Three high school students received awards for their computer science research at Oregon State University. Audrey Au, Caroline Gao, and Geraldine Noa-Guerva were winners of the 2021 Aspirations in Computing award for the Oregon and Washington chapter of National Center for Women & Information Technology. Au and Gao also received honorable mention for the national NCWIT AiC award.

All three worked in the area of human-computer interaction, specifically how well problem-solving software supports different genders in problem-solving activities. The students worked with Margaret Burnett, distinguished professor of computer science, and Anita Sarma, associate professor of computer science, who co-direct The GenderMag Project.

“Working in Dr. Burnett’s lab was a genuinely life-changing experience for me,” Gao said. “I realized the full potential of technology to drive equity and social good. The intersectional approach we took to every issue reframed my perception of many societal issues.”

After her research experience, Gao launched a cultural awareness project, called The World in Us, with other students, including Au. The two taught classes through Oregon State’s Talented and Gifted Programs for elementary school students. The project was highlighted by the Albany Democrat Herald.

Au is co-author on an article that won a best paper award at the 2021 International Conference of Software Engineering. She wants to continue tostudy human-computer interaction to facilitate the inclusion of groups often marginalized and underrepresented in tech.

Noa-Guerva also plans to use the knowledge she gained through her research experience about inequities in computing when she pursues a career in technology. She is currently giving virtual English and programming lessons to children in Peru.

“Having these bright, passionate young women in our research group over summer was a privilege. Through their hard work they helped further our research. We look forward to mentoring them as they progress through their careers,” Sarma said.

In April 2016, Oregon State University engineering doctoral students Dylan Jones and Seth McCammon deploy a Seabotix remotely operated vehicle to perform an autonomous underwater survey at the North Energy Test Site off the coast of Newport, OR.

The U.S. Department of Energy’s Water Power Technologies Office recently announced support of up to $22 million for 10 marine energy research projects, including three represented by researchers from Oregon State University’s College of Engineering. (The award amounts for each project are under negotiation.) 

“For industry to move toward commercialization, we need to utilize all of our available resources,” said  Daniel R. Simmons, assistant secretary for energy efficiency and renewable energy, in a Dec. 22 article on the DOE website. “With this funding opportunity, we addressed several critical gaps in the marine energy industry to advance early-stage R&D and build testing infrastructure, as well as foster collaboration among non-federal research entities.”

One of the proposed projects, led by Oregon State, will consider the co-design of marine energy converters for autonomous underwater vehicle docking and recharging. Two partner institutions, the University of Washington and the University of Hawaii at Manoa, will play supporting roles. 

“No one has been able to design a system to reliably dock an autonomous underwater vehicle with a marine energy converter in energetic ocean conditions,” said Geoff Hollinger, associate professor of mechanical engineering and robotics and Oregon State’s principal investigator for the energy converter project. “We would be the first to do that. It would open up a huge new market for inspection, monitoring, and repairs in marine energy systems without relying on expensive ship support.” 

Testing will be conducted in the O.H. Hinsdale Wave Lab at Oregon State. 

In a second project, researchers will test models for integrating marine energy into microgrids. Oregon State will support the work, which will be led by the University of Alaska Fairbanks. 

Microgrids are local energy grids that can be connected to the main energy grid or operated independently. 

“Over the past few years, there’s been agreement on what are good models for wind generation and other renewable energy sources, but models for marine hydrokinetic converters need further validation and benchmarking,” said Eduardo Cotilla-Sanchez, associate professor of electrical and computer engineering and Oregon State’s principal investigator for the microgrid project. “I’m most excited about bringing together the marine microgrid environment and the expertise of on-shore power engineers to leverage their historical knowledge of how to run power systems efficiently and safely, while advancing new forms of clean energy that the ocean provides.”

For the third project involving the College of Engineering, researchers will pursue the development of modeling methods that facilitate the design of wave energy converters. The venture will be led by the University of Washington and supported by Oregon State and the University of Alaska Fairbanks.

Members of the Energy Systems Group inspect microgrid electrical equipment in at the Wallace Energy Systems & Renewables facility at Oregon State, February 2019. From left: College of Engineering graduate Marissa Kwon; Eduardo Cotilla-Sanchez; Yue Cao, assistant professor of electrical & computer engineering; Ted Brekken; and doctoral student Ali Haider.

Wave energy converters transform the kinetic and potential energy of ocean waves into mechanical or electrical energy.

“Our objective is to develop models for wave energy converters that bring electrical, hydrodynamic, and mechanical domains under one framework and that lead to improved simulation speed, flexibility, and design,” said Ted Brekken, professor of electrical and computer engineering at Oregon State and one of the researchers representing the team focused on the model’s electrical components.

Bryson Robertson, associate professor of coastal and ocean engineering at Oregon State and principal investigator for the wave energy modeling project, offered a broader context about the potential impact of all three endeavors: “The work will help to fill fundamental gaps in our knowledge of marine energy sources and to overcome barriers to the development of emerging technologies,” he said. “Ultimately we hope it leads to reduced costs and improved performance of renewable marine energy.” The projects will also offer cross-disciplinary research experiences for College of Engineering students. 

— By Steve Frandzel

Amy Wyman, a second-year doctoral student in civil engineering, has been awarded a prestigious graduate fellowship from the Dwight David Eisenhower Transportation Fellowship Program. The $35,500 award from the U.S. Department of Transportation provides funding for “the nation’s brightest minds” to pursue master’s or doctoral degrees in transportation-related disciplines.

Wyman, who grew up in Portland, earned her Honors Bachelor of Science in Civil Engineering from Oregon State University in 2017. After graduating, she spent two years in Phoenix working as a traffic engineer for consulting firm Burgess & Niple.

She returned to Oregon State in 2019 with the ultimate goal of becoming a professor herself. Her current research focuses on human factors in transportation, with an emphasis on improving safety for pedestrians and bicycles on shared roadways.

“I love that civil engineering is dedicated to public service, and that I share that desire to be a public servant with many of my classmates,” Wyman said. “Of course, I like the technical aspects of my discipline, but it’s the people who have made my experiences in industry and academia truly special.”

Wyman says she has had several fantastic mentors along the way who have inspired and guided her. One of those mentors is her graduate advisor, David Hurwitz, professor of civil and construction engineering and Eric H.I. and Janice Hoffman Faculty Scholar. Wyman was fortunate to meet him when she was still an undergraduate; he also served as her Honors College thesis advisor.

“Dr. Hurwitz was the first, and only, person to suggest I might consider a career as a professor,” Wyman said. “At the time, it hadn’t even occurred to me. A light clicked on, and I realized, ‘Oh yeah, Dr. Hurwitz has a job!’”

Wyman also credits the Women and Minorities in Engineering program at Oregon State, DKS Associates in Portland (where she did her first internship), and her project manager in Phoenix among those who have helped guide her. She says she hopes to “pay it forward” someday, by doing for future students what her mentors have done for her.

“I really love being part of the School of Civil and Construction Engineering, and I genuinely think it’s a special community,” she said. “I’ll never forget how Cindy Olson, who works in the front office, was so welcoming when I first walked in as an uncertain undergraduate hoping to change my major to civil engineering. She knew my name after the first visit. I remember thinking, ‘This is a good place.’”

Photo of Robin GargJust one of 23 students selected from across the world, Robin Garg, a doctoral student in electrical and computer engineering at Oregon State University, was recently selected to receive a prestigious 2020-21 Predoctoral Achievement Award from the IEEE Solid-State Circuits Society. This award is based on academic record, promise, and quality of publications.

Garg’s work in the High-Speed Integrated Circuits Lab at Oregon State focuses on building advanced integrated circuits for millimeter-wave wireless communication links. His research on scalable and reconfigurable multiple-input multiple-output arrays speeds up wireless communications by enabling multiple streams of data between users. As more 5G networks are deployed and devices that take advantage of this technology become ubiquitous, this research provides solutions to handle the resulting massive surge in demand for data.

Garg received his B.Tech. degree in electrical engineering from the Indian Institute of Technology Madras and then worked in industry before returning to school to work on cutting-edge research. “I am passionate about solving the challenging problems that make an impact,” Garg explained. “Recently, we designed a new millimeter-wave full-duplex IC that will allow more users to access 5G networks, as well as reduce the cost of deploying the technology.”

Garg’s advisor, Arun Natarajan, an associate professor of electrical and computer engineering in the College of Engineering, finds Garg’s work impressive. “Robin has developed innovative techniques that make it easier to increase wireless link data rates that coexist with other radios operating at the same frequency while lowering power consumption,” Natarajan said.

The Solid-State Circuits Society is not the only one noticing Garg’s work. In 2020, he was recognized with the Outstanding Student Designer Award from Analog Devices. He also brought home the student paper award (2nd place) at the IEEE Radio Frequency Integrated Circuits Symposium in 2020. “It is encouraging to see the wider community recognize Robin’s research, and I look forward to his future contributions in this area,” Natarajan said.

Robotics researchers in the College of Engineering at Oregon State University are working with colleagues at the University of Washington through a partnership with the Pacific Marine Energy Center to help the Navy develop new technology to expand the abilities of robotic arms mounted on remotely operated vehicles beneath the ocean surface. 

The Office of Naval Research earlier this year awarded a three-year, $3.3 million grant to the University of Washington Applied Physics Lab, of which $2.2 million will go to Oregon State. Geoff Hollinger, associate professor of mechanical engineering and robotics, heads up the Oregon State team. 

ROVs are “unoccupied, highly maneuverable underwater machines that can be used to explore ocean depths while being operated by someone at the water surface,” according to the website of the National Oceanic and Atmospheric Administration. Think of them as remote-controlled submarines. ROV operations eliminate human presence underwater and are thus safer and easier to conduct than operations employing divers or occupied submersibles. 

Initially developed for industrial tasks like pipeline inspection, ROVs have been adapted for a variety of other tasks, many of them scientific and educational. A typical ROV is equipped with cameras and lights at minimum, but they often come loaded with additional instruments, such as probes or robotic arms. ROVs can be as small as a toaster oven or as large as a truck. Whatever their size, they’re controlled remotely by an operator in a surface vessel with a joystick, similar to a video game controller. 

“Our project focuses on moving the role of the operator from one of low-level control to that of providing high-level, explainable goals for subsequent execution by the robotic arm,” Hollinger said. “We’re doing fundamental research on algorithms for robotic control, perception, planning, and decision-support, as well as hardware design, to improve the efficiency and reliability of subsea manipulation of the robotic arm.” 

The researchers, including Oregon State engineers Julie Adams, Joe Davidson, Heather Knight, Fuxin Li, and Kagan Tumer, will work with a robotic arm mounted on a test stand, with the future goal of mounting the arm on remotely operated vehicles while maintaining human-in-the-loop control authority, Hollinger said.

 Keith Hautala