HWeekend F16

Students spent 30 consecutive hours of engineering design, teamwork, and development at HWeekend on October 8-9, sponsored by the College of Engineering. The theme was “Show’em What You Got!”, and participants did just that, creating some of the most complete projects of any HWeekend. The purpose of the theme was to encourage projects that could be submitted to national competitions.

HWeekend Teensy Soldering
Audrina Hahn solders components to a Teensy board.

It was the sixth iteration of the highly successful event that gives engineering and business students an entire weekend to develop an idea and prototype it. Forty-two students participated with majors in electrical and computer engineering, computer science, mechanical engineering, nuclear engineering, and finance.

After some breakout brainstorming sessions and presentations of their ideas, participants split into 10 teams to work on their projects. The diverse ideas included a modified game of laser tag, a guitar that could tune itself, and a smart shin guard paired with a virtual reality environment.

One of the groups returned from the previous HWeekend held during Spring term. That group continued with their effort to build a ferrofluid display using individually wound electromagnets. The other groups were much newer to their projects, such as the mobile coffee heater group, which worked on finding components they could use to heat liquids in a drinking cup.

“The beautiful thing about this is that it’s fast paced and you really see results, even if they’re not exactly the results you hope for,” says Audrina Hahn, a mechanical engineering student, who worked on the Open Laser Tag project.

This event made use of the all-new Buxton Hall Makerspace, the Mastery Challenge lounge, and the Virtual Makerspace, which gave students access to 3D printing, soldering irons, a drill press, and laser cutting.

“It’s really amazing all the resources that we have available to us that are really simple to use and are things that are up-and-coming that we will probably continue to use into our careers,” Hahn says.

Intel mentor helps a group with their project idea
A mentor from Intel assists the VR shin guard group.

Mentors for this HWeekend included eight industry representatives. Martin Held from Microsemi returned to guide teams and answer hardware questions. Multiple mentors arrived from Intel in Hillsboro, including several recent graduates of Oregon State. These mentors split up to help on projects where their experience helped groups work with unfamiliar technologies. One group that benefitted was the motion tracking robot team, which received help with OpenCV from a mentor who revealed a personal interest in assembly programming.

Ben Buford was one of the recent graduates who came back from Intel to provide mentorship. He spent most of his time contributing to the ferrofluid display.

“I love seeing people come up with quick solutions that let them accomplish something and overcome obstacles that they didn’t know existed three hours prior,” Buford says.

Beyond the satisfaction of completing prototypes of their ideas, students at HWeekend compete for two group awards. The Executors award goes to the team that produces the best execution of their original idea to create the most polished final product and the Helping Hand is for the team that contributes the most to other teams. At this HWeekend, the Arbitrarily Tuned Stringed Instrument team was selected for both awards. The team included members Keaton Scheible, Youthamin “Bear” Philavastvanid, Elliot Highfill, and Savannah Loberger.

Story by Kyler Stole

View the Flickr album.

 

Photo at the 30th Annual Small Satellite Conference in Utah.
Helena Bales poses with her lab group at in front of the NASA booth at the 30th Annual Small Satellite Conference. From left to right, Hollis Neel, Graham Grable, Megan Le Corre, Roger Hunter, David Cotten, Khoa Ngo, Paige Copenhaver, Nirav Ilango, Helena Bales, Caleb Adams. Paige and Caleb hold an engineering model of a cubesat launched by NASA.

Guest post by Helena Bales

I had an amazing experience this summer at the University of Georgia working in the Small Satellite Research Lab. The lab was founded by undergraduate students, myself included, partnering with professors, NASA, and the U.S. Air Force. Space seems impossibly far away and hard to get to, but with the increased popularity and strength of the small satellite community, it is now easier than ever to reach, even for self-funded, undergraduate engineering students.

We started as a small group of students and created a crowdfunding campaign with the goal of launching a small satellite into orbit. Most of the students on the project were at the University of Georgia (UGA). We had reached out to faculty members in the UGA geography department to see if they wanted a science payload to fly on our CubeSat. CubeSats are small satellites of a specific size. For example, a “1U” CubeSat is 10 cm wide, 10 cm deep, and 11 cm tall. The standard size has aided the commercialization of space.

SPOC mission patch
The mission patch for the Small Satellite that will perform multi-spectral analyses of the Georgia coast.

Currently, we have two CubeSat projects and about 20 members. The CubeSats launch off the International Space Station. One will look at Earth in order to track sediment plumes, algal blooms, and chemical runoff around Georgia. The other will create 3D maps of large geographic features such as mountains. We couldn’t have dreamed that this project would end up where it is now — a lab run by undergraduate students with two fully funded satellite projects.

My role in the lab is to develop the algorithms that we need to accomplish our mission objectives. That mostly involves adapting existing algorithms for use on orbit. Running software on orbit has different limitations than on the ground, so the software needs to be adjusted accordingly. For example, when dealing with space, engineers must take account of power shortages, overheating, and time limitations that might compromise transmission of data. Fortunately, we know these constraints ahead of time. With careful planning and testing, we can insure that our code will run on orbit.

The process of developing cube satellites posed both unique opportunities and struggles. As undergrads, trying to figure out how to build two satellites, we are all learning together. And the experience of working at the Small Satellite Research Lab is incomparable to most undergraduate experiences, because of the nature of the project and the close relationships developed through solving problems in space. Balancing the demands of the project takes a close-knit group of scientists and engineers and communication between group members. Through the experience we have built a productive lab and became close friends.

MOCI patch
The mission patch for the Small Satellite that will create 3D point clouds of large geographic features.

Eight of our members (myself included) received scholarships to attend the Small Satellite Conference in Logan, Utah. At that conference we had the opportunity to attend six days of talks about every aspect of small satellite missions. We all learned more than we could have imagined. We were also able to network with industry professionals from organizations like NASA and SpaceX. That week opened our eyes to issues that we hadn’t thought about yet, and introduced us to new satellite hardware vendors. When we returned from the conference, we were equipped to onboard new lab members, finalize our payloads, design our ground station, and plan outreach events.

Despite ongoing encouragement and success, we continue to struggle with getting the funding that we need to make a lab that can support multiple space missions. For example, using space-grade hardware requires a cleanroom in order to assemble our satellite to meet the standards set by NASA and the U.S. Air Force, who have each funded our missions. The funding we’ve received for the projects assumes that there is already a lab that is outfitted with all the supplies necessary to build and test a CubeSat, so we face the additional hurdle of establishing our lab.

I’m proud to be part of a group that welcomes challenges instead taking the easy route — an important characteristic for the next generation of scientists and engineers solving problem in the limitless reaches of space. With creativity and persistence, the University of Georgia Small Satellite Research Lab is pushing itself and reaching new heights.

—————

Author biography:

Helena Bales grew up in Portland and is a senior in computer science. In addition to her ongoing work at the UGA Small Satellite Research Lab, she works on campus as a software developer at the Valley Library. She spent last summer at NASA’s Johnson Space Center developing applications for the daily operation of the International Space Station. Her internships have fueled her interest in space and she plans to pursue a career in the aerospace industry after graduation.

photo of Vedanth Narayanan
Vedanth Narayanan, a graduate student in computer science, did a summer internship with Tripwire.

Guest post by Vedanth Narayanan

This summer I had a great experience as in intern at Tripwire, a software company based in Portland that develops security solutions. What impressed me the most about Tripwire was how everyone there made me feel comfortable and part of the company. I remember getting coffee in the break room the first week, and multiple people stopped by to introduce themselves and ask about me. I got the sense of belonging fairly quickly. It empowered me. Although we only made small talk, I knew I could ask them for help without hesitation.

The fact that people are social at Tripwire really goes hand-in-hand with the work environment. There are multiple teams that develop and test the products. Cross-team collaboration at Tripwire is highly valued, because it’s crucial that different pieces of the puzzle are properly linked. For that reason, having the right social dynamics is really helpful.

My team gave me a small list of potential projects that I could choose to work on. I got a week to look over the projects I was interested in and choose something I found to be valuable. I really appreciated this because it didn’t box me in.

The first month was the hardest because I was trying to understand the work, the company and the culture. My team gave me the freedom to spend time on intricate problems, and when I ran into anything unusual they were always there to help me through it. They would also point me to who would be able to help me from another team.

One other thing I noticed about Tripwire (that I had not come across working at other companies) was how flat the organizational structure was. Not only was I in touch with my manager on a daily basis, but also my product owner, and even other engineering managers. I was absolutely delighted and surprised to see our CEO socializing and having a beer at a company event.

Portland’s tech culture is said to be unique, and I got a firsthand experience in it. Like you’d expect, going out to lunch was always a thrill. There were many food carts nearby, and the choices seemed unlimited. There was also a nearby Farmer’s market that set up shop every Thursday. These turned out to be a good place to socialize and it gave me a chance to meet people from other tech companies.

I loved my experience at Tripwire. Like I’d expect from any internship, not only did I learn about the company, but I also learned about myself. I was naïve when I thought the most important thing when accepting a job was the work and the people. I’ve come to learn that the work environment is just as important. I want find a job where the environment is conducive to learning, and positively supports new ideas. I am grateful to have had the chance to work there and get to know the people at Tripwire. When it’s time for me to find a job, I can confidently say Tripwire is on my list.

——————–

Author bio: Vedanth Narayanan (who goes by Vee) graduated from Oregon State in 2015 with a bachelor’s degree in computer science. He is currently working to get his master’s in computer science with an option in security. He previously worked for McAfee (now Intel Security), Intel, and OSU’s Center for Applied Systems and Software (CASS). He is very intrigued by the security landscape and software engineering. While he loves being in front of his computer, he is also grateful for the time away from it. During these times you will find him running, hiking, playing ultimate Frisbee or volleyball, at the Oregon coast, or cooking dinner with jazz playing in the background. An avid photographer, his camera is almost always less than ten feet from him. Although his comfort lies in landscape photography, he has recently taken an interest in portraits and lifestyle.