Here is a belated introduction to the science party for MGL1610. We have each contributed to the various entries throughout this journey. Although there are only a few days left in the PICTURES expedition, better late than never…

Anne Tréhu (chief scientist, PI) – Oregon State University (go Beavers!) geophysics professor, our fearless PICTURES leader.

Emilio Vera (co-chief) – Universidad de Chile professor, who is often found enjoying the breeze on back deck and always eager to talk about the exploratory processing he is working on.

Michael Riedel (co-chief) – The “German-Canadian” research scientist from GEOMAR in Kiel is somehow always making me laugh despite the long hours of work and rarely getting to see the light of day.

Kathy Davenport (postdoc) –A native of Tennessee who arrived only recently at Oregon State from Virginia Tech, she is a graphic designer turned geophysicist badass who will nicely answer even your dumbest questions.

Felipe Gonzalez Rojas (graduate student) – Coming with Emilio from Universidad de Chile and starting his PhD in the coming year, he is always working his magic in SeismicUnix and available to help with OBS recoveries.

Florian Petersen (graduate student) – aka “FloMaster,” also from GEOMAR, our acclaimed geodesist who gives up hours of sleep to check on SUZI, recover his beloved OBS, or play an aggressive card game.

Carsten Lehmann (graduate student) – Carsten is also working with GEOMAR from WWU Muenster, the youngest and lankiest student on the boat and a constant source of mischief and entertainment.

Jan Handel (graduate student) –From the Free University of Berlin, he is fueled by chocolate ice cream, constantly helping on the gun deck, the OBS deck, in the seismic lab, and even trying to catch us some fish!

Sara Alhisni (graduate student) – A PhD student at GeoAzur on the French Riviera, she is often found dressed in pink, eating candy and sunning with me on the bow.

Emma Myers (graduate student) – A Seattle local from the University of Washington and the author of this post, who everyone jokes is excited about everything (even at 4 am), especially if physical activity or food is involved.

We will be spending a lot of time analyzing these data once we get home, but none of this would have been possible without the technical staff, who build and operate the instruments and develop the software that make the data possible, and the PSOs, who make sure we respect the rights of the locals.

Scripps OBS dudes: Ernie, Mark and Josh

R/V Marcus Langseth/LDEO technical wizards: Robert, Alan, Dave, Gilles, Todd, Tom, Josh and Roberto

PSOs (aka. Wonderful Whale-Watching Women): Cassi, Yessica, Sharon, Karla, Brooke

And Captain Mark and the crew of the R/V Marcus Langseth.

We’ve loved sharing our experience with you but are all very excited to get home and share more stories in person with our loved ones!
of the locals.whowearephoto-copy


Yesterday we uploaded data from the seafloor geodesy site “Area2” and recovered SUZI.  She brought along many new friends.  After a good scrubbing, she was packed way.  Next time she goes for a swim, she’ll have anti-fouling paint to avoid becoming a home to hundreds of barnacles.


clockwise from upper right: SUZI approaches the ship.  SUZI lifted aboard with the crane (propulsion unit on deck already). The base covered with barnacles. Closeup of the barnacles. 

The PICTURES sources are also being recorded on 50 seismometers onshore.  Addition of these seismometers to the recording array extends the imaging capability of PICTURES to the east and to greater depth on the plate boundary.  The land seismometers were installed by faculty and graduate students from the University of Liverpool and the Universidad of Chile, who learned of this project 3 days before we left port. Many of the instruments were shipped from England, where they are packed up and ready to go whenever and wherever an earthquake or other exceptional seismological opportunity occurs.  Getting these instruments through customs and into the ground in a remote part of Chile in 2 weeks was a monumental achievement that required the dedicated efforts of many people! These seismometers will stay in place recording local earthquakes until late December, when they will be moved south to record the Langseth source in south-central Chile as part of Langeth’s next expedition – CEVICHE (Crustal Experiment from Valdivia to Illapel to Characterize Huge Earthquakes).




Figure 1. A Liverpool rapid-deployment seismic station.  Not shown, but also indispensable, is a shovel.  The entire station will be buried.  Careful notes are needed to recover the station and data!



Figure 2. The intrepid deployment team on the coast of Chile near Iquique. This team did a remarkable job of installing a large number of stations in a very short time, traveling on any road possible to distribute the stations across the study region.  From left to right: Sergio Leon-Rios, Efrain Rivera, Javier Ojeda and Daniela Calle.

The development of GPS technology in the past 2 decades has produced a revolution in the scientific community’s ability to monitor deformation of Earth’s surface, including providing direct measurements of the deformation leading up to large plate boundary earthquakes.  The radio waves carrying GPS data, however, do not penetrate into the ocean, and many of the most dangerous plate boundaries are located beneath the sea. Development of seafloor geodesy is therefore a high priority for geoscientists, and several different approaches are currently in development.

In December 2015, 23 acoustic geodetic seafloor transponders were successfully installed on the seafloor during GEOMAR’s R/V Sonne cruise SO244. These seafloor transponders are located in 3 arrays to form GeoSEA (Geodetic Earthquake Observatory on the SEAfloor).  GeoSEA’s target is the segment of the Nazca-South American plate boundary near 21°S that is in the seismic gap left after partial rupture of much larger seismic gap in 2014 (see PICTURES scientific objectives).  Array 1 on the middle continental slope consists of 8 transponders located in pairs on four topographic ridges, which are surface expressions of faults at depth. Array 2 is located on the outer rise seaward of the trench, where 5 stations monitor extension across plate-bending related normal faults. Array 3 is located on the lower continental slope where an array of 10 stations measures diffuse strain build-up.

The seafloor acoustic ranging methods provide relative positioning by using precision acoustic transponders (Autonomous Monitoring Transponder, AMT) that include: pressure sensors to monitor possible vertical movements as well as provide data to correct for tides; tiltmeters in order to measure changes in inclination; and sound velocity (SV) sensors to correct for sound speed variations in the water column. Data are stored internally and can be uploaded to either a High Performance Transducer (HPT) lowered from the side of a ship or an autonomous vehicle developed by Liquid Robotics and controlled via satellite that uses wave action for forward propulsion (the GeoSURF Wave Glider).  PICTURES provided the first opportunity to upload data since installation of the array. Array 1 and Array 2 are located within the PICTURES footprint, and data were uploaded to the HPT.  The waveglider was deployed to upload data from Area 2.  However, although the Wave Glider was able to travel to Array 2 and obeys commands from its operator, communications turned out to be too slow for practical data upload.  A future upgrade to the communications system is expected to solve this problem, but in the meantime, we have decided to transit 5 hours to Array 2 to upload data from that site using the HPT if we have unused contingency time near the end of the cruise.


Figure 1: The High Performance Transducer lowered from the side of the R/V Marcus G. Langseth. Photo by Jan Steffen.


Figure 2: The Liquid Robotics GeoSURF Wave Glider.  The Wave Glider has two main parts: a float, which contains all sensors and communication units, and a subsurface wing rack, which is connected to the float by a 6-m long flexible umbilical tether. Directional control is accomplished with a rudder on the Glider sub unit. The float is equipped with satellite communication systems (Iridium Satellite LLC) for remote transmission of data, a GPS unit, and a weather station. It also contains batteries that are recharged by a solar panel to provide power at night. The Wave Glider periodically transmits is position via satellite to the “watchkeeper.”  During PICTURES, the “watchkeepers” have had to be vigilant to command the Wave Glider (nicknamed “SUZI”) to stay out of the path of other ships.  We will be recovering SUZI before returning to port.

contributed by Florian Petersen, November 2016

El límite oeste de Sudamérica corresponde a una zona de subducción activa, donde la placa oceánica de Nazca se desliza por debajo de la placa Sudamericana a una velocidad relativa de aproximadamente 7 cm/año. A lo largo de este límite ocurren frecuentemente terremotos, los que han sido reconocidos y catalogados desde hace varios siglos. Este registro ha permitido la identificación de brechas sísmicas (seismic gaps), segmentos de este límite donde no han ocurrido terremotos por largos períodos de tiempo, pero donde históricamente han ocurrido grandes eventos sísmicos. Es de notar que en una de estas brechas sísmicas se originó el terremoto del Maule Mw 8.8 en el año 2010, y que en el 1 de Abril de 2014 ocurrió un evento de magnitud Mw 8.2 (terremoto de Pisagua) en la conocida brecha sísmica del norte de Chile – Perú, donde no se había producido un terremoto de gran magnitud desde el par de eventos de los años 1868 y 1877. La brecha sísmica del norte de Chile ha sido desde algún tiempo de interés científico internacional, y es así como ha sido monitoreada por el programa IPOC (Integrated Plate Boundary Observatory of Chile) desde el año 2007 por medio de estaciones sismológicas y geodésicas instaladas en tierra. El terremoto de Pisagua, sin embargo, cubrió solo parcialmente la brecha sísmica, dejando una amplio segmento de ella sin activarse (ver Figura 1). Este terremoto es considerado como un evento con gran potencial para la contribución a un mejor entendimiento de cómo evoluciona el deslizamiento interplaca en la generación grandes terremotos. La Figura 1A muestra la historia sísmica del norte de Chile y sur del Perú desde el año 1868.

Dos características del terremoto de Pisagua son la base científica del proyecto PICTURES: una extensa y bien caracterizada secuencia de eventos sísmicos precursores en los meses y semanas previas al evento principal, y una notable correlación entre la secuencia de estos eventos y anomalías del campo gravitatorio terrestre en la zona de ocurrencia de estos, indicativas de características particulares de la composición y estructura geológica de la corteza terrestre de la zona. El proyecto PICTURES está diseñado para capturar imágenes de la estructura de esta región mediante técnicas geofísicas indirectas no invasivas, análogas a las utilizadas en medicina para obtener imágenes del interior del cuerpo humano (ecografías, CAT scanner), con el objetivo de entender el origen geológico de las anomalías gravimétricas observadas y su relación con la generación y propagación de terremotos.



La frontière oust de l’Amérique de sud est une zone de subduction active, où la plaque de Nazca plonge sous la plaque Sud-Américaine à une vitesse d’environ 7 cm/an.

Des tremblements de terre se produisent souvent le long de cette frontière, ce qui a permis d’identifier plusieurs «Lacune sismiques», segments d’une zone de la plaque où un grand tremblement de terre est retardé. L’une de ces lacunes était rompue en 2010 avec le tremblement de terre Maule d’une magnitude 8.8 sur l’échelle de Richter. Depuis 2007, une autre lacune, dans le nord du Chili et au Pérou, a été surveillée par le programme de l’Observatoire des frontières de la plaque intégrée – Chili (IPOC). En conséquence, la région terrestre a été bien équipée pour surveiller l’activité sismique et l’accumulation de contraintes lors du tremblement de terre du 1er avril 2014 d’une magnitude 8,1 sur l’échelle de Richter. Cependant, ce tremblement de terre a comblé partiellement la lacune en laissant la limite de la plaque non-rompue au sud.


Deux caractéristiques de ce tremblement de terre ont attiré notre attention:

  • une séquence étendue et bien caractérisée d’événements sismiques dans les mois et les semaines précédant le choc principal.
  • une corrélation frappante entre cette séquence et les anomalies dans le champ de gravité terrestre.


Des petites perturbations de la gravité indiquent des différences géologiques dans la composition (la densité) de la croûte terrestre. PICTURES est conçue pour imager cette région à l’aide de techniques analogues à celles utilisées pour l’imagerie non invasive du corps humain (combinaison d’un scanner et d’une échographie) afin de comprendre l’origine géologique des anomalies de gravité et leur impact sur la façon dont les séismes se multiplient et se propagent.


Nature 512, 299 (2014). doi:10.1038/nature13681
Nature 512, 299 (2014). doi:10.1038/nature13681

Figura 1A. Las líneas verticales muestran la extensión latitudinal estimada para la zona de ruptura de diferentes terremotos con los mayores eventos destacados en rojo. La Figura 1B muestra la topografìa del suelo oceánico (batimetría), el límite entre las placas de Nazca y Sudamericana, la velocidad relativa entre ellas, el modelo de deslizamiento de Schurr et al. (2014) con contornos de intervalo de 1 m, y las áreas de ruptura de otros terremotos recientes ocurridos en la zona. La línea blanca punteada muestra el segmento de ruptura interplaca durante el terremoto de Pisagua de 2014, y la línea sólida el segmento de la brecha sísmica aún sin romper. Si la brecha sísmica se hubiera roto completamente, podría haber generado un gran terremoto de magnitud M ~ 9.

(français)  Cette carte montre sur la gauche l’histoire du tremblement de terre du nord du Chili et du sud de Pérou depuis 1868. Les lignes verticales montrent l’estimation étendue nord-sud de la zone de rupture dans différents tremblements de terre, avec les événements les plus importants représentés en rouge. La carte de droite montre la topographie du fond marin, le bleu foncé atteignant une profondeur de 7000 m, le rose et le gris montrant le fond marin peu profond de la crête d’Iquique. La ligne noire avec des triangles montre la limite de plaque où la plaque de Nazca plonge sous l’Amérique du Sud et la flèche indique la direction du mouvement. Les ovales colorés juste au large de la crête Iquique et de Pisagua montrent un modèle du glissement pendant le tremblement de terre du 1er avril 2014, avec des contours d’un mètre d’intervalles. Les zones ombragées de vert clair sont les zones de rupture d’autres séismes récents. La ligne blanche en pointillés montre le segment de la limite de la plaque qui a éclaté pendant le tremblement de terre de 2014, et la ligne blanche pleine indique les lacunes restantes. Si tout les lacunes s’étaient rompu à la fois, il aurait pu engendrer un séisme aussi grand ~ magnitude 9.

-Spanish translation contributed by Felipe Gonzales Rojas and Emilio Vera

-French translation contributed by Sara Alhisni

The map below shows the location of ocean bottom seismometers (OBSs) that we have deployed since leaving port on October 23. These instruments will sit on the seafloor until the end of November, while we generate small seismic sources in a grid above them. The data from this experiment will be used to construct an image of the earth’s crust beneath the seafloor. The instrumentation and the scientific background for this experiment will be discussed in upcoming posts. Fifty of the OBSs are being supplied by the Scripps Institution of Oceanography in La Jolla, California, as part of the U.S. Ocean Bottom Seismic Instrument Program (OBSIP). Nineteen are being supplied by GEOMAR, in Germany. Fourteen of these were recovered from the seafloor after being there for the past year recording aftershocks of the April 1, 2014 Iquique earthquake.