Written by Gail Langellotto, Gail.langellotto@oregonstate.edu

On the very day that I am typing this note, Aaron Anderson (a M.S. student in my lab) and Lucas Johnston (an undergraduate student in my lab) are staking out Aaron’s research plots at the North Willamette Research and Extension Center in Aurora, OR.  Later this week (weather-permitting), Aaron, Lucas, myself and others will be planting 150 1 m2 plots with 30 different plant species.  These plants will include 25 species of plants native to Oregon’s Willamette Valley (Table 1), and five popular, non-native, ornamental plants that can be found on lists of plants purported to be attractive to pollinators.  We’re still debating the identity of the non-native plants, but are considering: Agastache, Lavendula ‘Gros Blue’, Lavendula ‘Edelweiss’, Nepeta, Salvia, Origanum or Hyssop.

Table 1.  Native plants selected for this study.

Plant Species Common Name Life History Bloom Color
Clarkia amoena Farewell-to-spring Annual Pink
Collinsia grandiflora Giant blue eyed Mary Annual Blue
Gilia capitata Globe gilia Annual Blue
Lupinus polycarpus Miniature lupine Annual Purple/Blue
Madia elegans Common madia Annual Yellow
Nemophila menziesii Baby blue eyes Annual Blue/White
Eschscholzia californica California Poppy Annual Orange
Helianthus annuus Common sunflower Annual Yellow
Phacelia heterophylla Varied-leaf phacelia Annual White
Acmispon (Lotus) parviflorus Annual White/Pink
Achillea millefolium Yarrow Perennial White
Anaphalis margaritacea Pearly everlasting Perennial White
Asclepias speciosa Showy milkweed Perennial Pink/White
Aquilegia formosa Western red columbine Perennial Red
Aster subspicatus Douglas’ aster Perennial Purple
Camassia leichtlinii Common camas Perennial Purple/White
Delphinium menziesii Western Columbine Perennial Purple
Eriophyllum lanatum Oregon sunshine Perennial Yellow
Fragaria virginiana Wild strawberry Perennial White
Iris tenax Oregon iris Perennial Purple
Eriogonum compositum var. compositum Arrowleaf buckwhweat Perennial Yellow/White
Sedum spathulifolium ssp. spathulifolium Broadleaf stonecrop Perennial Yellow
Sidalcae virgata Rose Checkermallow Perennial Pink
Sisyrinchium idahoense Blue-eyed grass Perennial Blue/Purple
Solidago canadensis Goldenrod Perennial Yellow

We have four key objectives for this project, one of which requires citizen science input.

  1. Assess the abundance and species richness of beneficial insects (including pollinators, parasitoids and generalist predators) associated with Willamette Valley native plants, to develop a rank-ordered list of recommended plants .
  2. Measure native Willamette Valley plants’ attractiveness to pests.
  3. Document the total and peak bloom duration of Willamette Valley native plants, as part of an effort to develop planting schema recommendations that provide season-long resources to beneficial insects.
  4. Measure aesthetic appeal of flower species to home gardeners to create separate planting schema recommendations likely to be adopted by home gardeners.

Since a key component of this project is to develop recommended lists of pollinator plants for home gardeners, we want to make sure that the plants that we’re recommending will be embraced by gardeners.  This is where citizen scientists come in.

After our plants are established, we will be asking folks to rate the plants’ aesthetic appeal, and to note how likely they would be to include each plant in their garden.  We’ll be inviting folks to our study site, and asking for your opinion.  We will also set up an online poll, for those who can’t make it to Aurora.  This aspect of the study still needs approval by the OSU Institutional Review Board, since surveys are considered human subject research.  But, as soon as we get approval, we look forward to hearing from you!

Visit our website to learn more about our projects (http://blogs.oregonstate.edu/gardenecologylab/).

Today’s post comes from Dr. Gail Langellotto (Oregon State University Department of Horticulture) introducing her new research team and future citizen science opportunities.

Gardens are unique and understudied systems, that can have multi-faceted and positive impacts on environmental and public health.  But, key to realizing the potential, positive impact of gardens are the decisions that are made when planning, installing and maintaining garden beds and features.  These decisions are especially important, because gardeners manage and maintain a significant amount of land in the United States.  Take lawns, for example.  Studies suggest that lawns represented the single largest irrigated crop in the United States, and that there are more acres of lawn than the combined acreage of corn, alfalfa, soy, orchards and rice1.

Of course, lawns are just one component of a garden ~ perhaps the least interesting component, from an ecological point of view.  Gardens are special, because of their unique levels of plant abundance and diversity2, which in some cases can be considered ‘biodiversity hotspots’3.   In New York, my lab group documented the important role that plant abundance and diversity in urban and suburban gardens can play in conserving pollinator biodiversity4, 5, 6.  Recently, some of the top researchers in the country argued that conservation plans could better harness the positive environmental benefits of gardens and landscapes7.  But, before we can get there, we need to answer some basic questions.

This is where the Garden Ecology Lab comes in.  Our group works at the interface of ecology and sociology, to try and understand the benefits of gardens to the environment and to human health and well-being.  We want to document the biodiversity of plants, pollinators and other organisms in Oregon gardens, and analyze what factors constrain or promote garden biodiversity.  I’ve done this work in New York, but want to repeat these first steps in Oregon.  Ultimately, the goal is to understand how gardens ~ and the decisions we make in our gardens ~ either promotes or constrains ecosystem services, such as pollination, pest control, and more.

Our group is diverse, and includes students interested in ecology, horticultural therapy and urban soils.  Extension and outreach is embedded in all that we do, such that we plan to work closely with gardeners (as citizen scientists) to describe and understand garden biodiversity, and to communicate findings to broader audiences. We’ll be looking for garden study sites and cooperating gardeners in the coming months, and invite you to get to know us, just a bit more.

Langellotto Lab 2016
(left to right:  Robert Yarnall, Aaron Anderson, Michael Nelson, Gail Langellotto, Signe Danler)

Gail Langellotto (Principle Investigator):  An entomologist by training, Gail coordinates the statewide Master Gardener program.  Her research and extension interests are focused on developing a better understanding of how to design and manage gardens and parks within urban/suburban landscapes to maximize ecosystem services such as pollination, pest control and human health and well-being.  Starting in 2017, she hopes to work closely with Master Gardeners in home and community gardens, to begin documenting garden biodiversity in Oregon.

Michael Nelson: a student of the Earth, Michael has begun his Master’s of Horticulture to further his desire to create a sustainable community of alternative learning and living. He is interested in community gardening, how private growers overcome their hurdles, and fostering the abundance possible if we all networked together to create our own food.

Robert Yarnall: Robert has an innate drive for social justice. He has begun his Masters of Arts in Interdisciplinary Studies in which he has chosen to integrate three academic disciplines: Horticulture, Food Culture in Social Justice, and Business. His ultimate goal is to study the effectiveness of therapeutic horticulture on inmates and staff within Oregon’s correctional facilities, while also highlighting the economic benefits associated with such programs.

Signe Danler, a lifelong gardener and plant nerd, brought her passion for plants to OSU and earned a Masters of Agriculture degree in 2014. Her wide-ranging interests were fulfilled by coursework in Horticulture, Urban Forestry, Environmental Science, and Soil Science. Her particular area of focus is urban horticulture and applying ecological principles to landscape design and maintenance. She is now teaching sustainable gardening as instructor of the online OSU Extension Master Gardener course, and designing ecologically sensitive gardens as a landscape designer.

Aaron Anderson is a M.S. student broadly interested in how ecological function can be incorporated into urban and agricultural landscapes. After dabbling in entomology, restoration ecology, and biological control, he became interested in studying urban systems. Aaron is fascinated by native beneficial insect conservation, especially in understanding how such species use urban green spaces as habitat to in turn inform how we manage these areas.


1Milesi, C., S. W. Running, C. D. Elvidge, J. B. Dietz, B. T. Tuttle, R. R. Nemani. 2005. Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States. Environmental Management 36:426–438.

2Thompson, K. K. C. Austin, R. M. Smith, P. H. Warren, P. G. Angold, K. J. Gaston. 2003. Urban domestic gardens (I): putting small-scale plant diversity in context. Journal of Vegetation Science 14:71-78.

3Gea Galluzzi, G., P. Eyzaguirre, V. Negri. 2010. Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodiversity and Conservation 19: 3635–3654.

4Fetridge, E., J. S. Ascher, G. A. Langellotto.  2008. The bee fauna of residential gardens in a suburb of New York City (Hymenoptera: Apoidea).  Annals of the Entomological Society of America 101:1067-1077.

5Matteson, K. C., G. A. Langellotto. 2010. Determinates of inner city butterfly and bee species richness. Urban Ecosystems 13:333-347.

6Matteson, K. C., J. S. Ascher and G. A. Langellotto. 2008. Richness and composition of the bee fauna of urban gardens in New York City (Hymenoptera: Apoidea). Annals of the Entomological Society of America 101:140-150.

7Hall, D. M., G. R. Camilo, R. K. Tonietto, J. Ollerton, K. Ahrne, M. Arduser, J. S. Ascher, K. C. R. Baldock, R. E. Fowler, G. W. Frankie, D. Goulson, B. Gunnarsson, M. E. Hanley, J. I. Jackson, G. Langellotto, D. Lowenstein, E. S. Minor, S. M. Philpott, S. G. Potts, M. H. Sirohi, E. M. Spevak, G. Stone, C. G. Threlfall.  2016. The city as a refuge for insect pollinators: conservation for the city. Conservation Biology. Online First.