Dr. Diana Rohlman (Research Translation Core) was invited to speak at the 2018 Council of State and Territorial Epidemiologists Annual National Disaster Epidemiology Workshop in Atlanta, GA.

She discussed her collaborative work with Dr. Kim Anderson in designing a disaster response IRB, allowing rapid response in the event of a disaster. This IRB was activated following Hurricane Harvey, and shared with the University of Texas – Houston, Baylor College of Medicine and Texas A&M, allowing those three schools to receive disaster-specific IRBs as well. In addition, Dr. Rohlman highlighted the on-going work being done in the wake of Hurricane Harvey, using the passive wristband samplers. Dr. Kim Anderson is working with Baylor College of Medicine and UT-Houston to collect information from over 200 individuals living in the Houston area that were impacted by the extreme flooding. A total of 13 Superfund sites were flooded. Dr. Anderson’s analytic methods can detect up to 1,550 different chemicals in the wristband. This information will be reported back to the impacted communities, and is hoped to provide important information for future disasters to prevent or mitigate chemical exposures.

What is CSTE?

CSTE is an organization of member states and territories representing public health epidemiologists. CSTE works to establish more effective relationships among state and other health agencies. It also provides technical advice and assistance to partner organizations and to federal public health agencies such as the Centers for Disease Control and Prevention (CDC). CSTE members have surveillance and epidemiology expertise in a broad range of areas including occupational health, infectious diseases, environmental health, chronic diseases, injury, maternal and child health, and more. CSTE supports effective public health surveillance and sound epidemiologic practice through training, capacity development, and peer consultation.

CSTE Disaster Epidemiology sub-committee:

The Disaster Epidemiology Subcommittee brings together epidemiologists from across subject disciplines to share best practices and collaborate on epidemiologic approaches towards improving all-hazard disaster preparedness and response capacities at local, state, Tribal, regional, and national levels. It is critical to use epidemiologic principles, emergency preparedness planning, and a coordinated disaster response for describing the distribution of injuries, illnesses, and disabilities; rapidly detecting outbreaks or clusters; identifying and implementing timely interventions; evaluating the impacts of public health efforts; and improving public health preparedness planning.

The Research Translation Core, represented by Dr. Diana Rohlman, was invited to attend and present at the 14th summit of the Northwest Toxic Communities Coalition. Dr. Rohlman’s talk highlighted the innovative tools, methodologies and approaches used by the Superfund Research Program at Oregon State. One of the presented case studies highlighted the work being done at the Portland Harbor Superfund site. More information  can be found here.

Excerpted from the event summary: “Dr. Diana Rohlman kicked off the day with an introduction to research being done by the Oregon State University Superfund Research Program. Her talk emphasized the complexity of pinning down risks from manmade chemicals like Polycyclic Aromatic Hydrocarbons (which are chemicals released from burning substances or during oil spills and also used in consumer goods like air fresheners) when environments like Portland Harbor are contaminated differently over time and when the effects of a given chemical often depend on which other chemicals are present or on the specific sensitivity of the exposed individual. She also pointed out that bioremediation can be problematic because chemicals are sometimes broken down into even more toxic metabolites. This means that bioremediation may sometimes successfully eliminate one compound from an environment only to replace it with something even more toxic.” Read the full article here.

Hurricane Harvey and hazardous exposures

Following a disaster, we tend to be worried about finding food and shelter, reuniting with families and pets, and cleaning up the damage left behind. We don’t tend to think about toxic chemical exposures. With Hurricane Harvey, it’s a different story.

Harvey flooded at least 13 Superfund sites flooded. Millions of pounds of hazardous chemicals were released. In addition, small explosions and chemical spills were reported. The New York Times created maps showing  the magnitude of the disaster. For example, this image from the New York Times shows flooded or damaged Superfund sites, in orange.

Only days after Harvey, OSU SRP researchers partnered with Texas A&M, University of Texas – Houston, and Baylor College of Medicine. The goal of the partnership is to place personal samplers on individuals living in and near hurricane-damaged areas. The passive sampling wristband is the perfect tool.  It doesn’t need batteries or the internet. Additionally, the wristband can detect over 1,500 different chemicals.

Disaster Research Response

Oregon State University has been preparing for disaster research for several years. This year, Oregon State received their first ‘Disaster IRB.’ This allows Oregon State researchers to deploy quickly, with appropriate controls in place to ensure participants are safe and their information is confidential. SRP investigators Drs. Kim Anderson and Rohlman worked carefully with the Oregon State Institutional Review Board to develop this IRB.

The Superfund Research Program is supporting this response effort. In the image below, SRP trainees are preparing wristbands for a September 20th deployment. We hope to enroll several hundred individuals. The results of this study will help us better understand the potentially toxic chemical exposures that could result following natural disasters.

Native Americans have a long history of being under-represented in higher education. Currently, only 5% of Native American high school graduates go directly into a four-year college and a small percentage of those major in STEM-related degrees. In an effort to increase participation of Native American students in college programs, and introduce them to biomedical sciences, Oregon State Superfund Research Center holds several activities to bring Native Youth to campus to increase their awareness of opportunities in College and scientific careers.

On May 20, over 20 tribal youth and chaperones came to Oregon State University for a campus tour, student panel and the 41st annual Klatowa Eena Powwow. (Klatowa Eena is Chinook Wawa for ‘Go Beavers.’) SRP trainee Sydelle Harrison, who is part of the Community Engagement Core (CEC), worked with the Research Translation Core, the Training Core and SRP Administration to procure funding and organize the daylong event. For the second year in a row, Sydelle worked with youth organizations to bring students from the Confederated Tribes of the Umatilla Indian Reservation and the Confederated Tribes of Warm Springs.

The 20+ students started at Callahan Hall, where SRP trainee Amelia Allee, (CEC), and University Housing and Dining Services staff took the students through the freshman dormitory, highlighting the shared lounges and kitchenettes, and showing the students a dorm room.

Following the dorm tour, Athletics staff took students on a tour of Reser stadium, including a tour of President Ed Ray’s box, and provided them an opportunity to run on the field. Up next, was the OSU Basketball Center where the students (and chaperones) took to the court. After working up an appetite, the dining halls were next, followed by the Powwow. To finish off the day, SRP trainees hosted a pizza dinner. Here, students had the opportunity to ask trainees questions about college, graduate school and SRP research. Two tribal elders attended, giving the youth their perspective regarding the importance of college. SRP trainees and faculty answered questions about the value of community college, the typical length of a college degree as well as opportunities for distance learning at the OSU satellite campuses. Many thanks to Sydelle Harrison; without her these tours would not be possible. In addition, many thanks to Amber Kramer, Carolyn Poutasse, Alix Robel, Amelia Allee and Drs. Molly Kile, Diana Rohlman, Craig Marcus and Robyn Tanguay for their help.

By Mike Garland and Mitra Geier

 

This past fall, we traveled to the Pacific Northwest National Laboratory (PNNL) for training in computational analysis of RNA-seq data. During this two-day externship, we worked with PNNL scientists as they walked us through our data and gave us an overview of computational approaches they use to analyze RNA-seq data.

 

Research Impacts

During the externship we were provided hands-on experience with computational methods under the guidance of experts. Our ultimate goal was to apply what we learned at PNNL to current and future RNA-seq projects.

Our work at PNNL centered around an experiment that compared regenerating vs non-regenerating caudal fins of zebrafish, which is a phenomenon of interest for a variety of applications.  The regenerating caudal fin model is a useful toxicological tool for chemical screening, and is well-suited for studying how chemical exposure can lead to changes in molecular signaling events that occur during the wound healing process. Furthermore, regeneration and development share many critical signaling events, making this model useful for interrogating mechanisms of developmental toxicity.

By using a systems approach to understand expression patterns of mRNA and miRNA during regeneration, we can improve our understanding of molecular processes involved in wound healing. This would allow us to be better-informed when making hypotheses about the mechanisms of toxicity following chemical exposure in zebrafish. Given the applicability of this model to developmental toxicology, the results from this experiment will be particularly useful for future directions of SRP Project 3.

Age is a known factor of regenerative ability, and different life stages are frequently used in various toxicological studies.  This was incorporated into the experiment using age-based cohorts and we learned methods to compare age-dependent differences in gene expression during regeneration. Drs. Joe Brown and Jason Wendler, both computational biologists at PNNL, trained us over our externship on a variety of methodologies including quality control, read alignment, statistical inference, biological pathway enrichments, and data visualization methods.

 

Career Impacts

Over the course of the two days, we covered many computational methods involved in RNA-seq data analysis, which will be useful in our other ongoing projects, as well as future work as our careers progress. We are also grateful for the opportunities for professional networking outside of our typical academic circles. We learned quite a bit about the mechanics of working in a national laboratory and how that is different than working for a university. We are appreciative of the time and effort put in by Drs. Brown and Wendler, and we also thank Dr. Katrina Waters who helped organize our trip to PNNL.