Thomas G. Chastain

Annual ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] seed crops have been produced on some Oregon farms continuously for decades without rotation of crops or farming practices.  The long-term influences of this continuous cropping of annual ryegrass have not been examined nor have any long-term practices been evaluated in annual ryegrass seed production.

Annual ryegrass seed field in Oregon (TG Chastain photo)

Long-term annual ryegrass cropping systems trials were initiated in the 2005-06 crop year in a project led by former OSU Extension Agent, Mark Mellbye.  His vision was for a 9-year project to study the long-term effects of several cropping practices on annual ryegrass seed production.

While there are several long-term cropping systems practices studies in field crops such as wheat at a variety of locations around the world, no long-term studies in grass seed crops and annual ryegrass in particular, have ever been conducted.  The following six cropping systems practices treatments were employed in the study:

  1. Continuous conventional tillage and planting system
  2. Continuous no-till planting system
  3. No-till/conventional tillage rotation (alternate year tillage)
  4. Volunteer/conventional tillage rotation (alternate year tillage)
  5. Burn and no-till/conventional tillage rotation (alternate year tillage)
  6. Volunteer/no-till/conventional tillage rotation (tillage every 3rd year)

The following were the primary findings of the study:

  • Annual ryegrass seed yield varied with tillage and establishment system, and environment.
  • No-till produced the lowest seed yields.
  • Environment x system interaction effects governed seed production characteristics.
  • Increased tillage frequency and residue removal are required to sustain long-term seed yields.
  • Yield differences among systems were attributable to seed number.

This article was published in Field Crops Research and can be found at the link below:

Chastain, T.G., C.J. Garbacik, and W.C. Young III. 2017. Tillage and establishment system effects on annual ryegrass seed crops. Field Crops Res. 209:144-150.

 

 

Thomas G. Chastain

In order to maximize harvest efficiency and seed yield, using the appropriate timing for harvest is essential. Seed moisture content is the most reliable indicator of seed maturity and harvest timing in grass seed crops.

Since pollination and seed maturation are not uniform processes in grass seed crops, a range of seed maturity can be found in a single field. Harvesting within the correct range of seed moisture contents will maximize seed yield and minimize losses of seed during harvest. Seed moisture content is also an important factor in the storage of harvested seed. High seed moisture content reduces longevity of seed in storage and reduces seed quality.

To optimize the timing to swath grass seed crops and to maximize the quantity of seed harvested, seed growers must balance cutting late-maturing seeds too early with cutting early-maturing seeds too late. Cutting too early at high seed moisture content shortens the seed fill period leading to immature seed and reduced seed size or weight. Cutting too late at low seed moisture content can reduce yield as a result of seed shattering losses.

The table below shows the seed moisture content range recommended for swathing of grass seed crops:

Crop

Recommended seed moisture for swathing (%)

Moisture loss per day (%)

Annual ryegrass

43-48

2.0-3.0

Orchardgrass

42-46

1.0

Tall Fescue (forage)

40-43

2.5-3.0

Tall Fescue (turf)

35-45

2.5-3.0

Perennial ryegrass

35-43

3.0

Chewings fescue

30

5.0

Creeping red fescue

25-35

4.0

Kentucky bluegrass

24-28

3.0-4.0

Illustrated instructions on how to conduct a seed moisture test in grass seed crops and guidelines for seed moisture contents for best harvest efficiency can be found in OSU’s publication EM 9012. Here’s a link to the publication:

Using Seed Moisture as a Harvest Management Tool

A video showing step by step instructions on collecting seed and methods to test moisture content of seed is linked below:

Seed moisture and harvest video

Thomas G. Chastain

In order to maximize harvest efficiency and seed yield, using the appropriate timing for harvest is essential. Seed moisture content is the most reliable indicator of seed maturity and harvest timing in grass seed crops.

Since pollination and seed maturation are not uniform processes in grass seed crops, a range of seed maturity can be found in a single field. Harvesting within the correct range of seed moisture contents will maximize seed yield and minimize losses of seed during harvest. Seed moisture content is also an important factor in the storage of harvested seed. High seed moisture content reduces longevity of seed in storage and reduces seed quality. Continue reading

Thomas G. Chastain

Grass seed harvest has begun here in the Willamette Valley.  In order to maximize harvest efficiency and seed yield, using the appropriate timing for harvest is essential.  Seed moisture content has been found to be the most reliable indicator of seed maturity and harvest timing in grass seed crops.

Since pollination and seed maturation are not uniform processes in grass seed crops, a range of seed maturity can be found in a single field.  Harvesting within the correct range of seed moisture contents will maximize seed yield and minimize losses of seed during harvest. Seed moisture content is also an important factor in the storage of harvested seed.  High seed moisture content reduces longevity of seed in storage and reduces seed quality. Continue reading

Thomas G. Chastain

Grass seed crop acreages in Oregon’s Willamette Valley have varied over time.  One interesting aspect of the rise and fall of grass seed crop acreages in the region is their relationship with wheat acreages in the Willamette Valley.  A rise in grass seed crop acreage is mirrored by a simultaneous fall in wheat acreage and vice versa, and these trends are evident in the graphic below.

Grass seed and wheat trends Continue reading