Publications

Publications at Oregon State University

  • ❖Xian Y.J.*, Xie Y.X, Silva S.M., Karki C.B.,Qiu W.H. and Li L#. (2021) StructureMan: A structure manipulation tool to study large scale biomolecular interactions. Front. Mol. Biosci. 7:627087.
  • ❖Tseng K.-F.*, Mickolajczyk K.J.*, Feng G.X.*, Feng Q.Z., Kwok E.S., Howe J., Barbar E.J., Dawson S.C., Hancock W.O., and Qiu W.H.# (2021) The tail of kinesin-14a in Giardia is a dual regulator of motility. Cur. Biol. 30:3664-3671.e4.
  • ❖Swentowsky K.W.*, Gent J.I., Lowry E.G., Schubert V, Ran X, Tseng K.-F., Harkess AE, Qiu W.H., Dawe R.K.# (2020) Distinct kinesin motors drive two types of maize neocentromeres. Genes Dev. 34:1239-1251.
  • ❖Gicking A.M.*, Wang P.*, Liu C., Mickolajczyk K.J., Guo L.J., Hancock W.O., and Qiu W.H.# (2019) The orphan kinesin PAKRP2 achieves processive motility via a noncanonical stepping mechanism. Biophys. J. 116:1270-1281.
  • ❖Popchock A.R., Jana S., Mehl R.A.#, and Qiu W.H.# (2018) Engineering heterodimeric kinesins through genetic incorporation of noncanonical amino acids. ACS Chem. Biol. 13: 2229–2236. PDF.
  • Gicking A.M., Swentowsky K.W., Dawe R.K.#, and Qiu W.H.# (2018) Functional diversification of the kinesin-14 family in land plants. FEBS Letters 592: 1918-1928. PDF
  • Wang P.*, Tseng K.-F.*, Gao Y., Cianfrocco M., Guo L.J., and Qiu W.H.# (2018) The central stalk determines the motility of mitotic kinesin-14 homodimers. Cur. Biol. 28:2302-2308. PDF
  • ❖Gicking A.M., Qiu, W.H.#, and Hancock W.O.# (2018) Mitotic kinesins in action: Diffusive searching, directional switching and ensemble coordination. Mol. Biol. Cell, 29: 1153-1156. PDF.
  • ❖Dawe R.K.#, Lowry E.G., Gent J.I., Stitzer M.C., Swentowski K.W., Higgins D.M., Ross-Ibarra J., Wallacem J.G., Kanizay L.B., Alabady M., Qiu W.H., Tseng K.-F., Wang N., Gao Z., Birchler J.A., Harkess A.E., Hodges A.L., and Hiatt E.N. (2018) A kinesin-14 motor activates neocentromeres to promote meiotic drive in Maize. Cell, 173, 839–850. PDF.
  • ❖Tseng K.-F.*, Wang P.*, Lee Y.-R.*, Bowen J., Gicking A.M., Guo, L., Liu B.#, and Qiu W.H.#. (2018) The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor. Nat. Commun., 9:1067 [PDF].
    Featured in EurekAlert!, ScienceDaily and Phys.org.
  • ❖ Li Q., Tseng K.-F., King S.J., Qiu W.H., and Xu J. (2018) A fluid membrane enhances the velocity of cargo transport by small teams of kinesin-1. J. Chem. Phys. 148, 123318.
  • ❖Hams N. Padmanarayana, M., Qiu W.H., and Johnson C.P. (2017)  Otoferlin is a multivalent calcium sensitive scaffold linking SNAREs and calcium channels. Proc. Natl. Acad. Sci. USA,114, 8023–8028
  • ❖Popchock A.R.*, Tseng K.-F.*, Wang P., Karplus P.A., Xiang X., and Qiu W.H. (2017) The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat. Commun.,  8, 13999.
  • ❖Lee Y.-R., Qiu W.H., and Liu B. (2015). Kinesin Motors in Plants: From Subcellular Dynamics to Motility Regulation. Curr. Opin. Plant Biol. 28, 120–126.

Selected publications prior to Oregon State University

  • ❖ Cheng L., Desai J., Miranda C.J., Duncan J.S., Qiu W.H., Nugent A.A., Kolpak A.L., Wu C.C., Drokhlyansky E., Delisle M.M., Chan W.-M., Wei Y., Propst F., Reck-Peterson S.L., Fritzsch, B. and Engle E.C. (2014). Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. Neuron 82, 334-49.
  • ❖ Qiu W. H.*, Derr N.D.*, Goodman B. S., Villa E., Wu D., Shih W., and Reck-Peterson S.L. (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19, 193-200.
    Highlighted Nature Research News & Views: Nature 482, 44-45 (2012).
  • ❖ Su X.L., Qiu W. H., Gupta M.L., Pereira-Leal J.B., Reck-Peterson S.L., and Pellman D. (2011). Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/Kinesin-8. Mol. Cell 43, 751-763.
  • ❖ Qiu W. H.*, Li T. P.*, Zhang L. Y., Kao Y.-T., Wang L. J., and Zhong D. P. (2008). Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer. Chem. Phys. 350, 154-164.
  • ❖ Zhang L.Y., Wang L.J., Kao Y.-T., Qiu W.H., Yang Y., Okobiah O., and Zhong D.P. (2007). Mapping hydration dynamics around a protein surface. Proc. Natl. Acad. Sci. USA 104, 18461-18466.
  • ❖ Qiu W.H., Wang L.J., Lu W.Y., Boechler A., Sanders D.A.R., and Zhong D.P. (2007). Dissection of complex protein dynamics in human thioredoxin. Proc. Natl. Acad. Sci. USA 104, 5366-5371.
  • ❖ Qiu W.H., Kao Y.-T., Zhang L.Y., Yang Y., Wang L.J., Stites W.E., Zhong D.P., and Zewail A.H. (2006). Protein surface hydration mapped by site-specific mutations. Proc. Natl. Acad. Sci. USA 103, 13979-13984.
  • ❖ Kim J., Lu W.Y., Qiu W.H., Wang L.J., Caffrey M., and Zhong D.P. (2006). Ultrafast hydration dynamics in the lipidic cubic phase: Discrete water structures in nanochannels. J. Phys. Chem. B 110, 21994-22000.
  • ❖ Zhang L.Y., Kao Y.-T., Qiu W. H., Wang L.J., and Zhong D.P. (2006). Femtosecond studies of tryptophan fluorescence dynamics in proteins: Local solvation and electronic quenching. J. Phys. Chem. B 110, 18097-18103.
  • ❖ Qiu W.H.*, Zhang L.Y.*, Okobiah O., Yang Y., Wang L.J., Zhong D.P., and Zewail A.H. (2006). Ultrafast solvation dynamics in human serum albumin: Correlations with conformational transitions and site-selected recognition. J. Phys. Chem. B 110, 10540-10549.
  • ❖ Qiu W.H., Zhang L.Y., Kao Y.-T., Lu W.Y., Li T.P., Kim J., Sollenberger G.M., Wang L.J., and Zhong D.P. (2005). Ultrafast hydration dynamics in melittin folding and aggregation: Helix formation and tetramer self-assembly. J. Phys. Chem. B 109, 16901-16910.
  • ❖ Lu W.Y., Qiu W.H., Kim J., Okobiah O., Hu H.X., Gokel G.W., and Zhong D.P. (2004). Femtosecond studies of crown ethers: supramolecular solvation, local solvent structure and cation pi interaction. Chem. Phys. Letters 394, 415-422.
  • ❖ Lu W.Y., Kim J., Qiu W.H., and Zhong D.P. (2004). Femtosecond studies of tryptophan solvation: correlation function and water dynamics at lipid surfaces. Chem. Phys. Letters 388, 120 126.

* denotes equal contribution
# denotes correspondence or co-correspondence

Print Friendly, PDF & Email