programs. I’ve been working with Jay Well, who has been extremely helpful and generous with his time. Outreach takes a village!


How I Rediscovered My Love of Dirt

Believe it or not, my fascination with sediment started at about 10 months old. My first ever word was “dirt” (though my mother hotly refutes my father’s recollection of this milestone as she’s certain my first word was “mama”). Despite this early indication of my future passion, my interest in mud somewhat waned in late childhood and all but vanished in high school, as my science classes focused on human anatomy, physics, and chemistry. Who can guess what career path I would be following today had I not been placed, thanks to a testing error, in advanced calculus during my first semester of college? Quickly realizing I was in way over my head, I switched to the only available course that would fit my schedule – introductory geology. My interest in the natural world was quickly rekindled, this time from a more scientific viewpoint. Thanks to my professors and research projects, I discovered my passion for studying coupled human-environment systems, climate change, landscape geochemistry and, of course, mud. Fast forward to today, and I’m a graduate student studying coastal sediment dynamics within Oregon’s estuaries.

3-year-old Erin investigating sedimentary beds in an outcrop in Bermuda.

I outline my somewhat serendipitous path into the earth sciences for the following reason: though the natural world fascinated me from an early age, had I not had the dumb luck to switch into a geology course in college, I would not be studying sediment biogeochemistry today. When I applied to Oregon Sea Grant’s Malouf Scholarship, I did so with the goal of providing kids with exposure to earth science research starting at a young age.

Though most children possess a curiosity about the nature they find in their backyards, K-12 students don’t often take their first science course until high school [1], and many schools choose to focus on physical and life sciences. A 2012-2013 study by the American Geosciences Institute found that only one state required high school students to take a year-long earth and environmental science course for graduation, and only six states required that Earth & Space Science topics be covered for graduation [2]. This is despite the fact that the National Science Standards has placed equal importance on Earth and Space Sciences. Many scientific organizations have also called for equal inclusion of earth science education in K-12 science curricula, including the Geological Society of America, which released a position statement on this topic [3]. Recently, environmental education has received more attention through the introduction of the Next Generation Science Standards (NGSS), which strives to teach physical, life, and earth & space sciences using inquiry-based course design.

So why is environmental education gaining momentum in K-12 education? Research conducted by eeWorks (a partnership between the North American Association for Environmental Education and Stanford University) found that environmental education improved students’ knowledge in other important fields (including science, math, reading, and writing); emotional and social skills; and academic skills (critical and analytical thinking, and communication). Moreover, it increased students’ desire to learn, environmentally conscious behavior, and interest in civic engagement [4].

Improved knowledge of the earth and natural processes is just the tip of the iceberg for K-12 students who participate in environmental education. Students also showed improvement in other areas [4].

Since beginning my year as a Malouf Scholar I’ve learned a lot about K-12 earth science education. One thing I’ve learned is that there are many others in the state of Oregon who are invested in environmental education beginning in formative years and continuing on through high school. Oregon was one of 26 states nationwide that adopted the NGSS in 2014. Though updates to the Oregon Science Standards has been incremental, the state’s NGSS incorporate disciplinary core ideas related to Earth and Space Sciences that explore environmental science topics related to human activity. The NGSS earth science concepts are now introduced during earlier ages and continue throughout K-12 education. Moreover, NGSS increase student interest in learning by focusing on crosscutting concepts that connect different areas of STEM [5].

Throughout the next few months I’ll learn even more about enhancing environmental education as I finish planning, execute, and reflect on a series of educational events for K-12 students in Oregon. In my next post, I’ll describe the events … Stay tuned!