Photo at the 30th Annual Small Satellite Conference in Utah.
Helena Bales poses with her lab group at in front of the NASA booth at the 30th Annual Small Satellite Conference. From left to right, Hollis Neel, Graham Grable, Megan Le Corre, Roger Hunter, David Cotten, Khoa Ngo, Paige Copenhaver, Nirav Ilango, Helena Bales, Caleb Adams. Paige and Caleb hold an engineering model of a cubesat launched by NASA.

Guest post by Helena Bales

I had an amazing experience this summer at the University of Georgia working in the Small Satellite Research Lab. The lab was founded by undergraduate students, myself included, partnering with professors, NASA, and the U.S. Air Force. Space seems impossibly far away and hard to get to, but with the increased popularity and strength of the small satellite community, it is now easier than ever to reach, even for self-funded, undergraduate engineering students.

We started as a small group of students and created a crowdfunding campaign with the goal of launching a small satellite into orbit. Most of the students on the project were at the University of Georgia (UGA). We had reached out to faculty members in the UGA geography department to see if they wanted a science payload to fly on our CubeSat. CubeSats are small satellites of a specific size. For example, a “1U” CubeSat is 10 cm wide, 10 cm deep, and 11 cm tall. The standard size has aided the commercialization of space.

SPOC mission patch
The mission patch for the Small Satellite that will perform multi-spectral analyses of the Georgia coast.

Currently, we have two CubeSat projects and about 20 members. The CubeSats launch off the International Space Station. One will look at Earth in order to track sediment plumes, algal blooms, and chemical runoff around Georgia. The other will create 3D maps of large geographic features such as mountains. We couldn’t have dreamed that this project would end up where it is now — a lab run by undergraduate students with two fully funded satellite projects.

My role in the lab is to develop the algorithms that we need to accomplish our mission objectives. That mostly involves adapting existing algorithms for use on orbit. Running software on orbit has different limitations than on the ground, so the software needs to be adjusted accordingly. For example, when dealing with space, engineers must take account of power shortages, overheating, and time limitations that might compromise transmission of data. Fortunately, we know these constraints ahead of time. With careful planning and testing, we can insure that our code will run on orbit.

The process of developing cube satellites posed both unique opportunities and struggles. As undergrads, trying to figure out how to build two satellites, we are all learning together. And the experience of working at the Small Satellite Research Lab is incomparable to most undergraduate experiences, because of the nature of the project and the close relationships developed through solving problems in space. Balancing the demands of the project takes a close-knit group of scientists and engineers and communication between group members. Through the experience we have built a productive lab and became close friends.

MOCI patch
The mission patch for the Small Satellite that will create 3D point clouds of large geographic features.

Eight of our members (myself included) received scholarships to attend the Small Satellite Conference in Logan, Utah. At that conference we had the opportunity to attend six days of talks about every aspect of small satellite missions. We all learned more than we could have imagined. We were also able to network with industry professionals from organizations like NASA and SpaceX. That week opened our eyes to issues that we hadn’t thought about yet, and introduced us to new satellite hardware vendors. When we returned from the conference, we were equipped to onboard new lab members, finalize our payloads, design our ground station, and plan outreach events.

Despite ongoing encouragement and success, we continue to struggle with getting the funding that we need to make a lab that can support multiple space missions. For example, using space-grade hardware requires a cleanroom in order to assemble our satellite to meet the standards set by NASA and the U.S. Air Force, who have each funded our missions. The funding we’ve received for the projects assumes that there is already a lab that is outfitted with all the supplies necessary to build and test a CubeSat, so we face the additional hurdle of establishing our lab.

I’m proud to be part of a group that welcomes challenges instead taking the easy route — an important characteristic for the next generation of scientists and engineers solving problem in the limitless reaches of space. With creativity and persistence, the University of Georgia Small Satellite Research Lab is pushing itself and reaching new heights.

—————

Author biography:

Helena Bales grew up in Portland and is a senior in computer science. In addition to her ongoing work at the UGA Small Satellite Research Lab, she works on campus as a software developer at the Valley Library. She spent last summer at NASA’s Johnson Space Center developing applications for the daily operation of the International Space Station. Her internships have fueled her interest in space and she plans to pursue a career in the aerospace industry after graduation.

One thought on “A journey to low Earth orbit

Leave a reply

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> 

required